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Abstract
Background Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to 
long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold 
glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P 
synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan 
assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and 
promotes cell death, less is known about the effects of increased Und-P availability.

Results To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P 
by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/
GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase 
uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 
3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan 
expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. 
In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae 
serotype 4 than traditional E. coli cells used to express recombinant glycans.

Conclusions We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain 
higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase 
the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to 
the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost 
consideration when designing bacterial glycan expression systems.
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Background
Enveloped bacteria express a wide array of polysaccha-
rides at the cell surface that confer morphology, pro-
tect against environmental insults, and resist killing by 
immune systems [1]. Most of these polysaccharides are 
linked to proteins or lipids and are referred to as gly-
coconjugates, a diverse class of molecules that include 
glycoproteins, lipopolysaccharides, capsular polysaccha-
rides, lipoarabinomannans, peptidoglycan (PG), glycosyl-
ated teichoic acids, and many other clinically important 
surface structures [2]. The precursors that form these lay-
ers are assembled on an essential lipid carrier known as 
undecaprenyl phosphate (Und-P), which is also referred 
to as bactoprenyl phosphate [3]. Und-P is a 55-carbon 
isoprenoid that is first synthesized as a diphosphate 
(Und-PP) on the inner face of the cytoplasmic membrane 
by the undecaprenyl pyrophosphate synthase (UppS) via 
the methylerythritol phosphate (MEP) pathway [4, 5]. 
Und-PP is also generated on the outer face of the cyto-
plasmic membrane when it is released during glycan 
polymerization. Und-PP is then dephosphorylated by 
Und-PP pyrophosphatases to Und-P. The integral mem-
brane pyrophosphatase BacA and PAP2 family proteins 
dephosphorylate Und-PP [6–8] and several lines of evi-
dence indicate that this activity occurs on the outer face 
of the cytoplasmic membrane [8–11]. Since Und-PP is 
synthesized on the inner face of the cytoplasmic mem-
brane, enzymes possessing Und-PP pyrophosphatase 
activity would appear to be required on both sides of the 
cytoplasmic membrane. However, a cytoplasmic Und-PP 
phosphatase has yet to be discovered.

Once Und-P is active, phosphoglycosyl transferases 
(PGTs) catalyze the transfer of phosphosugars from 
nucleoside diphosphate sugar donors to Und-P to form 
Und-PP-linked sugar monomers [12], which are progres-
sively built into oligosaccharide building blocks by other 
GTs. GTs also catalyze the transfer of sugars to Und-P 
to form Und-P-linked sugar monomers that serve as 
donors to other glycans [13, 14]. Collectively, we refer to 
these priming enzymes as PGT/GTs. Since most bacteria 
express multiple Und-P-dependent glycans, cells usually 
encode several PGT/GTs. For example, the Gram-nega-
tive bacterium Escherichia coli, which is the workhorse 
of the biotechnology industry, harbors five PGT/GTs 
[Enzyme, product]: MraY, PG; WecA, O-antigen and 
enterobacterial common antigen (ECA); WcaJ, cola-
nic acid capsule; ArnC, aminoarabinose modification of 
phosphate groups on Lipid A; GtrB, glucose modification 
of O-antigen. We note that most lab strains of E. coli do 
not produce O-antigen due to an insertion in wbbL (K-12 
derivatives) or wbbD (B derivatives) [15, 16]. Of these 
PGT/GTs, only MraY is essential, so that mutants lacking 
individual PGT/GTs are readily obtained [17]. Recently, 
we discovered that deleting wecA increases the free pool 

of Und-P in E. coli [18]. This finding prompted us to 
determine if other Und-P pathways could be modified to 
increase the pool of Und-P.

The present results show that E. coli can be induced to 
maintain at least three times more Und-P than wild type 
cells by overexpressing the Und-PP synthase uppS in cells 
lacking all non-essential PGT/GTs. That Und-P levels can 
rise to such a degree is notable given that an overabun-
dance of polyprenyl phosphates like Und-P is thought to 
destabilize phospholipid membranes [19]. Since increas-
ing Und-P levels increases production of Und-PP-linked 
intermediates [18, 20, 21], we reasoned that similar 
effects might occur for the production of finished gly-
cans. Indeed, increasing cellular Und-P levels increased 
both endogenous and heterologous glycan expression in 
E. coli. In particular, we found that recombinant Strepto-
coccus pneumoniae capsular polysaccharide expression 
(important for the production of bioconjugate pneumo-
coccal vaccines [22–24]) dramatically rises in cells con-
taining more Und-P. Since Und-P is a universal carrier 
lipid, the results suggest similar increases may occur for 
potentially any Und-P-dependent polymer. Thus, increas-
ing Und-P availability should be considered a prime 
driver for systems used to express bacterial glycans. Such 
processes (termed Glycan Expression Technology) are 
currently underpowered by low glycan yields [25–29].

Results
The free pool of Und-P increases in a Und-P pathway-
minimized strain
Previously, we constructed a mutant lacking WecA in 
the E. coli strain MG1655 and found these cells to con-
tain more Und-P [18]. Since deleting wecA prevents for-
mation of ECA in this strain background, we sought to 
determine if similar effects would occur for other Und-P-
using pathways. To this end, we systematically disrupted 
all non-essential Und-P-dependent pathways in E. coli. 
However, since MG1655 cells do not produce O-antigen 
due to insertion sequences in wbbL [15], we engineered 
pathway mutants in MG1655 wbbL + cells (hereafter 
referred to as wild type [WT] cells) [30]. Pathway muta-
tions were introduced at the point of initiation to pre-
vent the accumulation of Und-PP-linked intermediates, 
which lower Und-P levels [18]. Thus, we individually 
deleted wecA (ECA and O-antigen), wcaJ (colanic acid), 
gtrB (O-antigen glucosylation), and arnC (modification 
of lipid A with aminoarabinose). Since WecA initiates 
ECA and O-antigen synthesis in MG1655 derivatives, we 
specifically prevented ECA expression (but not O-anti-
gen) by deleting the wecB epimerase, which is required to 
produce the second building block in ECA synthesis (i.e., 
UDP-N-acetylmannosaminuronate) [31]. Importantly, 
WecA+WecB− cells are not expected to sequester Und-P 
in Und-PP-linked ECA intermediates (i.e., they will not 
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lower Und-P levels). Similarly, the wbbL::IS5 insertion 
mutation prevents the formation of the second building 
block in O-antigen synthesis (i.e., dTDP-L-rhamnose) 
without sequestering Und-P [32].

To ensure our mutations did not inadvertently lower 
Und-P levels, we first examined our pathway mutants 
for changes in morphology (i.e., PG synthesis), which is 
highly responsive to reductions in Und-P availability [32–
34]. As expected, pathway mutants produced rod-shaped 
cells (Fig. S1A) that were similar in size to wild type cells 
when examined by flow cytometry (Fig. S1B). We note 
that cells lacking O-antigen (i.e., wbbL::IS5 and ΔwecA) 
grew slightly larger, confirming its role as a mechanical 
element within the cell envelope [35]. In short, our cell 
morphology results indicated that Und-P levels were not 
reduced in our pathway mutants.

To determine if Und-P levels had increased in our 
pathway mutants, we measured Und-P levels directly by 
liquid chromatography – mass spectrometry (LC-MS). 
We note that wherever Und-P levels are discussed, they 
only include the free pool of Und-P and not those Und-P 
molecules linked to glycan intermediates. Intracellular 
quantitation of Und-P levels revealed that WT cells har-
bor on average 123,000 molecules of Und-P per cell (Fig. 
S1C and Table S1), which was consistent with previously 
measured values [36]. To our surprise, similar levels of 
Und-P were also obtained for mutants lacking individual 
pathways and WecA, which is ECA and O-antigen minus. 
Since multiple Und-P-utilizing pathways were still active 
in our pathway mutants, and since Und-P pathways 
compete for a common pool of Und-P [32, 33, 37], the 
observed results suggested that Und-P was being redi-
rected in our strain backgrounds. Therefore, we engi-
neered an Und-P pathway-minimized strain of E. coli 
lacking WecA, WcaJ, GtrB, and ArnC, which we refer 
to as ΔPGT/GT cells. Morphological analysis revealed 
that ΔPGT/GT cells produce rod-shaped cells that are 
somewhat larger than WT (Fig.  1A and B), consistent 
with the absence of O-antigen. Further analysis revealed 
that ΔPGT/GT cells grow identical to wild type cells in 
rich media (Fig.  1C). Interestingly, Und-P quantitation 
revealed that ΔPGT/GT cells harbor on average 301,000 
molecules of Und-P per cell, which represents a 145% 
increase in the free pool of Und-P when compared to WT 
cells (Fig.  1D and Table S1, compare WT to ΔPGT/GT 
cells). These results indicate that ~ 175,000 molecules of 
Und-P are (collectively) employed by WecA, WcaJ, GtrB, 
and ArnC when cultured under standard laboratory con-
ditions. In summary, our results demonstrate that E. coli 
can be engineered to express fewer Und-P-utilizing path-
ways. Our results also demonstrate that E. coli cells can 
tolerate increases in the free pool of Und-P.

Increasing Und-P in a Und-P-pathway minimized strain
At this point, we sought to determine if ΔPGT/GT cells 
could be induced to maintain even higher levels of Und-
P. When E. coli is cultured under aerobic growth, the 
Und-PP synthase UppS competes with IspB for the iso-
prenoid precursors IPP (isopentenyl pyrophosphate) and 
FPP (farnesyl pyrophosphate) [38, 39]. Since Und-PP 
synthesis is limited by substrate competition, we rea-
soned that overexpressing uppS would promote Und-P 
availability in ΔPGT/GT cells, presumably by limiting 
the flux of isoprenoid precursors to IspB. Therefore, we 
transformed ΔPGT/GT cells with a plasmid express-
ing an IPTG-inducible copy of uppS (puppS). As can 
be seen in Fig.  1, uppS overexpression had no effect on 
the shape (Fig. 1E and F) or growth (Fig. 1G) of ΔPGT/
GT cells. Subsequent Und-P quantitation revealed that 
ΔPGT/GT/puppS cells could be induced to contain on 
average 387,000 molecules of Und-P per cell (Fig. 1H and 
Table S1), which represents a 29% and 215% increase in 
the free pool of Und-P when compared to ΔPGT/GT and 
WT cells, respectively. Interestingly, ΔPGT/GT/vector 
cells contained on average 100,000 molecules of Und-P 
per cell, far below the expected 300,000 molecules per 
cell we observed in ΔPGT/GT cells. Although we can-
not fully explain this result, we are currently investigat-
ing the effect of plasmid suppression on Und-P levels. In 
any event, our results suggest that UppS activity bottle-
necks Und-P availability and that increasing flux through 
Und-P pathways is an effective way to increase Und-P 
levels in different strain backgrounds.

Increasing Und-P availability increases endogenous glycan 
expression
Several studies have shown that uppS overexpression 
(increases Und-P levels) increases Und-PP-linked inter-
mediate formation in E. coli [18, 20, 21]. However, to 
our knowledge, no study has clearly linked increased 
Und-P to the production of finished glycans. Therefore, 
to determine if increasing Und-P levels increases produc-
tion of finished glycans, we measured the effect of uppS 
overexpression on ECA (O14 antigen) surface expres-
sion in E. coli wbbL::IS5 (MG1655) cells. We note that 
wbbL::IS5 cells express two forms of ECA at the cell sur-
face, (1) LPS-linked ECA (due to the loss of O-antigen 
expression [40]) and (2) phosphoglyceride-linked ECA (a 
third cyclic form is also expressed in the periplasm) [41]. 
Interestingly, dot blot analysis revealed that wbbL::IS5/
puppS cells produce 75% more signal at the cell surface 
than wbbL::IS5/vector cells (Fig. 2A and B); cells lacking 
WecA did not produce an appreciable amount of signal, 
even when induced to overexpress uppS (Fig. 2A and B). 
Western blot analysis revealed similar increases in ECA 
expression, with the strongest effects observed for ECA 
chains less than 50  kDa (Fig.  2C, compare wbbL::IS5/
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Fig. 1 Maximizing Und-P levels in a Und-P pathway-minimized strain of E. coli. (A and E) Micrographs of cells with the indicated genotypes. Cells were 
grown in TB (panel A) and TB containing 500 µM IPTG (panel E) at 37 °C until the culture reached an OD600 of 0.4 to 0.6. The cells were then photographed 
by phase contrast microscopy. Bar, 3 μm. (B and F) Flow cytometry data from live cells in panels A and E. Histograms of the forward scatter area from 
100,000 cells are shown. The mean cell size is shown in arbitrary units (AU). (C and G) Growth curves for cells with the indicated genotypes cultured at 
37 °C in TB (panel C) or TB containing 500 µM IPTG (panel G). Error bars show +/- standard deviation of the means. (D and H) Und-P levels from cells grown 
in panel A (after 3.5 h) and panel E (after 24 h). Und-P levels were normalized by dividing Und-P measurements by the mean CFU/ml. Absolute Und-P 
values are detailed in Table S1. Additional Und-P pathway mutants are shown in Fig. S1. Error bars show +/- standard error of the means. Significance was 
determined by using an unpaired t-test followed by Welch’s correction. *p < 0.05. Morphological data are representative of two independent experiments. 
Growth and Und-P measurements are representative of two independent experiments performed in triplicate. The E. coli strains shown are MAJ330 (WT), 
MAJ557 (ΔPGT/GT), MAJ1385 (ΔPGT/GT/vector), and MAJ1386 (ΔPGT/GT/puppS).
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Increasing Und-P availability increases recombinant glycan 
expression
Since increasing Und-P availability increased endogenous 
glycan expression (Fig.  2), we next sought to determine 
if similar effects would occur for E. coli cells expressing 
a non-native recombinant glycan. For these studies, we 
examined the effect of increasing Und-P availability in 
E. coli cells expressing the capsular polysaccharide from 
Streptococcus pneumoniae serotype 4 (SP4); SP4 was 
expressed from an IPTG-inducible promoter on plas-
mid pB4 [29]. To do this, we first examined the effect of 
increasing Und-P on SP4 expression in E. coli W3110. To 
our surprise, Western blot analysis revealed that uppS 
overexpression produced little effect on SP4 expression in 
W3110 (Fig. S2). However, since N-acetylgalactosamine 
(GalNAc) availability limits recombinant SP4 expres-
sion [29], we overexpressed uppS in E. coli Falcon cells, a 
derivative of W3110 that expresses an integrated copy of 
the gne epimerase from Campylobacter jejuni at the wecA 
locus (ΔwecA-wzzE[gne]) [29, 42]. Gne is a bifunctional 
UDP-GlcNAc/Glc 4-epimerase that increases GalNAc 
availability by converting UDP-GlcNAc to UDP-GalNAc 
[42]. Subsequent analysis of this strain by Western blot 
revealed that E. coli Falcon cells express moderately more 
SP4 than W3110 cells (Fig. S2, compare W3110/pB4/
vector to Falcon/pB4/vector) and the addition of uppS 
overexpression further increased SP4 expression in this 
strain background (Fig. S2, compare Falcon/pB4/vector 
to Falcon/pB4/puppS).

Since Gne activity appeared to be limiting in our 
strain backgrounds, we switched to overexpressing gne 
from a plasmid (pgne) in E. coli CLM37 cells, a deriva-
tive of W3110 lacking WecA [43]. Subsequent analy-
sis by Western blot revealed that gne overexpression 
increased SP4 expression in CLM37 cells, particularly 
for SP4 chains < 30  kDa (Fig.  3A and C). Quantitation 
of SP4 levels by ELISA showed that gne overexpression 
in CLM37/pB4/vector cells increased SP4 expression 

Fig. 2 Increasing Und-P levels promotes enterobacterial common an-
tigen surface expression in E. coli. (A) Dot blot showing that increasing 
Und-P levels by overexpressing uppS promotes surface expression of ECA 
in E. coli. Cells were grown at 37 °C in LB media containing 500 µM IPTG (0 
µM IPTG for baseline [BL]). Cells lacking WecA do not produce ECA (nega-
tive control). (B) Densitometry was performed from dot blots to quantitate 
surface expression of ECA. Signal values are given as a percent of the aver-
age wbbL::IS5/vector (wbbL::IS5 is E. coli MG1655) signal. All data are repre-
sentative of three independent experiments. Error bars show +/- standard 
error of the means. Significance was determined by using an ordinary 
one-way ANOVA test with Dunnett’s multiple correction. Asterisks above 
sample bars denote significance relative to wbbL::IS5/vector. *p < 0.05, **** 
<0.0001. (C) Western blotting was used to examine the effect of increasing 
Und-P levels on ECA chain length from cells grown in panel A. *, nonspe-
cific band. MreB, which has a predicted molecular mass of 37 kDa, served 
as the loading control. The E. coli strains shown are MAJ286 (wbbL::IS5/vec-
tor), MAJ981 (ΔwecA/vector), MAJ1354 (wbbL::IS5/puppS), and MAJ1677 
(ΔwecA/puppS).

 

vector to wbbL::IS5/puppS). Bands corresponding to 
longer ECA chains (> 50  kDa) were also stronger in 
cells overexpressing uppS (Fig.  2C). We also observed a 
non-specific band ~ 30  kDa whose expression varied in 
our strains (Fig.  2C). We are currently investigating the 
source of this band. In short, our results indicate that 
increasing Und-P availability increases endogenous gly-
can expression in bacteria.
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522% after 5  h induction and 1687% after 25  h when 
compared to the typical output of our previous expres-
sion efforts (Fig.  3B and D; Table  1, compare W3110/
pB4/vector to CLM37/pB4/pgne/vector cells). Notably, 
the addition of uppS overexpression in CLM37/pB4/
pgne cells further increased SP4 expression in this strain 
background; CLM37/pB4/pgne/puppS cells expressed 
significantly more SP4 chains that were also longer on 
average after 5- and 25-hours induction (Fig. 3A and C, 
compare CLM37/pB4/pgne/vector to CLM37/pB4/pgne/

puppS). Quantitation of SP4 by ELISA showed that uppS 
overexpression in CLM37/pB4/pgne cells increased SP4 
expression 568% after 5 h induction and 40% after 25 h 
(Fig. 3B and D; Table 1). We next investigated SP4 expres-
sion in our Und-P pathway minimized strain. Western 
blot and ELISA analysis revealed that gne overexpression 
in ΔPGT/GT cells mirrored results obtained for CLM37 
cells (Fig. 3, compare CLM37/pB4/pgne/vector to ΔPGT/
GT/pB4/pgne/vector). Similar trends were also observed 
for the addition of puppS into ΔPGT/GT/pB4/pgne cells, 

Fig. 3 Increasing Und-P levels promotes recombinantly expressed S. pneumoniae capsular polysaccharide in E. coli. (A and C) Western blots showing that 
increasing Und-P levels enhances production of S. pneumoniae capsule serotype 4 in E. coli cells harboring plasmid pB4 (contains capsule loci). Cells with 
the indicated genotypes were grown at 28 °C in 2YP media for 5 or 25 h. Lysed, whole cell samples were then separated by SDS-PAGE on a 4–12% bis-tris 
gel and detected using anti-serotype CPS primary and anti-rabbit fluorescent secondary antibody. Results are representative of three independent ex-
periments. (B and D) ELISA. Capsular polysaccharide quantitated from cells grown in panels A and C. All experiments represent three biological replicates, 
with each sample probed in duplicate. Values are expressed as means of ng capsular polysaccharide serotype 4 production per µl of culture adjusted to 
OD600 = 10. Error bars show standard errors of the means. Significance was determined using an ordinary one-way ANOVA with Dunnett’s multiple correc-
tion. Asterisks above sample bars denote significance relative to CLM37/pB4/pgne/vector. *p < 0.05, **<0.005, ***<0.001, **** <0.0001. Absolute capsular 
polysaccharide values are detailed in Table 1. The E. coli strains shown are EJK1 (W3110/pB/puppS), EJK2 (W3110/pB4/vector), EJK3 (W3110/pB4/puppS), 
EJK7 (CLM37/pB4/pgne/vector), EJK8 (CLM37/pB4/pgne/puppS), EJK11 (ΔPGT/GT/pB4/pgne/vector), and EJK12 (ΔPGT/GT/pB4/pgne/puppS).
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noting that SP4 expression was highest in this strain 
background after 5- and 25-hours induction (Fig.  3; 
Table  1, compare CLM37/pB4/pgne/puppS to ΔPGT/
GT/pB4/pgne/puppS).

Altogether, these data confirm that increasing the free 
pool of Und-P serves to increase glycan expression. Since 
polysaccharides like SP4 are used as antigens in polysac-
charide-based vaccines [44] and because glycan length is 
correlated with immunogenicity [45], our findings have 
important implications for the expression and produc-
tion of glycans in E. coli cells that may be used for a vari-
ety of therapeutic purposes.

Increasing Und-P availability increases glycan expression 
in bacteria used to make glycoproteins
E. coli strains are used to produce glycoprotein vaccine 
candidates by a recombinant process termed Protein 
Glycan Coupling Technology (PGCT). PGCT initiates 
with the assembly of sugar monomers (like GalNAc) 
onto Und-P and culminates with the transfer of oligo-
saccharides onto immunogenic carrier proteins (in the 
periplasmic space) by enzymes possessing oligosac-
charyltransferase activity like Campylobacter jejuni PglB 
[46]. Since Und-P availability is central to PGCT, we rea-
soned that increasing Und-P could be used to improve 
recombinant glycan expression in PGCT. As a first step 
to address this question, we expressed SP4 in E. coli 
Hobby cells [29], a derivative of Falcon deleted for the 
O-antigen WaaL ligase, which prevents SP4 from being 
transferred onto lipid A-core. Curiously, SP4 expression 
was poor in Hobby cells and uppS overexpression pro-
duced no observable effect (Fig. S2). Since plasmid pB4 
does not contain the wzDE chain regulators from the 
S. pneumoniae capsule locus [28], this suggested that 

reintroducing wzDE may produce an effect similar to 
gne and uppS co-overexpression. Thus, uppS was over-
expressed in E. coli Sparrowhawk cells, a derivative of 
Hobby cells that expresses wzDE from the wzzB locus 
(ΔwzzB[wzD-wzE]) [29]. As shown in the Western blot in 
Fig. 4A, increasing Und-P strongly increased SP4 expres-
sion in Sparrowhawk cells after 7.5  h induction, with 
the strongest effects observed for SP4 chains less than 
50  kDa. In retrospect, these results suggest that Und-
PP-linked SP4 intermediates were accumulating (but not 
polymerizing efficiently) in Falcon and Hobby cells over-
expressing uppS (Fig. S2). We also examined SP4 expres-
sion in Sparrowhawk cells after overnight induction. 
However, increasing Und-P did not appear to improve 
SP4 expression at this time point (Fig.  4B). Collectively, 
these data confirm that increasing Und-P availability 
can be used to increase recombinant glycan expression, 
especially over shorter periods of time. Current efforts 
are focused on engineering Und-P pathways to improve 
other aspects of PGCT systems.

Discussion
Many of the sugars that coat and protect bacteria are 
produced from oligosaccharide precursors that are built 
on an essential lipid carrier known as undecaprenyl 
phosphate (Und-P). While most research has focused 
on establishing the role of Und-P in scaffolding gly-
can synthesis, as well as understanding the physiologi-
cal consequences of producing too little Und-P, less is 
known about the effects of increasing Und-P on glycan 
assembly. The present results demonstrate that increas-
ing Und-P levels potentiates expression of native and 
foreign glycans. Since Und-P is a universal lipid carrier, 
we argue that similar results will occur for potentially 

Table 1 Quantification of SP4 production by sandwich ELISA
ng SP4 polysaccharide per ul− 1 of OD600 adjusted culture at 5 h
Straina Plasmid Replicate Average Deviation

pB4 pgne puppSb 1 2 3
W3110 + - v 0.60 1.56 0.93 1.03 0.49

+ - + 1.58 2.57 1.91 2.02 0.50
CLM37 + + v 5.74 6.78 6.72 6.41 0.58

+ + + 24.74 59.46 44.34 42.85 17.41
ΔPGT/GT + + v 10.54 23.06 0.50 11.36 11.30

+ + + 47.82 54.83 28.58 43.74 13.60
ng SP4 polysaccharide per ul− 1of OD600adjusted culture at 25 h
W3110 + - v 2.80 3.73 3.02 3.18 0.49

+ - + 4.19 6.38 4.98 5.18 1.11
CLM37 + + v 44.81 70.26 55.40 56.83 12.79

+ + + 63.95 88.22 87.23 79.80 13.74
ΔPGT/GT + + v 62.48 84.84 76.33 74.55 11.28

+ + + 79.98 97.34 85.35 87.56 8.89
aE. coli strains: EJK2 (W3110/pB4/vector), EJK3 (W3110/pB4/puppS), EJK7 (CLM37/pB4/pgne/vector), EJK8 (CLM37/pB4/pgne/puppS), EJK11 (ΔPGT/GT/pB4/pgne/vector), 
and EJK12 (ΔPGT/GT/pB4/pgne/puppS)
bPlasmids: v, vector; +, puppS
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any Und-P-dependent polymer expressed in E. coli cells 
(i.e., a rising tide lifts all boats) (Fig. 5). While increasing 
Und-P levels was well-tolerated in E. coli, whether similar 
effects occur in other bacteria will need to be determined. 
In summary, Und-P availability forms a critical bottle-
neck that can be exploited to improve glycan expression 
in the biotechnology benchmark bacterium E. coli.

The connection between Und-P and glycan chain length
Bacterial polysaccharides like SP4 trigger antibody pro-
duction by cross-linking B cell receptors on the surface of 
naïve B cells [47]. For this reason, the ability of plain poly-
saccharide vaccines to elicit effective immune responses 
is highly correlated with glycan chain length (i.e., longer 
glycan chains elicit stronger immune responses) [45]. To 
that end, there are likely many factors that influence gly-
can chain length. For example, in Wzx/Wzy-dependent 
systems (like SP4), Wzx translocase activity limits Und-
PP-linked intermediate availability and, consequently, 

Wzy polymerase activity [48, 49]. Similarly, the amount 
of Wzy polymerases [50] and the activity of chain-length 
regulatory Wzz proteins [51] are known to affect glycan 
chain length. Our results also show that the availabil-
ity of chain length regulators (WzDE, Fig.  4), as well as 
sugars (GalNAc, Fig. 3A and C), play important roles in 
determining SP4 chain length. In addition, cells that con-
tain more Und-P also produce more glycans that are also 
increased in length (Fig.  3A and C). More work will be 
needed to determine the molecular basis for this con-
nection, including determining the impact of Und-P 
levels on Wzx/Wzy activity, as well as growth dynamics 
and membrane composition. Since Und-P is a universal 
lipid carrier, the connection between Und-P and gly-
can chain length could be leveraged in pathogens like S. 
pneumoniae, whose capsular polysaccharide forms the 
protective basis of the pneumococcal glycoconjugate vac-
cine [44].

Fig. 4 Increasing Und-P levels increases glycan expression in E. coli cells engineered for enhanced expression of S. pneumoniae capsular polysaccharides. 
Western blots showing that increasing Und-P levels by overexpressing uppS enhances expression of S. pneumoniae capsule serotype 4 (expressed from 
pB4) in E. coli Sparrowhawk cells over shorter periods of time. Cells were grown at 28 °C in 2YP media containing 500 µM IPTG (0 µM IPTG for baseline [BL]) 
for 7.5 h (panel A) or 23 h (panel B). Lysed, whole cell samples were then separated by SDS-PAGE on a 4–12% bis-tris gel and detected using anti-serotype 
CPS primary and anti-rabbit fluorescent secondary antibody. The E. coli strains shown are EJK13 (pB4), EJK14 (pB4/vector), and EJK15 (pB4/puppS).
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Revisiting BacA and Und-PP dephosphorylation
Und-P is central to glycan expression technology, yet 
most strategies to produce glycans in bacteria do not 
address the limiting nature of Und-P. Why? The answer 
to this question is likely rooted in the discovery of BacA, 
which dephosphorylates Und-PP to Und-P. BacA was 
originally identified in a screen for genes whose overex-
pression confers resistance to bacitracin [52], an anti-
biotic that binds the pyrophosphate group on Und-PP 
[53]. Since BacA also binds Und-PP, an excess of BacA is 
expected to prevent Und-PP sequestration by outcom-
peting bacitracin for Und-PP. However, the prevailing 

hypothesis at the time of its discovery was that BacA 
mediated resistance by increasing the free pool of Und-
P. While bacA overexpression is expected to increase the 
rate of Und-PP dephosphorylation, no study has shown 
that increasing BacA activity increases the free pool 
of Und-P. On the contrary, bacA overexpression does 
not reverse the effects of a low Und-P state [33, 54] nor 
does it improve glycosylation efficiency [27]. Thus, early 
assumptions about bacA led to negative results that 
otherwise discouraged research into Und-P by glycan 
expression systems. For this reason, conclusions based 
on bacA overexpression should be reevaluated, ide-
ally by overexpressing uppS or earlier steps in Und-P(P) 
synthesis.

Defining how much Und-P is too much
Polyprenyl phosphates like Und-P are prone to form 
micelles and disrupt membrane architecture when pres-
ent in high concentrations [19]. For this reason, there 
is probably a limit to the amount of free (i.e., unbound) 
Und-P that cells can stably maintain. However, in addi-
tion to its free form, Und-P can also exist in a bound 
form as a Und-P- or Und-PP-linked intermediate. Inter-
estingly, several recent studies have shown that cells can 
accommodate large quantities of Und-PP-linked interme-
diates [18, 20, 21]. Thus, one way to maximize the pool of 
Und-P without crossing the threshold for free Und-P is to 
steadily increase the pool of Und-P while simultaneously 
synthesizing more Und-PP-linked intermediates. That 
said, we note that the accumulation of Und-PP-linked 
intermediates can be deleterious (due to Und-P seques-
tration) [33, 55, 56], even in systems engineered to con-
tain more Und-P [57].

Reallocating Und-P from essential pathways
Presumably, the only pathways utilizing Und-P in ΔPGT/
GT/pB4 derivatives are SP4 and cell wall synthesis. In 

Fig. 5 Model depicting the effect of increasing Und-P on glycan expres-
sion. (A) Und-P synthesis. Und-P is synthesized via the methylerythritol 
phosphate (MEP) pathway. Und-P is first synthesized as Und-PP by the 
UppS synthase. Integral membrane phosphatases (BacA/PAP2 family pro-
teins) then dephosphorylate Und-PP to Und-P (the level of which is visually 
indicated by the black wavy line in the bucket icon). Und-P is then distrib-
uted to phosphoglycosyl transferases and glycosyltransferases (PGT/GTs) 
that prime glycan assembly in non-essential and essential (peptidoglycan) 
pathways. In E. coli K-strains, PGT/GTs transfer precursors of peptidoglycan 
(MraY), O-antigen (WecA), enterobacterial common antigen (WecA), and 
colanic acid (WcaJ) to Und-P. Und-P is also required to glycosylate lipid 
A with aminoarabinose (ArnC) and O-antigen with glucose (GtrB). Since 
Und-P limits glycan assembly (gear icon), the glycosylation potential of 
any bacterium is limited by Und-P availability. (B) Simultaneously deleting 
all non-essential PGT/GTs and overexpressing uppS increases the amount 
of Und-P available for recombinant glycan expression. Our findings indi-
cate that increasing Und-P levels increases both glycan yield and chain 
length
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a situation where the free pool of Und-P reaches total 
occupancy in this strain background, SP4 production is 
maxed out. At this point, one way to liberate additional 
Und-P for SP4 production is to reduce the flux of Und-P 
to cell wall synthesis. Since the cell wall is essential, this 
brings up an interesting question: how much cell wall 
synthesis is necessary? The answer to this question is 
rooted in the amount of cell wall material required to 
maintain growth and integrity. Based on studies using 
E. coli strains auxotrophic for diaminopimelic acid (i.e., 
an essential component for cell wall synthesis), a two-
fold reduction in the amount of cell wall per unit of cell 
surface area is compatible with normal growth and mor-
phology in this bacterium [58, 59]. Thus, bacteria like E. 
coli produce an excess of cell wall material, presumably 
as a fail-safe against disruptions in cell wall synthesis. 
This observation suggests that cell wall synthesis can be 
reduced to increase Und-P levels in ΔPGT/GT cells.

Conclusions
Bacteria assemble glycans on an essential lipid carrier 
known as undecaprenyl phosphate (Und-P). Normally, 
the amount of Und-P available for glycan expression in 
bacteria is limited by competition between different Und-
P-utilizing pathways and by the overall rate of Und-P 
synthesis. Here, we show that decreasing competition for 
Und-P and increasing Und-P synthesis promote Und-P 
availability and, consequently, Und-P-dependent polymer 
formation. Collectively, our findings show that Und-P 
levels should be a prime consideration for glycoengi-
neering, which has far-reaching implications. The ratio-
nal engineering of bacteria to produce greater quantities 
of Und-P will increase the yield of glycan expression, 
thereby making glycan-based therapies more affordable.

Materials and methods
General procedures
All strains, plasmids, and primers are listed in Tables S2, 
S3, and S4, respectively. Cells were cultured in LB miller 
broth (1% tryptone, 0.5% yeast extract, and 1% NaCl), 
2YP broth (2% yeast extract and 4% peptone), or modi-
fied TB media (2.4% yeast extract, 2.0% tryptone, 0.5% 
glycerol, 100 mM phosphate pH 7.4, and 2 mM MgCl2). 
Plates contained 1.5% agar. As required, antibiotics were 
used at the following concentrations: 100 µg ml− 1 ampi-
cillin, 50 µg ml− 1 kanamycin, 20 µg ml− 1 tetracycline, and 
80 µg ml− 1 spectinomycin.

Strain construction
E. coli MG1655 wbbL + is the parent strain for this study 
and expresses O-antigen, which obscures the P1 bind-
ing receptor (i.e., LPS core) [60]. Thus, all gene deletions 
were constructed by using lambda Red recombination. 
Kanamycin and chloramphenicol resistance markers 

were excised by using FLP recombinase produced on 
pCP20 [61]. All gene deletions were verified by PCR. 
Sequences to generate deletion and check primers were 
obtained from the Ecocyc database [62]. PCR fragments 
and plasmids were purified by using kits obtained from 
Qiagen.

Morphological analyses of Und-P pathway mutants
Overnight cultures were diluted 1:2,000 in TB medium 
(Und-P pathway mutants) or TB medium containing 
ampicillin and 500 µM IPTG (ΔPGT/GT derivatives) 
and grown at 37  °C to an optical density at 600 (OD600) 
of 0.4–0.6 (approximately 10 doublings). Live cells were 
then spotted onto 1% agarose pads and imaged by phase-
contrast microscopy by using an XM10 monochrome 
camera coupled to an Olympus BX60 microscope. Live 
cells for flow cytometry were prepared by pelleting 1 mL 
of cells (above), washing twice in phosphate-buffered 
saline (PBS), and diluting to an OD600 ~ 0.05. Cells were 
then analyzed by using the forward scatter detector in 
a BD LSRFortessa Flow Cytometer at the UAMS Flow 
Cytometry Core Facility.

Preparing cell lysates for Und-P quantification
Overnight cultures were diluted 1:2,000 in 10 mL TB 
(Und-P pathway mutants) or TB containing 500 µM IPTG 
(ΔPGT/GT derivatives) and incubated at 37 °C for 3.5 h 
or 24  h, respectively. Cells were then pelleted, washed 
with 0.9% NaCl, and resuspended in 0.7 ml of water. In 
parallel, cells were plated on LB medium to obtain the 
number of colony forming units per ml (cfu ml− 1). Cells 
were then lysed by transferring the suspension to glass 
tubes containing 3 ml of a 2:1 methanol:chloroform mix-
ture and incubating at room temperature for 20  min. 
Next, glass tubes were placed in a CentriVap and cen-
trifuged without vacuum for 20  min, after which the 
soluble supernatant was transferred to new glass tubes 
and placed at -80  °C. Once a slurry formed, the glass 
tubes were placed back in the CentriVap with vacuum 
and dried to completion. The crude cell lysate was stored 
in 0.2 ml of n-propanol and 0.1% ammonium hydroxide 
(1:3) at − 20 °C for up to one week.

LC-MS conditions for Und-P quantitation
Cell lysates (see above) were centrifuged at 10,000 x g 
briefly and then 5 µL were injected for LC-MS analysis. 
Samples were analyzed on an Agilent 1260 Infinity II 
system equipped with a single quadrupole electrospray 
ionization (ESI) MS detector. A high-pH stable Waters 
Xbridge Peptide BEH C18 column (4.6 × 50  mm with 
2.5 µM particle size) was used. The mobile phases used 
included 0.1% Ammonium Hydroxide (A) and n-propa-
nol (B). A gradient was used to evaluate cell lysates con-
taining Und-P starting at 15% B, which was increased to 
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95% over 10.0 min at 1 mL min− 1, then held at 95% B for 
2 min, then decreased to 15% B for an additional 2 min. A 
4 min post-run at 15% B was run in-between injections. 
The ESI capillary voltage was applied to 4,000  V with a 
drying gas temperature of 350  °C at 12  L min− 1. Scan-
ning ion mode was set to detect the [M-1 H]-1 ion spe-
cies of Und-P (845.7 m/z) with a peak width of 0.1 min. A 
fragmentor voltage of 240 V was found to be optimal for 
Und-P detection.

Und-P standard curve generation and quantitation 
analysis
A two-step chemoenzymatic approach was employed to 
prepare Und-P as described previously [63]. To quan-
tify the concentration of the sample, total phosphorous 
content was determined and compared to a standard 
curve [64, 65]. Und-P (100 µM) was supplemented 
to an aliquot of wild type cell lysate and the AUCTotal 
was determined by using the ChemStation integration 
tool (Agilent Technologies). Endogenous background 
Und-P, AUCEndo, was subtracted from AUCTotal to yield 
AUCAdjusted to reduce the influence of the sample matrix 
effects. Injections of 25, 50, 100, 500, and 1,000 pmol of 
Und-P were used to generate the LC-MS response curve 
for quantitation. For cell lysate quantitation, the slope 
and y-intercept from the Und-P standard were used to 
calculate the quantity of Und-P based on AUC. Und-P 
levels were normalized by dividing Und-P measurements 
by the mean cfu ml− 1.

ECA dot blot
Cells were cultured in LB medium containing ampicil-
lin and 500 µM IPTG (no IPTG was added to puppS 
baseline [BL]) at 37  °C overnight. Total cell material 
was matched by centrifuging the equivalent of 1 ml of 
culture at an OD600 = 1.0 and resuspending the pellet in 
20 µl of PBS. 3 µl aliquots were then applied to a nitro-
cellulose membrane and allowed to dry for 20  min. 
Membranes were blocked with 5% skimmed milk in 
PBS for 1  h. Rabbit anti-ECA serum (Statens Serum 
Institut) was then applied at 1:1,000 in PBS for 3  h. 
The primary antibody was detected by using the goat 
anti-rabbit IgG conjugated to Alexa Fluor 488 (Thermo 
Fisher Scientific) secondary antibody and was applied 
at 1:4,000 for 1 h. Blots were imaged by using a Chemi-
Doc MP imaging system (Bio-Rad Laboratories). Sig-
nals corresponding to surface ECA were quantified by 
using ImageJ.

ECA immunoblot
Cells were cultured in LB media containing 500 µM 
IPTG (0 µM IPTG was added to puppS baseline [BL]) 
at 37  °C overnight. Total cell material was matched 
by centrifuging the equivalent of 1  ml of culture at an 

OD600 = 1.0 and resuspending the pellet in 25 µL Bug-
Buster® Protein Extraction Reagent (MilliporeSigma) 
containing 1:100 benzonase. Cell suspensions were incu-
bated at room temperature for 10 min, mixed with load-
ing buffer (LI-COR Biosciences), and boiled for 5  min. 
10 µL aliquots were then separated on 12% Mini-PRO-
TEAN® TGX™ (Bio-Rad Laboratories) gels. ECA poly-
mers were transferred onto nitrocellulose membranes 
using a Trans Blot Turbo system (Bio-Rad Laboratories) 
set at 25 V (1.3 amps) for 7 min. Membranes were dried 
at 37 °C and then blocked with 5% skimmed milk in PBS 
for 1 h. Membranes were then washed three times with 
PBS (0.2% Tween 20). Rabbit anti-ECA antibody (a gift 
from Angela Mitchell) was then applied at 1:24,000 in 
PBS (0.2% Tween 20) for 1 h. The membranes were then 
washed three times with PBS (0.2% Tween 20). The pri-
mary antibody was detected by using the goat anti-rabbit 
IgG conjugated to IRDye680 (LI-COR Biosciences) sec-
ondary antibody at 1:10,000 for 1  h. Membranes were 
washed a further three times in PBS (0.2% Tween 20) 
before signal detection with an Odyssey LI-COR detec-
tion system (LI-COR Biosciences). Similar procedures 
were used to detect MreB; the primary rabbit anti-MreB 
antibody was applied at 1:2,000 for 1 h and the secondary 
goat anti-rabbit IgG conjugated to AF488 (Thermo Fisher 
Scientific) antibody at 1:4,000 for 1 h.

Recombinant capsule expression and immunoblot
Overnight cultures were diluted to an OD600 of 0.03 in 
10  ml of 2YP medium containing 500 µM of IPTG and 
cultured at 28  °C. Cells from 1.5  ml of culture grown 
from various times were withdrawn and pelleted. Pellets 
were then resuspended to an OD600 = 10.0 in PBS, mixed 
with 1  mg ml− 1 lysozyme and 40 U ml− 1 benzonase, 
and boiled for 10  min. Lysed samples were mixed with 
NuPAGE LDS sample buffer (Invitrogen) and separated 
on Bolt 4–12% Bis-Tris 1 mm gels in MOPS buffer (Invi-
trogen) at 100  V for 2  h 25  min in an ice bath. Capsu-
lar polysaccharides were transferred onto nitrocellulose 
membranes using an iBlot 2 dry transfer system (Thermo 
Fisher) set at 20 V for 1 min, 23 V for 4 min, and 25 V for 
2 min. Membranes were blocked with 2% skimmed milk 
in PBS for 1  h. S. pneumoniae Serotype 4 (SP4) rabbit 
anti-capsule antibody (Statens Serum Institut) was then 
applied at 1:1,000 in PBS containing 2% skimmed milk 
and 0.1% Tween 20 for 1  h. The membranes were then 
washed three times with PBS (0.1% Tween 20). The pri-
mary antibody was detected by using the goat anti-rabbit 
IgG conjugated to IRDye800 (LI-COR Biosciences) sec-
ondary antibody at 1:10,000 for 45 min. Membranes were 
washed a further three times in PBS (0.1% Tween 20) and 
once with PBS before signal detection with an Odyssey 
LI-COR detection system (LI-COR Biosciences).
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Indirect enzyme-linked immunosorbent assay (ELISA)
Dilutions of boiled E. coli lysates were used to coat a 
MaxiSorp microtiter plate (Nunc) overnight at 4  °C. A 
standard curve was generated by using dilutions of puri-
fied type 4 pneumococcal polysaccharide (Statens Serum 
Institut). Wells were then washed with PBS containing 
0.05% Tween 20 four times, blocked with PBS contain-
ing 5% skimmed milk for 1.5 h, and washed twice again. 
SP4 rabbit anti-capsule antibody (Statens Serum Institut, 
Denmark) was then applied at 1:1,000 in PBS containing 
2% skimmed milk for 1  h. The wells were then washed 
four times with PBS 0.05% Tween 20. The primary anti-
body was detected by using the goat anti-rabbit IgG HRP 
(Abcam) secondary antibody at 1:20,000 in PBS contain-
ing 2% milk for 45  min. After washing four times with 
PBS 0.05% Tween 20, tetramethylbenzidine (eBioscience) 
was added, and the reaction was stopped with 2M H2SO4 
(sulfuric acid). Indirect ELISA detection was performed 
using a SpectrMax iD5 microplate reader (Molecular 
Devices) at an absorbance of 450 nm.
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