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Abstract 

Background  Developing effective vaccines against SARS-CoV-2 that consider manufacturing limitations, equitable 
access, and acceptance is necessary for developing platforms to produce antigens that can be efficiently presented 
for generating neutralizing antibodies and as a model for new vaccines.

Results  This work presents the development of an applicable technology through the oral administration 
of the SARS-CoV-2 RBD antigen fused with a peptide to improve its antigenic presentation. We focused on the devel‑
opment and production of the recombinant receptor binding domain (RBD) produced in E. coli modified 
with the addition of amino acids extension designed to improve antigen presentation. The production was car‑
ried out in shake flask and bioreactor cultures, obtaining around 200 mg/L of the antigen. The peptide-fused RBD 
and peptide-free RBD proteins were characterized and compared using SDS-PAGE gel, high-performance chroma‑
tography, and circular dichroism. The peptide-fused RBD was formulated in an oil-in-water emulsion for oral mice 
immunization. The peptide-fused RBD, compared to RBD, induced robust IgG production in mice, capable of recog‑
nizing the recombinant RBD in Enzyme-linked immunosorbent assays. In addition, the peptide-fused RBD generated 
neutralizing antibodies in the sera of the dosed mice. The formulation showed no reactive episodes and no changes 
in temperature or vomiting.

Conclusions  Our study demonstrated the effectiveness of the designed peptide added to the RBD to improve anti‑
gen immunostimulation by oral administration.
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Graphical Abstract

Introduction
COVID-19 is a severe acute respiratory syndrome caused 
by coronavirus 2 (SARS-CoV-2), affecting public health 
and the economy for at least three years. The World 
Health Organization (WHO) described the SARS-CoV-2 
virus as having affected more than 671 million people, 
causing almost 7 million deaths, by September 2023 [1]. 
In general, the symptoms of COVID-19 are fever, cough, 
and shortness of breath, although they can vary depend-
ing on the variant [2, 3]. Shortly after the disease spread 
rapidly worldwide, the first recombinant vaccines and 
antibodies were generated and authorized for emer-
gency use. The fast-developed vaccines based on DNA 
plasmids, messenger RNA, recombinant proteins, and 
nanoparticles have reached more than 13.3 billion doses 
administrated in around 2 years [4–6]. However, research 
is still needed to develop secure and effective vaccines 
and corresponding efficient bioprocesses for their pro-
duction, coupled with translational and clinical studies 
for anticipating possible new pandemics.

By March 2023, more than 380 candidate vaccines 
were in development or approved for clinical evalua-
tion (183 vaccines in clinical development and 199 vac-
cine candidates in preclinical development) [7]. Most 
of the approved emergency vaccines were designed 
based on the viral sequence identified in Wuhan, China, 

incorporating strategies such as adenoviral vector 
(ChAdOx1 nCoV-19, AstraZeneca), mRNA [BNT162b2 
(BNT), Pfizer-BioNTech, and mRNA-1273 (m1273), 
Moderna], and recombinant proteins incorporated in 
nanoparticles [NVX-CoV2373 (NVX), Novavax]. Some 
vaccines still show effectiveness on different variants of 
the virus. However, a decrease in effectiveness has been 
detected against some variants such as B.1.1.248 and 
B.1.351 [8] and omicron [9–11].

The appearance of new variants of concern (VOC) 
causes changes in the effectiveness of the vaccines in use 
[12–16]. For example, vaccine efficacy against the B.1.351 
variant was reduced by 30 to 40% for lNVX-CoV2373 
(Novavax), JNJ-78436735 (Johnson & Johnson), and 
Oxford-AstraZeneca ChAdOx1 [17]. While the efficacy 
of the lNVX-CoV2373 (Novavax) vaccine was reduced 
from 96% with Wuhan to 51% against the B.1.351 vari-
ant [18], and the Oxford-AstraZeneca ChAdOx1 vaccine 
decreased from 62 to 10% [17] against the same variant. 
Accordingly, better vaccines that can control future SARS 
viruses and vaccine boosters with better effectiveness are 
needed. Therefore, the development of specific, effective, 
and safe vaccines and evaluation of their administration 
routes are necessary to reach the long-term effectiveness 
of vaccines that could be administered annually accord-
ing to seasonal variations [19, 20].
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The SARS-CoV-2 is a positive-sense, single-stranded 
RNA virus [21], composed of the main structural proteins 
Spike (S), Membrane (M), Envelope (E), and Nucleocap-
sid (N). The glycoprotein S (180-kDa) is a homotrimer 
that protrudes from the viral surface and mediates the 
entry of the coronavirus into host cells through the 
receptor-binding domain (RBD), which binds the human 
angiotensin-converting enzyme 2 (hACE2) receptor [22, 
23]. Each S monomer comprises the subunits S1 and S2 
connected by a furin cleavage sequence [24, 25], and the 
RBD is localized in S1. Many anti-SARS-CoV2 vaccines 
have been directed towards the RBD and the N-termi-
nal domain (NTD), described as preferentially antigenic 
sites, consistent with the development of neutralizing 
antibodies by COVID-19 patients [2, 26]. RBD (resi-
dues 319–541) composed of five-stranded antiparallel 
β-Sheets (β1–4 and β7) linked to three helices (α1–α3) 
by loops, contains the receptor binding motif (RBM) that 
interacts with the segments 446–505 of the hACE2 [2, 
27].

The SARS-CoV-2 infection causes local immunity 
involving immunoglobulins, such as IgA and IgG, and 
stimulates cells that can secrete antibodies in the mucosa 
of the respiratory tract, nose, lungs, and others [28]. 
Since RBD is a strategic antigenic site, different unglyco-
sylated and soluble receptor binding domains have been 
produced in E. coli. The different RBD has been formu-
lated with a variety of adjuvants, which, when inoculated 
intramuscularly or subcutaneously, usually induce poly-
clonal antibodies that evoke a strong immune response 
and that inhibit the association of the RBD with ACE2, 
producing, in some cases, neutralizing antibodies [29, 
30]. Usually, oral vaccines are not invasive, safe, and can 
generate immunity against infectious diseases [31–33]. 
Oral attenuated vaccines often lead to long-term mucosal 
and systemic immunity due to the intensified immunity 
of T-cells at the intestinal epithelial, the inflammatory or 
anti-inflammatory cytokines, and the elicitation of sys-
temic neutralizing antibodies [32, 34–39]. An essential 
advantage of oral vaccines is their stability, simplifying 
logistics and storage conditions [40, 41]. Oral vaccine 
approaches to treat influenza, dengue, tetanus, diph-
theria, and MERS-CoV have been published [42–46]. 
Until now, oral administration requires more studies 
for its approval because it usually presents a suboptimal 
induction of cellular immune responses and neutralizing 
antibodies.

Nowadays, at least six recombinant oral vaccines 
against SARS-CoV-2 prototypes have been reported. 
One system expressed the full-length spike protein 
receptor (RBD) of SARS-CoV-2 on the surface of Sac-
charomyces cerevisiae, which, after oral administration 
without adjuvant to mice, produced significant humoral 

and mucosal responses [47]. Three prototypes expressed 
SARS-CoV-2 regions in Lactobacillus [41, 48, 49]. Par-
ticularly, the epitopes expressed on the surface of Lac-
tiplantibacillus plantarum, when administered orally, 
caused immunoregulatory effects, suggesting its ability to 
induce humoral and mucosal immune responses [41]. An 
adenovirus-based vaccine containing S and N proteins, 
administered orally, could confer protection in Male Syr-
ian Hamsters against SARS-CoV-2 [50]. Furthermore, an 
orally administered SARS-CoV-2 subunit-based vaccine 
combined with the adjuvant non-toxic B subunit of the 
heat-labile enterotoxin (LT) of E. coli induced systemic 
neutralizing by IgG and cellular immune responses in 
mice [51].

The present study took advantage of a strategy that has 
effectively improved the presentation of some antigens. 
Here, we engineered a non-glycosylated form of SARS-
CoV-2 RBD fused to a 40-residue peptide to improve the 
protein presentation through oral administration. This 
strategy resulted in the generation of antibodies capa-
ble of neutralizing the RBD interaction with hACE2. We 
developed an orally administrated oil-in-water emulsion 
containing the designed fused RBD antigen produced in 
E. coli in a methodology capable of being produced on a 
large scale. This peptide-fused RBD immunostimulates 
mice, generating neutralizing antibodies after admin-
istration without toxicity, compared with the unglyco-
sylated RBD lacking the peptide tag. Demonstrating that 
RBD fused protein in oil-in-water emulsions is a power-
ful biotechnological strategy for improving RBD antigen 
presentation orally, allowing the production of binding 
and neutralizing IgG in immunized mice.

Materials and methods
Generation of the RBD proteins of the Wuhan and Omicron 
BA.1 variant belonging to the SARS‑CoV‑2 virus
We designed a peptide of 40 amino acids (40AV, unpub-
lished) to be fused to the RBD domain of SARS-CoV-2 
(named RBD-P) to improve the antigen presentation 
through an oil-in-water emulsion that could be adminis-
tered orally and compared with the RBD domain without 
any tag (named RBD). The plasmids encoding the RBD 
with peptide 40AV (717 bp) and without peptide (597 bp) 
genes were synthesized by GenScript Biotech Corpora-
tion (USA) and cloned in the plasmid pET15b (Nova-
gen, USA). The RBD sequence (amino acid 330–525) 
was based on the sequence of the S gene of SARS-CoV-2 
WA1/2020 (GenBank: MN908947). Constructed plas-
mids were purified and used to transform E. coli TOP10 
and subsequently to transform E. coli BL21 (DE3) pro-
duction cells. Confirmation of each construction was 
determined by enzyme restriction analysis.
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RBD from Omicron BA.1 was produced and named 
RBD-o. The Omicron BA.1 coding gene was obtained in 
the vector pcDNA3.1 (donated by Dr. Jesús Hernández; 
Centro de Investigación en Alimentación y Desarrollo, 
Sonora, México). The plasmid was used as templates to 
amplify the coding sequence, using primers (5ʹ-GGA​
TCC​CAA​CCT​ACA​GAG​AGC​ATC​GTG​CGG​TTC-3ʹ), 
(5ʹ-AAG​CTT​CTA​GAA​GTT​CAC​ GCA​CTT​GTT​CTT​
CAC-3ʹ). The product was cloned in the TOPO 2.1 (Inv-
itrogenⓇ) plasmid and amplified in Chemocompetent 
XL1-Blue cells [52]. Region digested with BamHI and 
Hind III was subcloned into a pQE30 vector (Qiagen, 
Germany) and used to transform E. coli Shuffle strain 
(New England Biolabs, USA). The RBD-o produced 
contains a 6X-His tag. The DNA was sequenced in 
the Sequencing Unit at the Institute of Biotechnology, 
UNAM (Cuernavaca, Mexico).

Shake flasks and bioreactor production of RBD and RBD 
fused to the peptide (RBD‑P)
The Luria–Bertani (LB) medium was used to grow the E. 
coli transformants. The inoculum was carried out in 250 mL 
conventional Erlenmeyer shake flasks containing 50 mL of 
medium (Duran Erlenmeyer flask, USA). The inoculum was 
grown at 37 °C and 200 rpm for 12 h (orbital shaking diam-
eter of 25  mm). Bioreactors were inoculated from shake 
flasks cultures to an optical density (OD600nm) of 0.1 A.U. 
(Spectronic Genesys 20, Thermo, USA) and kept at 37  °C, 
with air injection at 1 volume of air per volume of culture 
medium (vvm). The dissolved oxygen tension (DOT) was 
controlled at 30% through an agitation cascade via a pro-
portional-integral-derivative (PID) strategy [53]. Production 
cultures were performed in triplicate in a 1.2 L nominal vol-
ume Applikon Bioreactor with 0.8 L of working volume at 
pH 7.5, controlled by NaOH or HCl (2.5 N) addition. Bio-
reactors were equipped with temperature, pH, and DOT 
AppliSens sensors connected to the ADI-1010 biocontroller 
(Getinge—Applikon Biotechnology, The Netherlands). 
Recombinant RBD-P and RBD expression was induced 
by adding isopropyl-β-d-1-thiogalactopyranoside (IPTG, 
0.1  mM, Merck-Sigma-Aldrich, USA) after 6  h of culture. 
The composition of the mineral media used was described 
by Restrepo-Pineda et  al. [54]. The growth of E. coli cul-
tures was followed by optical density and converted to dry 
cell weight (DCW) by a linear-correlation standard curve, 
where 1 A.U. was equivalent to 0.35 ± 0.02 (g DCW)/L. 
Culture samples were centrifuged at 7000×g for 10  min 
and then filtered (0.2 μm mixed cellulose ester membrane 
filter, Merck-Millipore, USA). Glucose was measured in the 
supernatant  using the  Y15 automatized analyzer (Biosys-
tems, Barcelona, Spain).

RBD-o clones were cultured in shake flasks of 1 L with 
200 mL of LB in the presence of 80 µg/mL of ampicillin at 

30 °C and 140 rpm (Duran Erlenmeyer flask, USA, orbital 
shaking diameter of 25  mm). The recombinant RBD-o 
production was induced with 0.2 mM IPTG after 10 h of 
culture. These cultures were harvested at 11,300×g in a 
centrifuge (Beckman J2-21, USA) for 10 min at 8 °C.

Recovery and quantification of total and insoluble protein
To quantify total cellular protein, biomass was centrifuged 
at 8000×g for 10  min, separated, and suspended in lysis 
buffer (50 mM Tris–HCl, 1 mM EDTA, 100 mM NaCl, pH 
7.5) with 0.1  mM phenylmethylsulfonyl fluoride (PMSF). 
The biomass suspension was sonicated on a SoniPrep150 
(Sanyo-Gallen-Kamp, United Kingdom) using an ampli-
tude of 10 μm and 8 steps of 30 s with intervals of 30 s at 
4 °C. Total cellular protein was treated with solubilization 
buffer IEF (7 M urea, 2 M thiourea, 2% CHAPS w/v, and 
40  mM DTT; all from Merck-Sigma-Aldrich, USA) for 
3 h for solubilization. Bradford method (Bio-Rad Protein 
Assay Kit II, Bio-Rad, USA) was used to determine protein 
concentration. A calibration curve was constructed using 
bovine serum albumin (BSA, GE Healthcare Bio-Sciences, 
USA) as standard, and optical density at 600 nm was meas-
ured in a 96-well microtiter plate reader (Stat Fax® 4200, 
Awareness Technology, Inc., USA). Samples and standards 
were evaluated in triplicate. The total cell protein pattern, 
solubilized with IEF, was observed by gel electrophoresis 
(SDS-PAGE) in a 12% gel stained with Coomassie Bril-
liant Blue G-250 (Merck-Sigma-Aldrich, USA), using the 
Image-LabTM software on a Gel DocTM EZ System (Bio-
Rad, USA). Soluble protein was obtained directly from 
cell sonication, and insoluble protein was recovered by 
centrifugation. The pellets were suspended in a lysis solu-
tion (Tris–HCl 50 mM, EDTA 1 mM, NaCl 100 mM, pH 
7.5 with 0.1  mM Phenylmethyl sulfonyl fluoride, Merck-
Sigma-Aldrich, USA). The precipitates were washed in 
1% (v/v) Nonidet-P40 (Merck-Sigma-Aldrich, USA), and 
the samples were shaken. The precipitates, containing the 
inclusion bodies (IBs) were washed seven times with low-
conductivity deionized water to remove traces of deter-
gent and DNA. The percentage of recombinant RBD and 
RBD-P obtained in IBs was estimated from three biological 
samples by densitometry on a SDS-PAGE gel at 12%, pre-
ceded by an IBs solubilization step using IEF for 8 h, using 
Image-Lab™ software on a Gel Doc™ EZ System (Bio-Rad, 
USA). Soluble and insoluble protein concentration was 
determined by the Bradford method in the 96-well micro-
plate format using Dye Reagent Concentrate (Bio-Rad, 
USA), and BSA (GE Healthcare Bio-Sciences, USA) was 
used as standard.

Recombinant RBD purification
Recombinant RBD and RBD-P in IBs obtained 
from bioreactor cultures of E. coli BL21 (DE3) were 
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subjected to solubilization in denaturing solution for 
8  h, for subsequent separation by gel chromatography 
and electroelution, and dialysis in Milli-Q water filtered 
by 0.22  μm (Merck-Millipore, USA). Quantification 
was performed by densitometry on SDS-PAGE using 
Image-Lab™ and Gel Doc™ EZ Imager software (Bio-
Rad, Hercules, CA, USA). The purification of RBD and 
RBD-P was performed by reverse-phase high-perfor-
mance liquid chromatography (RP-HPLC, Shimadzu, 
Kyoto, Japan), using a PROTO300 Semi-Prep C4 col-
umn (10  μm, 250 × 10  mm) and the Xbridge Protein 
BEH C4 column (300  Å, 3.5  mm, 4.6  mm × 150  mm, 
Waters, USA). Recombinant proteins were eluted with 
a 0% to 60% acetonitrile gradient. Eluted proteins were 
identified at 220 nm.

RBD-o cell pellets were lysed, and IBs were obtained 
by centrifugation (11,300×g) and solubilized by 12  h 
at 20  °C under 2% N-lauryl sarcosine in 40  mM Tris–
HCl buffer (pH 8). The solutions were centrifuged at 
20,400×g for 20  min, and the supernatants were dia-
lyzed (6–8 kDa MWCO Spectra Por membranes, Repli-
gen, USA) with ten volumes of phosphate buffered 
saline solution (PBS) pH 7.2 by 96 h. RBD-o was puri-
fied in an agarose-NiNTA column (NovagenⓇ, Ger-
many), eluted with 250  mM imidazole, and dialyzed 
against PBS.

TEM analysis of inclusion bodies and droplets of oil 
in water emulsion of RBD‑P and RBD
The morphology and size of the IBs inside cells were ana-
lyzed under transmission electron microscopy. Cell sam-
ples were taken after 5  h of induction. Briefly, samples 
were washed three times with 0.16 M sodium cacodylate 
buffer at pH 7.2 at 4 °C, fixed with 4% paraformaldehyde 
and 2.5% glutaraldehyde in sodium cacodylate buffer 
pH 7.4 by 2 h at 4  °C. Samples were post-fixed with 1% 
osmium tetraoxide for 90  min at 4  °C, and were rinsed 
twice in chilled buffer and six times in cold distilled water. 
Then, samples were dehydrated in ethanol series and 
embedded in Epon/Araldita [55]. Uranyl acetate and lead 
in citrate were used to stain thin sections and observed 
with a ZEISS Libra 120 plus electron microscope [56]. At 
least 100 cells were analyzed for each sample. The TEM 
images of the droplets of oil-in-water emulsions were 
obtained using 10 µL of each diluted solution applied to 
a 400-mesh copper grid (carbon 400 mesh). The grid was 
kept under ambient conditions for 1 min, and the excess 
sample was eliminated using Whatman 41 filter paper. As 
a negative staining agent, we used 1% of staining uranyl 
acetate filtrated by 0.22 μm membrane (Merck-Millipore, 
USA), applied to the grid, and left to dry before obtention 
of the TEM images [28].

Circular dichroism spectroscopy
Far-UV CD spectra of RBD and RBD-P were recorded 
at 37  °C with a JASCO J-720 spectropolarimeter (Jasco 
Inc, USA), as previously described [54]. Protein solutions 
containing ca. 0.1  mg/mL in pure water were loaded in 
a quartz cell with a path length of 1.0 mm. Spectra were 
recorded at 10 nm/min with a response time of 16 s. Each 
spectrum was corrected by buffer signal, correspond-
ing to the average of three repetitive scans. Spectra are 
reported as mean residue ellipticity, [θ]mrw. Secondary 
structure content was estimated from CD spectra using 
the BeStSel deconvolution webserver [57].

Recombinant RBD and RBD‑P mass spectrometry analysis
The molecular mass of RBD and RBD-P was determined 
by MALDI-TOF, using a Bruker Microflex instrument 
equipped with a 20  Hz nitrogen laser at I = 337  nm. 
Approximately 500 fmol of solutions of RBD and RBD-P 
and α-cyano-4-hydroxycinnamic acid (10  mg/ml) (1:1 
v/v) were mixed and applied on stainless steel plates. 
Samples were analyzed in linear and positive ion detec-
tion mode; 70 laser shots were integrated into a single 
mass spectrum.

Western blot anti‑RBD and anti‑RBD‑P
Proteins from the gel were transferred to a polyvi-
nylidene difluoride (PVDF) membrane (Merck-Milli-
pore, USA) using a semi-wet system (Bio-Rad, USA). 
The membrane was blocked with 5% (w/v) nonfat dry 
milk (Svelty, Nestle Mexico) and incubated with 1:2000 
anti-S monoclonal antibody (Cat: 40591-MM43, Sino 
Biological, China). Three washes were carried out, fol-
lowed by incubation with 1:5000 peroxide-conjugated 
affinipure goat anti-mouse IgG (H+L) (115-035-003, 
Jackson ImmunoResearch Labs, USA). Bands were 
detected by chemiluminescence with Super Signal West 
Pico chemiluminescent substrate (Thermo Fisher Scien-
tific, USA) and visualized with the C-DIGIT blot scanner 
(LI-COR, USA). A homemade luminescent strip on top 
of the PVDF membrane was used to detect immunoreac-
tive proteins placed in the same place as the SDS-PAGE 
molecular weight marker (ThermoFisher, USA).

Recombinant RBD and RBD‑P oil‑in‑water emulsion 
formulation
Water-solubilized proteins were incorporated into an oil-
in-water emulsion for RBD and RBD-P oral dose admin-
istration to a final concentration of 0.1  mg/mL. The 
emulsion was formed by mixing edible safflower oil with 
saponin and tween 80 (Merk-Sigma-Aldrich, USA) using 
a sonicator. The emulsion was homogenized for 10  s 
on ice, during two homogenizer cycles (SoniPrepr150, 
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Sanyo-Gallen-Kamp, United Kingdom) using an ampli-
tude of 8 μm, with 30-s pauses on ice between each pulse.

Animal, immunizations, and sample collection
To evaluate the in vivo activity of the proteins produced, 
a BALB/c mice model was used, employed in similar 
evaluations [58]. Mice were obtained from the Biological 
Models Unit at the Instituto de Investigaciones Biomé-
dicas of the Universidad Nacional Autónoma de Mexico 
(IIB-UNAM). Animals were housed in groups of seven 
(males or females, independently) and were fed with 
standard diets. All animal studies were approved by the 
Institutional Committee for the Care and Use of Labora-
tory Animals (CICUAL at IIB-UNAM) in charge of ethi-
cal and responsible animal management (ID 7352).

Eight groups of seven mice were immunized orally, as 
previously described [47, 59–62]. BALB/c mice, females, 
and males were orally immunized with 100 µL of each oil-
in-water RBD and RBD-P emulsion independently, using 
a soft adapted cannula that does not disturb the animal. 
The dose was administered two times, separated by fif-
teen days each, and compared with control mice (admin-
istered with 0.1 mL of PBS or the oil-in-water emulsion 
without proteins). Blood samples were collected before 
the first immunization and on day 45. Then, the animals 
were euthanized [63]. Furthermore, two intramuscular 
immunizations were performed at the same time as oral 
administration on six groups of BALB/c mice (n = 7). We 
used 0.1 mg/mL of each recombinant antigen purified in 
PBS, containing 10 μg/mouse of the adjuvant S6322-1VL 
(Monophosphoryl-lipid A + Trehalose dicorynomycolae, 
from Merck Sigma-Aldrich, USA), which is a stable oil-
in-water emulsion widely used as a substitute to Freund′s 
adjuvants.

Detection of recombinant RBD and RBD‑P proteins
Enzyme-linked immunosorbent assays (ELISA) were 
used to detect polyclonal antibodies in sera from mice 
immunized with recombinant RBD and RBD-P. From 
each study group (females 7; males 7), 10  µL of serum 
was taken from each mouse. Each evaluation was per-
formed by duplicate. The recombinant RBD was coated 
in flat bottom 96 well plates (Santa Cruz, USA) using 
0.5  µg of protein in 100  µL of 1X PBS and incubated 
for 18 h at 4  °C. After washing by three times the plate 
with PBS + 0.05% Tween-20 (Merck, Germany) (PBST) 
for 5 min, a 2 h block was performed with PBS—0.05% 
tween—1% gelatin, followed by 2  h incubation with 
murine serum placed at a dilution 1:200 for intramus-
cular groups, and at a dilution 1:100 for oral groups, in 
100  μL of PBS—0.1% gelatin. After being washed again 
in triplicate with PBST for 5  min, the secondary anti-
body peroxide-conjugated affinipure goat anti-mouse 

IgG (H+L) antibody (HRP) (115-035-003; Jackson Immu-
noResearch Labs, USA) was used at 1:5000 for 1 h, and 
developed using 3,3ʹ,5,5ʹ-Tetramethylbenzidine (TMB; 
SigmaFast Cat: P9187-50Set, Merck-Sigma-Aldrich, 
USA) for 30  min. Nonspecific binding wells were incu-
bated with 1xPBS and treated in the same way (nega-
tive control). The TMB reaction was stopped with 
0.5 M H2SO4. The absorbance reading was performed at 
450 nm (StatFax 4200, Awareness Technology Inc., USA).

Furthermore, an ELISA was performed to evaluate 
whether IgG antibodies from sera of convalescent SARS-
CoV-2 patients recognized the RBD and RBD-P proteins. 
Also, twelve human sera obtained before the COVID-
19 pandemic were used as control. The plate was coated 
with 0.5 µg of recombinant RBD or RBD-P protein. Sub-
sequently, blocking was performed with PBST—2% gela-
tin, followed by the addition of human serum in a 1:100 
dilution, and for detection, the secondary antibody HRP-
conjugated goat anti-human IgG, Fc Fragment (A80-
104P, Bethyl Laboratories. USA) at 1:100,000 dilution 
(done by sequential 1:100 and 1:1000, dilutions) was used. 
The reaction was developed using TMB. The TMB reac-
tion was stopped with 0.5 M H2SO4. The plate was read 
at 450  nm (StatFax 4200, Awareness Technology Inc., 
USA). The control of each sample was PBS—blocking 
solution—human serum—secondary antibody—TMB. 
Twenty serum samples from no hospitalized individuals 
convalescing from coronavirus disease 2019 (COVID-19) 
(median age around 40  years) and after two months of 
SARS-CoV-2 infection were tested. Sample material was 
anonymized and integrated into a biobank using a pro-
tocol approved by the local ethics committee at the Bio-
medical Research Institute. Infection with SARS-CoV-2 
was confirmed by RT-PCR from nasopharyngeal swabs 
performed in clinics.

Sera recognition from mice immunized with RBD 
and RBD‑P against recombinant RBD Wuhan and Omicron
The recognition of sera from animals immunized with 
oil-in-water emulsions containing RBD and RBD-P 
was tested against recombinant Wuhan (RBD-P) and 
Omicron (RBD-o) produced in E. coli. Briefly, 0.5  µg 
of recombinant RBD-P or RBD-o in 100 μL of PBS 1X 
was coated in an ELISA plate overnight at 4 ºC. Then, 
plates were washed three times with PBST (Merck, 
Darmstadt, Germany). Subsequently, blocking was per-
formed with PBTS—1% Gelatin, followed by incuba-
tion with murine serum at a 1:100 dilution in 100 μL of 
PBS—0.1% gelatin. The secondary antibody used was 
peroxide-conjugated affinipure goat anti-mouse IgG 
(H+L) (115-035-003; Jackson ImmunoResearch Labs, 
USA) at a 1:5000 dilution and was revealed with TMB 
(ES001, Merck, USA). Control wells were treated in the 
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same way but without RBD protein attached and only 
incubated with 1X PBS. The TMB reaction was stopped 
with 0.5  M H2SO4. The absorbance reading was per-
formed at 450  nm (StatFax 4200, Awareness Technol-
ogy Inc., USA).

In vitro serum neutralization test
An ELISA was performed to identify the neutralizing 
antibodies in murine sera immunized orally with oil-in-
water emulsions containing recombinant RBD and RBD-
P. Ten microliters of mouse serum diluted with sample 
dilution buffer were incubated for 30 min at 37  °C with 
HRP-conjugated RBD protein produced in human cells, 
as indicated by the supplier (Catalog Z03594, Genscript, 
Ryswick, The Netherlands). 100  µL of the sample were 
placed on a capture plate with hACE2 protein from the 
cPass SARS-CoV-2 Surrogate virus neutralization test 
kit (Catalog L00847-A, Genscript, Ryswick, The Nether-
lands) for 15 min at 37 °C. Four washes were performed, 
and the reaction was revealed with 100 µL of TMB, incu-
bated for 15 min in the dark. The reaction was stopped 
and read at 450 nm (StatFax 4200, Awareness Technology 
Inc., USA) [64, 65].

IgG titer determination
ELISAs were performed to assess the production of anti-
bodies. Ultra-Cruz ELISA Plates (Santa Cruz Biotechnol-
ogy, USA) were coated with 0.5 μg of RBD recombinant 
protein from E. coli, in 100  μL of PBS 1X. The coating 
solution was incubated overnight at 4  °C. The plate was 
washed three times with PBST (Merck, Germany). Next, 
200 μL of PBS 1X—1% gelatin from cold water fish skin 
(Merck-Sigma-Aldrich, USA) was used for blocking and 
incubated for 1  h. The plate was washed three times 
with PBST by 5 min. Using serum from mice, the follow-
ing dilutions were made: 1:50, 1:100, 1:200, 1:400, 1:800, 
and in 100 μL of PBS 1X—0.1% gelatin and incubated for 
2  h. Each dilution was placed in duplicate on the plate. 
The plate was washed three times with PBST by 5 min. 
Then, 100 μL of peroxide-conjugated affinipure goat anti-
mouse IgG (H+L) (115-035-003; Jackson ImmunoRe-
search Labs, USA) at a dilution of 1:5000 was added and 
incubated for 1 h. The plate was washed three times with 
PBST. TMB substrate (Merck-Sigma-Aldrich, USA) was 
used and incubated for 30 min in the dark to reveal the 
ELISA reaction. The TMB reaction was stopped with 
0.5 M H2SO4. The absorbance was measured on a micro-
plate reader (Stat Fax® 4200, Awareness Technology, Inc. 
Palm City, FL, USA) at 450  nm. The antibody titer was 
calculated using the EC50 of the absorbance obtained 
with different dilutions used.

Statistical analyses
All the data for kinetic parameters are represented as 
the mean of triplicates ± standard deviation. One-way 
ANOVA for independent and samples and, when needed, 
pair-wise comparisons using Tukey HSD (Test for Post-
ANOVA) were carried out.

Statistical significance between groups in the antibody 
reactivity assay was determined using sera from mice and 
compared with PBS as the control. Dunn´s test was used 
for all pairwise comparisons and comparisons against a 
control group (PBS) following rank-based ANOVA based 
on the treatment of unequal group sizes. Differences 
were considered statistically significant if the p < 0.05.

Results
Production of RBD and RBD‑P in shake flasks 
and bioreactor
We design a peptide for fusion with the RBD domain of 
SARS-CoV-2, aiming to enhance antigen presentation 
that can be orally administered in an oil-in-water emul-
sion. The gene sequence encoding the RBD (597  bp) 
region contained in the S gene of SARS-CoV-2 (Gen-
Bank: MN908947) was synthesized using the preferential 
codon usage in E. coli [66]. Codons for the amino acids 
MGKL were added at the 5ʹ of the sequence, whereas 
codons for the peptide of 40 amino acids were added at 
the 3ʹ of the sequence (Fig. 1). The peptide named 40AV 
was fused with the RBD region and compared with the 
RBD without fusion peptide. Both plasmids coding for 
each construction were cloned in the plasmid pET15b 
and used to transform E. coli BL21 (DE3) (Merck-Nova-
gen, USA). Constructions with and without the peptide 
were named as RBD-P and RBD, respectively. The con-
structed plasmids were verified by PCR and sequencing. 
Ampicillin was used to select recombinant bacteria, and 
master and working cell banks were produced from each 
strain.

Selected clones were grown in Erlenmeyer flasks in 
triplicate. The cultures producers of RBD-P and RBD 
reached similar maximum biomass (5.56 ± 0.39 A.U. and 
5.81 ± 0.25 A.U., respectively). However, there were sig-
nificant differences in the specific growth rate (µ) of E. 
coli BL21 (DE3) producing RBD-P (0.49 ± 0.01  h−1) and 
RBD (0.45 ± 0.01 h−1) (Fig. 2A, Table 1).

E. coli BL21 (DE3) clones producing RBD-P and the 
RBD were also characterized in bioreactor cultures 
(Fig. 2B). The µ of E. coli BL21 (DE3) cultures, either pro-
ducing the RBD-P or RBD, was 0.42 ± 0.01  h−1, whereas 
maximum biomass of 14.91 ± 0.10 A.U. and 13.9 ± 2.73 
A.U. was reached for cultures producing the RBD-P or 
RBD, respectively (Fig. 2B, Table 1). At the end of the cul-
tures, the maximal biomass reached in the bioreactors 
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was more than twice in both cultures, producing RBD-P 
and RBD, compared to those in shake flasks (Table 1). In 
shake flasks, only about 40% of the glucose was consumed 
in all cultures (Fig. 2C, Table 1), while in bioreactors, the 
carbon source was almost completely consumed (Fig. 2B, 
Table 1). No significant differences were observed in the 
biomass per glucose yields (YX/S) between cultures of 
RBD-P and RBD. Instead of, YX/S was higher in bioreac-
tor cultures than in shake flasks (Table 1).

RBD and RBD‑P identification, quantification, 
and secondary structure analysis
Final total protein (TP) content, after IEF solubiliza-
tion, was 1.154 ± 0.132 g/L and 1.126 ± 0.116 g/L in shake 
flasks producers of RBD and RBD-P, respectively, and 
0.930 ± 0.323  g/L and 1.819 ± 0.413  g/L, in bioreactors 
cultures producing RBD or RBD-P, respectively (Table 1). 
RBD and RBD-P concentrations were determined by 
densitometry in total protein fractions analyzed on 15% 
SDS-PAGE. Samples at 1 h, 5 h, and 10 h post-induction 
times collected from shake flasks and bioreactors were 
loaded in gels and compared with a sample harvested 
before induction and used as a negative control (Fig. 3). 

In agreement with the theoretical molecular weights, 
RBD and RBD-P were observed at around 22 and 26 
KDa, respectively (Fig. 3), and confirmed by intact mass 
analysis (22,738.12 and 26,490.03 u.m.a., respectively), 
with around 3 to 5 Da higher than the theoretical mass 
(Additional file 1: Figure S1A).

As has been described for many bioprocesses, a 
higher accumulation of recombinant proteins was 
observed in bioreactors (RBD: 330 ± 10  mg/L and RBD-
P: 460 ± 10  mg/L) compared to shake flasks (RBD: 
280 ± 10  mg/L and RBD-P 260 ± 20  mg/L) (Table  1). 
Almost all the recombinant proteins were accumulated 
in the insoluble fraction, particularly forming protein 
aggregates or inclusion bodies (IBs). After cell rupture, 
IBs were isolated and solubilized, and proteins were 
separated by gel electrophoresis. RBD and RBD-P from 
a shake flask and bioreactor showed a high accumula-
tion of proteins with 22 and 26 KDa, respectively (Fig. 4A 
and B). The identity of RBD and RBD-P was verified by 
immunodetection in Western blots using a specific anti-
Spike antibody (Fig.  4C). The content of recombinant 
proteins in IBs, estimated by densitometry, corresponded 
to around 24% for both (RBD and RBD-P) accumulated 

Fig. 1  Scheme of Spike (S) protein architecture of the SARS-CoV-2 (A): NTD N-terminal domain, RBD receptor-binding domain (330–525 WA1/2020), 
RBD-P receptor-binding domain fused to 40AV peptide, RBM receptor binding motif, SD1 subdomain 1, SD2 subdomain 2, S1/S2 protease cleavage 
site, S2’ protease cleavage site, FP fusion peptide, HR1 heptad repeat 1, CH central helix, HR2 heptad repeat 2, TM transmembrane domain. 
Representative scheme of the peptide fused RBD and peptide free RBD (B)
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in shake flasks, while in bioreactors, it corresponded 
to around 35% for RBD and 25% for RBD-P (Table  1). 
In addition, the composition of IBs containing RBD or 
RBD-P was different, as inferred by the band patterns 
(Fig.  4). Intracellular IBs, produced after 5  h induction 
with IPTG, measured up to 800  nm and had pseudo-
spheric and irregular shapes (Additional file 1: Figure S2). 
At least 40% of the cell population contained IBs, and 
around 25% of cells contained two or more IBs.

The recombinant proteins produced in the bioreactor 
and isolated from IBs were solubilized, separated by gel 
chromatography, and recovered in MQ water by elec-
tro-elution [54]. Around 50% of the recombinant pro-
teins were recovered. Then, 25  µg of RBD and RBD-P 
were separated by high-resolution chromatography. The 
resultant components had a purity of 90 and 85% for RBD 
and RBD-P, respectively, and were eluted at 39.6 min, in a 
0 to 60% gradient of acetonitrile in 60  min, with a flow 
rate of 0.8 mL/min (Fig. 5A).

RBD and RBD-P were characterized by CD spectros-
copy to determine their conformational properties. RBD 
and RBD-P showed basically the same spectrum, indicat-
ing that the fusion peptide does not affect RBD confor-
mation, at least in terms of secondary structure (Fig. 5). 
The shapes of these spectra mirrored that reported for 
RBD also produced in E. coli, although those obtained 
with eukaryotic cells are markedly different [67]. A 
deconvolution analysis indicated that the spectra are 
consistent with the presence of 7–9% α helix and 37% β 
strands (Fig.  5B and C). Since the optical properties of 
the oil-in-water emulsion did not allow the spectra to 
be determined, RBD and RBD-P were solubilized in 50% 
TFE (Tetrafluoroethylene, Merck-Sigma-Aldrich, USA) / 
water (v/v) solution, a cosolute used to mimic the envi-
ronment composed of lipids. In the presence of TFE, the 
two proteins also exhibited similar spectra to each other. 
In agreement with what was observed in pure water, 
these results again indicated that the peptide does not 

Fig. 2  Kinetics of biomass growth (circles) and recombinant protein production (triangles) of RBD-P (filled symbols) and RBD (open symbols) 
from SARS-CoV-2 by E. coli BL21 (DE3), in shake flasks (A) and in bioreactors (B). Data presents the average and standard deviation of the cultures 
carried out at least in triplicate. Induction with IPTG started after 6 h of culture. Inset figures are logarithmic biomass growth. Glucose consumption 
was also presented for shake flasks (C) and bioreactors (D) cultures
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Table 1  Stoichiometric and kinetic growth parameters of E. coli BL21 (DE3) producer of RBD-P and RBD growing in shake flasks and 
bioreactor

The values represent the mean and standard deviation for three biological replicates per condition. The statistical differences are indicated with different letters 
(p < 0.05)

A: The specific growth rate was calculated from the slope of growth in the exponential growth phase

B: The maximum biomass was obtained where the biomass was the maxima, regardless of the culture time

C: Glucose consumed is the initial glucose calculation subtracted from the residual glucose from Fig. 2C and D

D: YX/S and YP/X were calculated from glucose consumption until the Xmax in each condition

E, F: Obtained from densitometric analysis of SDS-PAGE gels of at least three biological replicates per condition

Parameter Shake flasks Bioreactor

RBD RBD + P RBD RBD + P

Aµ (h−1) 0.45 ± 0.01a 0.49 ± 0.01b 0.41 ± 0.03c 0.42 ± 0.01c

BXmax (A.U.) 5.81 ± 0.25a 5.56 ± 0.39a 13.90 ± 2.73b 14.91 ± 1.46b

CGlucose consumed (g/L) 7.3 ± 0.2a 6.7 ± 0.1b 14.2 ± 1.7c 13.8 ± 0.2d

DYX/S (g/g) 0.21 ± 0.02a 0.20 ± 0.01a 0.26 ± 0.01b 0.24 ± 0.02b

Soluble protein (g/L) 0.066 ± 0.028a 0.087 ± 0.027a 0.113 ± 0.014b 0.169 ± 0.034c

Insoluble protein (g/L) 1.088 ± 0.112a 1.039 ± 0.092a 0.871 ± 0.288b 1.651 ± 0.371c

Total protein (g/L) 1.154 ± 0.132a 1.126 ± 0.116a 0.930 ± 0.323b 1.819 ± 0.413c

ERBD (g/L) 0.28 ± 0.01a 0.26 ± 0.02a 0.33 ± 0.01b 0.46 ± 0.01c

FRBD in total protein (%) 24 ± 4a 23 ± 5a 35 ± 5b 25 ± 4a

DYP/X (g/g) 0.14 ± 0.02a 0.13 ± 0.02a 0.07 ± 0.02b 0.09 ± 0.01b

Fig. 3  Kinetic comparison in SDS-PAGE (12%) of total protein (TP) produced in cultures of E. coli BL21 (DE3) grow up in shake flasks (A, B) 
and bioreactors (C, D). RBD-P producing cultures are shown in (A) and (C) and RBD in (B) and (D). In all gels, lanes 1 and 6 correspond to PT 
before induction. Lanes 2, 3, and 4 (7,8, and 9) show samples taken from cultures at 1, 5, and 10 h after induction, respectively. Lane 5 corresponds 
to the molecular weight marker (MWM). Lanes 6 to 9 are samples from replica experiments. Recombinant proteins are marked by a black arrow
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interfere with the conformation adopted by RBD. Under 
these conditions, the two RBD forms presented a mod-
erate enrichment of α helix (15–16%) without significant 
detriment of the β-strand content (34–35%). The com-
position in TFE/water was closer to that observed in the 
native structure of RBD (20% α helix and 23% β strand), 
although still different from the biologically active con-
formation [27].

Immunization of RBD‑P and RBD via oral and intramuscular
To analyze the nature of the recombinant RBD and 
RBD-P antigens, recognition by IgG from sera from 
COVID-19 patients, which present anti-SARS-CoV-2 
antibodies, was evaluated, a comparison was made with 
human sera obtained before the COVID-19 pandemic. 
71% and 78% of sera showed a signal greater than 0.5 A.U. 
in recognition of RBP and RBD-P, respectively (Fig.  6). 
No significant differences in recognition were found 
between the recombinant RBD-P and RBD (Fig.  6), but 

with controls. No neutralization was found from human 
sera obtained before the COVID-19 pandemic (data not 
shown).

The recombinant antigens purified from bioreactor 
cultures were mixed with an oil-in-water emulsion to be 
administered orally aimed to increase the antigenicity. 
The developed oil-in-water emulsion presents droplets 
between 20  nm and 0.6  µm observed by TEM (Fig.  7). 
Interestingly, the emulsion containing 10  µg of RBD or 
RBD-P formed a series of nanodrops that decorated 
larger droplets, while nanodrops were absent around 
the droplets formed at the control oil-in-water emulsion 
without recombinant proteins. Furthermore, the oil-in-
water emulsion containing RBD-P presented fewer nan-
odrops around larger droplets than RBD (Fig. 7).

Oral doses were prepared to determine if this prepa-
ration could improve the antigenicity. The oral adminis-
tration was compared with intramuscular doses (Fig. 8). 
RBD and RBD-P antigens were inoculated in BALB/c 

Fig. 4  Coomassie blue stained 12% acrylamide gel electrophoresis of the IBs obtained at the end of E. coli BL21 (DE3) cultures producers 
of RBD-P and RBD. IBs from cultures in shake flasks (A); lane 1: molecular weight marker (MWM), lane 2: IBs of RBD-P, and lane 3: IBs of RBD. IBs 
from two independent bioreactor cultures (B); lanes 1 and 4 are IBs from cultures producers of RBD-P, lane 3 is the MWM, and lanes 2 and 5 are IBs 
from cultures producers of RBD. Immunodetection by Western Blot of purified RBD-P and RBD (C) recombinantly produced in E. coli BL21 (DE3) 
in bioreactor and detected with anti-Spike antibody (Sino Biological 40,591-MM43); lane 1: RBD-P, and lane 2: RBD, and lanes 3 and 4: molecular 
weight marker (MWM)

(See figure on next page.)
Fig. 5  Secondary structure characterization of RBD forms by CD spectroscopy. The spectra were recorded in pure water A RBD and B RBD-P 
and in a 50% (v/v) TFE aqueous mixture, C RBD and D RBD-P. Secondary structure contents (αH, α helix; βS, β strand; O, other) were calculated 
from a deconvolution analysis of the CD spectra with the BeStSel webserver. Black circles are experimental spectra, lines correspond to the best-fit 
spectra, and residuals between calculated and experimental data are shown with asterisks. High-resolution chromatography of the RBD-P and RBD 
antigens on an Xbridge Protein BEH C4 reverse phase column (E). The interest components were eluted at 39.6 min, in a gradient from 0 to 60% 
acetonitrile in 60 min, with a flow of 0.8 mL/min, and injected 25 μg
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Fig. 5  (See legend on previous page.)
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mice. A total of 14 groups of mice (seven animals per 
group) were evaluated (Fig.  8). All groups received two 
immunizations administered 15  days apart. We immu-
nized with 0.4 µg/g of mice (10 µg per mice of 25 g) with 
purified antigens (RBD and RBD-P) in oil-in-water emul-
sion. Mice sera were obtained 30 days after the immuni-
zation period and used to evaluate RBD recognition by 
ELISA (Fig.  8B and C). The orally inoculated mice with 
RBD presented similar values to the control groups (oil-
in-water emulsion without recombinant proteins or 
PBS), but RBD-P showed a significantly higher response 
(p < 0.001). No significant differences were found when 
comparing RBD-P immunization and antigen recogni-
tion by gender (Fig.  8B). Significantly, the oral adminis-
tration of RBD did not promote IgG recognition against 
RBD, with similar results between males, females, and 
negative controls (Fig.  8B). In the intramuscular appli-
cation, significant differences (p < 0.001) were found 
between females and males in both treatments (RBD-P 
and RBD), showing both treatments greater recognition 
compared to controls (Fig.  8C). Also, reactivity levels 
were like those reported in intramuscular administra-
tion [30]. Significant differences in the absorbance values 
between oral and intramuscular applications were found 
when comparing the RBD-P and RBD treatments (Fig. 8B 

and C). Therefore, the fusion peptide developed increases 
protein immunogenicity, probably due to an enhanced 
antigen presentation of the RBD domain in oral adminis-
tration (Fig. 8B).

The IgG quantification in immune murine plasma 
showed recognition of the RBD recombinant antigen at 
different dilutions (Fig. 9). Higher titration was obtained 
using serum from mice inoculated intramuscularly using 
RBD-P and RBD compared with those orally adminis-
trated. Importantly, with oral an IM administration, sig-
nificantly higher titration (p < 0.05) was obtained with 
RBD-P compared with RBD (Fig.  9). The EC50 in the 
different titrations for oral administration was 1:200 for 
females and males, whereas, for intramuscular admin-
istration, it was 1:3200 and 1:800 for females and males, 
respectively.

Additionally, it was observed that both RBD-P and 
RBD-o were recognized by the IgGs present in the sera of 
immunized mice with RBD-P or RBD. A similar recogni-
tion pattern was observed when using the same amounts 
of sera and the same amount of bound protein in the 
ELISA test (Additional file  1: Figure S3). In the female 
sera, we observed a significant increase (p < 0.05) in rec-
ognition compared to the absorbance values obtained 
using the male sera (Additional file 1: Figure S3).

RBD‑P immunization in mice elicited neutralizing activity
The hyperimmune sera obtained after 30  days post-
inoculation were tested. The blockade percentage of the 
interaction between the commercial RBD and the hACE2 
receptor was determined in a commercial neutralization 
test using murine polyclonal antibodies from each serum, 
obtained from oral and intramuscular immunization 
with recombinant RBD-P and RBD (Fig.  10). The per-
centage of inhibition is shown on the y-axis, and at least 
six biological replicates were plotted. The positive control 
included an anti-spike antibody, and this test was factory-
calibrated (GeneScript, USA). It was observed that sera 
of RBD-P orally immunized mice produced antibodies 
that exhibited inhibition. Data showed no significant dif-
ferences between evaluated females and males (Fig. 10A). 
Furthermore, neutralization for RBD-P ranged from 25 
to 36% in orally immunized mice against 3% to 20% in the 
control groups (PBS and the oil-in-water emulsion). At 
the same time, RBD immunization presented below neu-
tralization values than RBD-P (Fig. 10A).

The blockage percentage of murine polyclonal anti-
bodies obtained from intramuscular immunization 
with RBD-P and RBD was statistically similar by gen-
der. Moreover, in the intramuscular application, signifi-
cant differences (p < 0.01) were found between females 
and males in both treatments (RBD-P and RBD), being 
greater for females and with neutralization averages 

Fig. 6  Recognition of recombinant RBD and RBD-P by human IgG 
polyclonal antibodies. The ELISA was performed using sera samples 
from no hospitalized individuals convalescing from COVID-19 
(median age around 40 years). Also, twelve human sera obtained 
before the COVID-19 pandemic were used as control. Infection 
with SARS-CoV-2 was confirmed by RT-PCR from nasopharyngeal 
swabs performed in clinics. In boxplots, each data point is the mean 
and its deviation of replica per serum. Also, each boxplot presents 
the mean in a dotted line, the median as the middle line, 
the interquartile range as box limits, and the 2.5th and 97.5th 
percentiles as the whiskers. For all variables with the same letter, 
the difference between the means is not statistically significant. If 
two variables have different letters, they are significantly different 
(p < 0.05)
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greater than 50%, with higher values when compared 
with oral applications (Fig. 10A and B).

Discussion
Until now, the vaccines available to treat COVID-19 are 
administered by injection, and the antibodies have not 
been long-lasting. Previous studies have shown a reduc-
tion in vaccine effectiveness over time [11, 68], so it has 
been proposed to continue with periodic vaccination 
according to the variants that cause waves of population 
infections [68]. More than 300 molecules are under study 
for the development of new vaccines around the world. 
The approaches to improve the presentation of antigens 
become relevant when vaccines, such as those against 
viruses like SARS-CoV-2, will have to be used periodi-
cally for a long time.

The RBD region is one of the most important domains 
of interaction with the virus receptor hACE2 and its anti-
genicity [25, 27]. This domain has qualities of movement 
between open and closed states and has been suffering 
mutations that cause new variants with different affinities 
for the receptor [11]. This work has developed a technol-
ogy with possible utility in the treatment of COVID-19. 
In the present study, we produced recombinantly in 
E. coli the RBD and the RBD-P, the last containing an 
extension consisting of one peptide of 40 amino acids 
to enhance RBD immunogenicity by integrating a prod-
uct of the fusion of two parts. One part exhibits inher-
ent flexibility, while the other draws inspiration from 
peptides forming amphipathic helices [69], strategically 
tailored to foster interaction with cell membranes. This 
innovative design aimed to incorporate the RBD-P in 
oil-in-water emulsion for oral administration, with the 

Fig. 7  Micrographs by TEM of the oil-in-water emulsion without recombinant proteins (A, B), oil-in-water emulsion with RBD-P (C, D) 
and oil-in-water emulsion with recombinant RBD (E, F) developed for oral administration. Scale bars are found inside the micrographs
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goal of eliciting the production of neutralizing antibod-
ies. Future studies are necessary to determine the action 
mode of the 40AV peptide.

The RBD and RBD-P production was performed in 
shake flask and bioreactor cultures where, in the last, 
the recombinant protein accumulation was higher, 
and oxygen limitation was avoided  [70–74]. Whatever, 
all cultures accumulated more than 250  mg/L of RBD 
and RBD-P, a higher accumulation compared with other 
works producing RBD-like proteins [75, 76]. Recom-
binant antigens produced in shake flasks and bioreac-
tors formed aggregates (inclusion bodies) (Additional 

file 1: Figure S2) that were solubilized and purified. The 
prokaryotic production of the RBD of SARS-CoV-2 
has presented the problem of protein aggregation and 
IBs formation due to the high number of cysteines, 
the inefficient formation of disulfide bonds, and high 
recombinant productivity [75, 76]. Therefore, solubili-
zation of IBs and refolding is common and has allowed 
the obtention of biologically active RBD proteins [30, 
77]. Here, we confirmed the antigenic determinants 
of RBD and RBD-P by immunoassays using a specific 
antibody anti-Spike and by recognition by sera from 
human patients infected by SARS-CoV-2. Differential 

Fig. 8  Immunization scheme of BALB/c mice with RBD-P and RBD (A). Analysis of antigen recognition with polyclonal antibodies of murine serum 
immunized with recombinant RBD and RBD-P orally (B) and intramuscularly (C). The Y axis shows the absorbance value measured at 450 nm 
Serum was placed at a dilution 1:200 for intramuscularly groups, and at a dilution 1:100 for orally groups. In boxplots, each data point is the mean 
of two wells per mouse serum. Also, each boxplot presents the mean as an X, the median as the middle line, the interquartile range as box limits, 
and the 2.5th and 97.5th percentiles as the whiskers. For all variables with the same letter, the difference between the means is not statistically 
significant. If two variables have different letters, they are significantly different (p < 0.05). The immunization scheme was prepared using Biorender
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recognition between sera from infected and pre-pan-
demic people was found, denoting that both antigens 
present elements and domains like those in the SARS-
CoV-2. In addition, both antigens were characterized 
by SDS-PAGE and mass spectrometry, confirming their 
molecular weight. CD spectroscopy analysis revealed 
that the 40AV peptide extension had an insignificant 
impact on the secondary structure content of the RBD, 
both in an aqueous medium and in a water/TFE mix-
ture designed to emulate membrane environments. 
This opens the possibility that the role it plays in the 
observed increase in antigenicity is to allow RBD to 
be recruited in lipid environments such as the oil-in-
water emulsion here developed and in  vivo, probably 

facilitating its presentation to the immune system when 
RBD-P was administered orally.

The antigens produced in bioreactors under con-
trolled conditions were administered in mice. Only the 
groups inoculated with RBD-P orally showed antigenic-
ity and immunogenicity. The edible formulation, the oil-
in-water emulsion containing RBD or RBD-P, showed 
no toxic effects, no reactive episodes, and no changes in 
temperature or vomiting in mice. Moreover, after each 
administration, the animals ate food normally. Immu-
nization with 10  μg of RBD-P per BALB/c mice, for-
mulated in the oil-in-water emulsion, induced a robust 
IgGs response capable of recognizing recombinant RBD 
proteins through ELISA. Furthermore, since the RBD 

Fig. 9  Indirect ELISA titration against recombinant RBP from E. coli of pre-immune (black) and hyperimmune female (left) and male (right) mice 
sera using RBD (grey) and RBD-P (light grey) antigens administrated orally (A, B) and intramuscularly (C, D). Results are presented as the mean 
and standard deviation of at least triplicates. There is a significant difference (p < 0.05) in all cases when the results using RBD (grey) and RBD-P (light 
grey) are compared for each dilution evaluated
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is the outermost region of the virus and mutations can 
define its interaction with the hACE2 receptor [22, 23], 
our results showed that RBD and RBD-P stimulate the 
production of IgG in the serum of experimental animals, 
in which IgGs produced recognize both the Wuhan and 
Omicron BA.1 RBDs (Additional file 1: Figure S3). Apa-
ricio et al., [78] found antibodies induced by Wuhan RBD 
peptide in mice cross-react with Omicron peptides. Less 
recognition was observed in sera obtained from males 
compared to females, although the recognition profile, 
in general, is like the recognition of the Wuhan RBD 
and Omicron (Additional file 1: Figure S3). Interestingly, 
the differences observed in the production of recogni-
tion antibodies in terms of gender have been scarcely 
discussed. In humans, it has been reported that females 
have better antiviral immune mechanisms [79–82], 
while in BALB/c mice models, males have been shown 
to be more susceptible than females to SARS-CoV infec-
tion because estrogens and estradiol seem to enhance 
immunity to viral infections [83]. In agreement with the 
findings of this study, other authors have described a 
differential immune response to viral vaccines between 
male and female BALB/c mice, with higher responses in 
females [84, 85]. For example, there are higher CD4 T 
cell counts in females immunized with immunodominant 
glycoprotein of Herpes simplex type 1 [84]. Furthermore, 
the trivalent influenza vaccine induces greater titers 

of IgM and IgG in female mice than in males [85]. The 
above is explained by sex-related immune characteristics. 
Polymorphism of immune-associated genes located in 
X chromosome results in more cell diversity in females 
than males [86, 87], with differences in TLR7/8 and type 
1 interferon production, crucial in viral infections [88], 
cytokine modulation [84] and MicroRNAs, involved in 
granulocyte generation and maturation [89, 90], among 
other immune activities [91].

Outstandingly, serum from mice inoculated with 
RBD-P produced antibodies after two oral immuni-
zations that blocked the RBD binding to the hACE2 
receptor in an in  vitro test, causing the generation of 
neutralizing antibodies. It is important to mention that 
the difference observed in the magnitude of the IgG iso-
type between oral and intramuscular administration 
was expected since the intramuscular route of admin-
istration induces a strong serum IgG response [30, 92, 
93]. The IgA immunoglobulins are known to facilitate 
the humoral response in mucosal tissues, but it has 
also been demonstrated that IgM and IgG contribute to 
mucosal-associated immunity [41, 47]. Although oral 
administration did not induce high titers of neutralizing 
IgG antibodies in serum and measurement of IgA is still 
pending in the present work, mucosal administration of 
SARS CoV-2 immunogens is a promising research target, 
considering that mucosal immunity promotes effective 

Fig. 10  Neutralization assay of the hyperimmune sera obtained 30 days post-immunization of BALB/c mice with RBD-P and RBD orally (A) 
and intramuscularly (B). The y-axis corresponds to the observed percentage of the inhibition of HRP-conjugated RBD interaction with hACE2. 
Dashed lines represent manufacturers’ cutoff values (30%). The neutralization assay was performed in duplicate for each mouse serum, 
and per group. C+ is the positive control. Each boxplot presents the mean as an X, the median as the middle line, the interquartile range 
as box limits, and the 2.5th and 97.5th percentiles as the whiskers. For all variables with the same letter, the difference between the means 
is not statistically significant. If two variables have different letters, they are significantly different (p < 0.05). When there are two letters in a data set, 
this is not significantly different from the data sets with those letters
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disease prevention and avoids viral transmission [94, 95]. 
Due to the peptide-coupled polymeric nature of the pre-
sent vaccine prototype, a good mucosal response could 
be expected. However, if oral immune responses needed 
to be enhanced, nanoparticles [96], mucosal adjuvants 
such as E coli double mutant thermolabile toxin (dmLT) 
[97, 98], multiple mutated choleratoxin (mmCT) [99] 
α-galactosylceramide (α-GalCer) [100], chitosan [101], 
among others could be used [102–104]. The adminis-
tration of oral vaccines involves the use of substantial 
amounts of antigen to counteract its degradation in the 
gastrointestinal tract [103]. Our results suggest that the 
oil-in-water emulsion formulation prevents degradation. 
Furthermore, tolerability and response experiments on 
the mice can be carried out at higher doses of the anti-
gens described here.

The unglycosylated RBD from SARS-CoV and SARS-
CoV-2 could elicit the cellular and humoral immune 
response reaching the neutralizing antibodies forma-
tion, although those antigens are less immunogenic 
compared to RBD produced in Chinese Hamster 
Ovary cells [105]. This variation is associated with 
the three N-glycosylation sites (until now, only posi-
tions N331 and N343 are experimentally verified) 
and four O-glycosylation sites (T323, S325, T333, 
and T345 experimentally tested), which participate in 
protein conformation, immunogenicity, and antigen 
presentation [105, 106]. Regardless, in this study, the 
unglycosylated RBD produced in E. coli comprises the 
non-natively glycosylated apical RBD regions, that are 
recognized by neutralizing antibodies with high affin-
ity [2, 107, 108]. The RBD and RBD-P produced here 
were immunogenic and elicited neutralizing antibodies 
when administrated intramuscularly. Remarkably, this 
work evoked the improvement of the immunogenicity 
of non-glycosylated antigens through the oral route, 
a result that was achieved by adding the 40AV pep-
tide. This is coupled with the fact that bacterial mod-
els are widely used in subunit vaccine production due 
to their simplicity of implementation and substantial 
cost reduction. Even more, unglycosylated antigens 
could avoid the auto-antibodies production against 
host carbohydrates produced in SARS-CoV-2 infection 
[109]. However, impurities from E. coli, like endotox-
ins (lipopolysaccharides or Lipid A), are responsible 
for triggering proinflammatory cytokine production, 
which is important in the design of vaccines adminis-
trated parenterally [110, 111]. In this work, this effect 
was mimicked by the endotoxin synthetic analog S6322 
used as an adjuvant during intramuscular administra-
tion, while, in oral doses, high concentrations of LPS 
have been administered in mice without significant 
effects [112]. Although the elimination of endotoxins 

was not considered in this work, the amount of these 
decreases by orders of magnitude due to the purifica-
tion and according to other bioprocesses [113]. Even 
more, future analysis of the processes will take care of 
the removal and characterization of endotoxins and 
other host contaminants [114].

Our findings highlight the importance of the modi-
fied recombinant RBD antigen, providing a basis for the 
development of an oral SARS-CoV-2 vaccine candidate 
that induces immune responses. Results spotlight an 
RBD production bioprocess that can be scalable with 
the improvement in the immunogenicity of RBD by the 
fusion peptide in a simple emulsion formulation. Impor-
tantly, the peptide-fused RBD in the emulsion generated 
neutralizing antibodies in immunized mice. Since the 
vaccine candidate is administered orally, it is necessary to 
assess IgA isotype immunoglobulins, as well as compo-
nents of cellular immunity, work that is currently in pro-
gress, also further evaluation of the protective capacity 
in a biological model of SARS-CoV-2. Moreover, deter-
mining the antigenic presentation level of the proposed 
antigen and its ability to induce IgA isotype switch-
related cytokines on dendritic cells by flow cytometry 
and fluorescence microscopy is considered crucial. This 
work contributes to the knowledge, challenges, and 
advances for the development of mucosal vaccines for 
SARS-CoV-2, which is important to generate knowledge 
between basic, translational, and clinical research.
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