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Abstract 

Background In recent years, the production of inclusion bodies that retain substantial catalytic activity was demon-
strated. These catalytically active inclusion bodies (CatIBs) are formed by genetic fusion of an aggregation-inducing 
tag to a gene of interest via short linker polypeptides. The resulting CatIBs are known for their easy and cost-efficient 
production, recyclability as well as their improved stability. Recent studies have outlined the cooperative effects 
of linker and aggregation-inducing tag on CatIB activities. However, no a priori prediction is possible so far to indicate 
the best combination thereof. Consequently, extensive screening is required to find the best performing CatIB variant.

Results In this work, a semi-automated cloning workflow was implemented and used for fast generation of 63 CatIB 
variants with glucose dehydrogenase of Bacillus subtilis (BsGDH). Furthermore, the variant BsGDH-PT-CBDCell was used 
to develop, optimize and validate an automated CatIB screening workflow, enhancing the analysis of many CatIB 
candidates in parallel. Compared to previous studies with CatIBs, important optimization steps include the exclu-
sion of plate position effects in the BioLector by changing the cultivation temperature. For the overall workflow 
including strain construction, the manual workload could be reduced from 59 to 7 h for 48 variants (88%). After 
demonstration of high reproducibility with 1.9% relative standard deviation across 42 biological replicates, the work-
flow was performed in combination with a Bayesian process model and Thompson sampling. While the process 
model is crucial to derive key performance indicators of CatIBs, Thompson sampling serves as a strategy to balance 
exploitation and exploration in screening procedures. Our methodology allowed analysis of 63 BsGDH-CatIB vari-
ants within only three batch experiments. Because of the high likelihood of TDoT-PT-BsGDH being the best CatIB 
performer, it was selected in 50 biological replicates during the three screening rounds, much more than other, low-
performing variants.

Conclusions At the current state of knowledge, every new enzyme requires screening for different linker/aggrega-
tion-inducing tag combinations. For this purpose, the presented CatIB toolbox facilitates fast and simplified construc-
tion and screening procedures. The methodology thus assists in finding the best CatIB producer from large libraries 
in short time, rendering possible automated Design-Build-Test-Learn cycles to generate structure/function learnings.
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Background
Catalytically active inclusion bodies (CatIBs) are inclu-
sion bodies that were demonstrated to retain substantial 
catalytic activity [1–11]. CatIBs are known for their easy 
and cost-efficient production, recyclability as well as high 
stability. Due to their ability to self-aggregate in a carrier-
free, biodegradable form, further laborious immobiliza-
tion steps and additional reagents can be avoided [12]. 
These characteristics make CatIBs a promising, purely 
biological alternative to traditional immobilization 
techniques.

CatIBs can be formed by genetic fusion of an aggre-
gation-inducing tag to a gene of interest via short linker 
polypeptides and overproduction of the resulting fusion 
gene in Escherichia coli. The choice of linker and aggre-
gation-inducing tag strongly influences CatIB activities, 
as was previously shown for CatIBs of the lysine decar-
boxylase from E. coli or of the glucose dehydrogenase 
from Bacillus subtilis (BsGDH). For both enzymes, the 
rigid Proline/Threonine (PT) linker led to higher activi-
ties compared to the flexible Serine/Glycine (SG) linker 
[10, 11]. Besides the linker and aggregation-inducing tag, 
also the terminus of the enzyme, which is used for fusion, 
influences the activity of CatIBs. While CatIB formation 
using the N-terminus often failed in previous studies, 
fusion to the C-terminus was shown to be more success-
ful [13].

Since several factors influence the formation of active 
CatIBs, a priori prediction of suitable combinations of 
target enzyme, linker and aggregation-inducing tag is not 
possible at the current state of knowledge [12, 14]. As a 
consequence, many different genetic variants need to be 
constructed and tested, ideally in a Design-Build-Test-
Learn (DBTL) cycle that can be automated for enhanced 
throughput. For the generation of a large CatIB library, 
i.e., the Build phase of DBTL, a modern cloning tech-
nique is essential to speed up the whole process. In pre-
vious studies, traditional cloning processes, consisting of 
restriction digestion, ligation, polymerase chain reaction 
(PCR) and gel clean-up steps, were applied for the con-
struction of CatIBs [1–9]. However, these cloning work-
flows are laborious and time-consuming. In comparison, 
Golden Gate Assembly (GGA) is a fast and simple clon-
ing technique. Since it is easy to automate, GGA can be 
used to construct many different CatIB variants in paral-
lel [14]. Moreover, GGA was already successfully applied 
for the construction of ten lysine decarboxylase and 14 
glucose dehydrogenase CatIBs [10, 11].

Construction of large libraries also requires high-
throughput screening to evaluate the respective strains. 
Here, automation and miniaturization are essential for 
screening, which can be realized by automated microbio-
reactors, i.e., miniaturized, high-throughput cultivation 

systems embedded into a liquid-handling robotic plat-
form [15]. In order to test variants on such a platform in 
high-throughput, automation of cultivation, purification 
of CatIBs, as well as analytical procedures are required.

Finally, a DBTL cycle for CatIBs requires Learn and 
Design phases, where the high-throughput data is ana-
lyzed and used to suggest new experimental designs or 
candidates. Statistical methods for experimental plan-
ning such as Design of Experiments (DoE) are popular 
in industry and academia, fostering process understand-
ing and reducing the amount of experiments required to 
identify critical process parameters and connecting them 
to critical quality attributes [16–18]. As an alternative 
to classical DoE, Bayesian optimization gained popular-
ity over the past decade, enhancing process optimization 
and experimental design in various fields [19–21], includ-
ing bioprocess development [22, 23]. Due to the iterative 
nature of DBTL, sequential optimization of results after 
each round of experiments is required. At the same time, 
batch-wise suggestions are necessary to match the high-
throughput setup of microbioreactors. In this context, a 
previous study successfully demonstrated how a Bayesian 
process model and Thompson sampling, an algorithm to 
sample from probability distributions of key performance 
indicators (KPIs), could be combined for iterative screen-
ing of  a PETase strain library [24]. For further back-
ground information on Bayesian statistics and Thompson 
sampling, we refer the interested reader to available tuto-
rials and textbooks, e.g., [25–27].

In this study, we pave the way for a CatIB DBTL cycle 
by combining workflow automation with process mod-
eling. In a first step, we introduce a semi-automated clon-
ing procedure for parallel construction of CatIB variants. 
Subsequently, we demonstrate an automated screening 
workflow to test 63 generated CatIB variants of BsGDH 
on our automated liquid handling platform. The enzyme 
was chosen due to its relevance as a cofactor regenera-
tion module, catalyzing the reaction of β-D-glucose to 
D-glucono-1,5-lactone with NAD(P)+ as a cofactor  [28]. 
Finally, a Bayesian process model for CatIB screening is 
applied to model the reaction rate of different variants 
in a high-throughput assay. Combined with Thompson 
sampling for iterative experiment planning, we conduct a 
screening to identify the best CatIB variant, which could 
be transferred to large-scale bioreactor experiments for 
further optimization.

Results and discussion
Semi‑automated strain construction to generate 63 
different BsGDH‑CatIBs
As a first step towards DBTL for CatIBs, the construction 
of genetic variants was partially automated to enhance 
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throughput. More precisely, construction of up to 96 
CatIB variants in parallel was targeted (Fig. 1).

A special focus was set to repetitive and laborious 
steps, while steps that are only performed a few times 
or at large scales were still conducted manually. Most 
importantly, transformation and GGA were fully auto-
mated using the Opentrons system, while plasmid prep-
aration was accelerated by parallelization. A detailed 
description of the semi-automated workflow is given in 
Additional file  1. The optimized semi-automated CatIB 
cloning process in combination with GGA presents a fast 
and efficient tool to construct CatIB variants in parallel. 
For the generation of 96 CatIB variants only 11 h of man-
ual work are needed, which corresponds to 17% of the 
worktime for a traditional cloning workflow.

For the case study with BsGDH, it was applied to gen-
erate 63 CatIB variants. SG or PT linker were combined 
with one of eight aggregation-inducing tags (TDoT, 
18AWT, L6KD, GFIL8, 3HAMP, CBDCell, TorA and 
ELK16), which were fused to the C- and N-terminus of 
BsGDH [2, 3, 6–9, 13, 29]. In addition to these variants, 
studies with varied linkers and aggregation-inducing tags 
were performed, where the influence of different lengths 
of serine/proline linkers (G1, G2, G3, G4, G5, G10 or P1, 
P2, P3, P4, P5, P10) as well as of the L6KD tag (L12KD, 
L24KD, L36KD, L48KD, L96KD, (L6KD)2, (L6KD)4, 
(L6KD)6, (L6KD)8, (L6KD)16) were tested for CatIB for-
mation. In both linker and aggregation-inducing tag 
studies, the influence of fusion to the N- and C-termi-
nus was tested as an additional factor. The implemented 
semi-automated cloning workflow was used to construct 
the variants as well as a plasmid encoding the soluble 

BsGDHWT. The genetic sequences of each expression 
plasmid were verified via sequencing. 13 CatIB variants 
could not be successfully cloned within three attempts, 
potentially due to a non-viable phenotype. These vari-
ants were not considered for CatIB screening (Additional 
file 1: Figure S1). However, 63 out of 76 CatIB constructs 
(83%) were successfully constructed with the semi-auto-
mated workflow and were analyzed in more detail via 
CatIB screening.

Overview of the CatIB screening workflow
For screening of large CatIB libraries, which corresponds 
to the Test phase of DBTL, the automation of the whole 
workflow was essential. At the beginning of the workflow, 
parallelized cultivation of E. coli BL21(DE3) strains with 
various CatIB combinations was performed. This step 
was realized using a BioLector I  with a FlowerPlate as 
cultivation system (Fig. 2).

The CatIB purification process consisted of several 
resuspension, centrifugation and washing steps. The first 
centrifugation step ensured the separation of the cells 
from the cultivation media. After washing and a second 
centrifugation step, the cells were lysed via resuspension 
of the pellet in BugBuster® with additional lysozyme. The 
third centrifugation step was performed to separate the 
soluble from the insoluble cell fraction. The supernatant 
containing the soluble enzyme fraction was removed 
from the pellet fraction. The second washing step with 
Milli-Q® water was performed to wash the insoluble 
fraction that contained the CatIBs. The washed CatIB 
fraction was obtained after a last centrifugation step to 
remove the Milli-Q®. The CatIB pellets were resuspended 

Fig. 1 Semi-automated CatIB construction workflow. Plasmids were commercially synthesized by Synbio Technologies (Monmouth Junction, 
US). Manual (light blue boxes), accelerated (dark blue framed boxes) and automated (dark blue boxes) cloning steps were performed to construct 
E. coli BL21(DE3) strains containing different episomally encoded CatIB variants
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and diluted 1:20 with Milli-Q® water. Pre-warming of the 
CatIB/water suspension and the assay solution was per-
formed at 40 °C for 10 min to avoid temperature effects 
in the fluorescence-based assay. After combining these 
two solutions, the mixture was incubated and analyzed 
at 37  °C in a photometer to enable online measurement 
of the NADH formation. This process, which is further 
described in “Automated protein production and pro-
tein purification” section, was used for the subsequent 
analyses.

Optimization of the CatIB workflow – BioLector positional 
bias
As a starting point before optimization, a standard micr-
ocultivation protocol for CatIBs was taken from litera-
ture, which comprised two cultivation phases with 37 °C 
for 3 h and 15 °C for 69 h, respectively [30]. The first chal-
lenge that was noted was a systematic bias over the posi-
tions in the BioLector, which was observed during the 

second cultivation step at 15 °C (Fig. 3a, see “Automated 
protein production and protein purification” section). 
For further investigation of this effect, we cultivated 48 
biological replicates of E.  coli BL21(DE3) with BsGDH-
PT-CBDCell, a variant that was previously identified as 
a positive CatIB producer under standard conditions in 
a manual study [11]. Strikingly, the final backscatter val-
ues across the FlowerPlate varied from approximately 60 
to 80 a.u. with a mean and standard deviation of 74.9 a.u. 
and 4.5 a.u. respectively. Whereas the lowest values were 
reached in the bottom left area of the FlowerPlate, the 
highest values were observed in the top right area. This 
strongly indicates that the temperature switch from 37 °C 
to 15  °C, as was previously published as optimal condi-
tions [30], causes a temperature gradient in the Flow-
erPlate, resulting from a corresponding gradient in the 
cultivation chamber of the BioLector. This is substanti-
ated by the fact that the cooling fan outlet is placed in the 
bottom left part of the cultivation chamber. The resulting 

Fig. 2 Overview of the CatIB purification (left) and screening workflow (right) with Tecan Freedom Evo®200 platform. Purified CatIBs (highlighted 
box) indicate the transitional step from purification to enzymatic assay

Fig. 3 Position effect in a FlowerPlate with 48 replicates of E. coli BL21(DE3) + BsGDH-PT-CBDCell during BioLector cultivation. The cultivations 
were performed for 72 h at a: 3 h 37 °C and 69 h 15 °C or b: at 25 °C in 1 mL M9-AI medium with 1000 rpm. The illustrated numbers in each well 
symbolize the backscatter values in a.u. at the end of the cultivation
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broad range of backscatter values would have an influ-
ence on biomass growth and formation of CatIBs, mak-
ing it difficult to find the best performing CatIB producer. 
Variants that grow in the bottom left area are likely to 
always perform worse than variants from the top right 
area. A screening under these cultivation conditions 
would lead to an unfair ranking of the CatIB variants and 
therefore had to be optimized.

In order to confirm the hypothesis that temperature 
shift is the main reason for the high variability in final 
backscatter values, the cultivation temperature was 
changed to 25  °C for the whole process, excluding the 
cooling step (Fig. 3b). In this experiment, a similar final 
backscatter of 70.2 ± 1.1 a.u. was observed for 48 biologi-
cal replicates at the end of the cultivation. As indicated 
by the strongly reduced standard deviation, the positional 
bias could thus be prevented by using 25 °C as cultivation 
temperature.

After adapting the cultivation temperature to 25  °C, 
an analysis was performed to test whether CatIBs were 
still formed and also if they retain enzymatic activity. In 
a first step, all strains with different BsGDH-CatIB vari-
ants were cultivated under CatIB standard conditions 
(3 h at 37  °C, 69 h at 15  °C) or at 25  °C for 72 h in the 
modified approach. After cultivation, microscopic images 
of each strain variant were taken (Additional file 1: Fig-
ure S8). Moreover, the number of CatIB producing cells 
were determined to visualize the influence of the culti-
vation conditions. Interestingly, the comparison of both 
cultivation temperatures showed that different CatIB 
variants have different preferred cultivation conditions 
[31]. Although the activity is dependent on the specific 
variant, the results indicate that cultivation at 25 °C over-
all has a positive influence on the CatIB formation rate 
for the BsGDH case study. In this study, three variants 
(BsGDH-PT-3HAMP, BsGDH-PT-CBDCell, BsGDH-
PT-18AWT) were additionally tested for their specific 
volumetric activity  Pv (Additional file 1: Figure S9), indi-
cating favorable activities at 25 °C. The optimized cultiva-
tion conditions were thus used in the following screening 
experiments.

Optimization of the CatIB workflow – Enzymatic assay 
and overall validation
Besides standardizing and optimizing the cultivation 
conditions, the enzymatic assay was adapted compared 
to a recent manual study  [11]. Previously, samples were 
taken after 0, 3, 6, 12 and 20 min from the BsGDH reac-
tion and quenched with methanol to stop the reaction. 
Inactivated samples were then diluted, transferred to a 
microtiter plate and NADH fluorescence was determined 
in a photometric measurement. However, sampling and 
subsequent transfer to new microtiter plates that can be 

measured in the plate reader leads to low data density 
and complex optimization of liquid handling. In com-
parison, online measurement of the reaction in the plate 
reader could drastically increase the resolution of data. 
In addition, pre-warming of solutions was performed to 
avoid any temperature effects during the NADH meas-
urement (see “Automated activity assay” section).

Accordingly, the next step was a validation study to 
assess the reproducibility of the complete workflow from 
microcultivation of E.  coli CatIB producers to the opti-
mized online enzymatic assay (Additional file  1: Figure 
S2). Here, a high reproducibility of the new workflow 
was demonstrated with 42 biological replicates, lower-
ing the relative standard deviation of fluorescence sig-
nals after 120 min to only 1.9% compared to 11.4% in a 
previous study  [31]. Overall, this was achieved after (I) 
changing the cultivation temperature to eliminate the 
positional bias in the BioLector, (II) adapting the liquid 
handling settings and introducing pre-warming of assay 
solutions and (III) changing to online measurements for 
a higher data resolution. Whereas the manual processing 
and testing of 48 CatIB variants would require approxi-
mately 40  h of work time, the implemented, optimized 
and validated workflow for the screening of 48 CatIB 
variants could be performed in less than 11  h, includ-
ing approximately 1  h manual workload. Therefore, the 
robotic automation resulted in a time saving of manual 
work by more than 90%. Together with construction of 
CatIBs, this results in an overall manual work time of 7 h 
for 48 variants. This is approximately 12% of the operator 
workload for the typical manual procedure, represent-
ing a great advance in testing and application of CatIBs. 
Due to the successful automation of the CatIB screening, 
which enables high-throughput testing in the context of 
DBTL cycles, the workflow could be applied to analyze all 
63 BsGDH-CatIB variants.

Automated screening of 63 BsGDH‑CatIBs via Thompson 
sampling
In the final part of this work, the established tools for 
automated cloning, cultivation and characterization of 
CatIBs were combined in a case study with 63 BsGDH-
CatIB variants and BsGDHWT. Since cultivation in 
FlowerPlates is limited to a maximum of 48 strains in 
parallel (or even less in case of biological replicates), a 
suitable design strategy for iterative screening rounds was 
to be identified, addressing the well-known exploration–
exploitation dilemma. Here, the goal was to identify the 
best candidates in as few experiments as possible (exploi-
tation), while ensuring that the library was sufficiently 
screened for promising variants that might improve the 
best candidate seen so far (exploration). We used two 
tools to achieve this goal: (i) we established a suitable, 
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probabilistic process model that can describe the CatIB 
kinetic reaction and (ii) we applied Thompson sampling 
as a decision strategy to design experimental layouts for 
replicates, balancing exploration and exploitation in iter-
ative screening rounds.

The process model is described in more detail in “Pro-
cess model” section. Essentially, the probabilistic model 
represents the reaction in the BsGDH assay (Additonal 
file 1 - Figure S2) as a first order reaction, where NADH 
is increasing in an exponential reaction with a constant 
reaction rate kassay . However, the apparent rate in the 
assay is influenced by several factors such as the dilution 
factor, pipetting errors and the time delay in the reaction 
start due to the consecutive pipetting of individual col-
umns. Since a good ranking should be based on the reac-
tion rate of the CatIB variant, in the following denoted 
as kvariant , instead of the apparent reaction rate in the 
assay, it is important that the process model takes dif-
ferent errors and time delays into account to quantify 
these factors correctly. The model is inspired by a simi-
lar approach that was already successfully applied in the 
screening of PET-degrading enzymes [24]. We applied a 
Bayesian model, meaning that it yields probability distri-
butions for each model parameter, thus quantifying the 
uncertainty of estimates.

In order to rank strains by activity of produced CatIBs, 
which can be influenced both by the number of CatIBs 
and their specific activity, the reaction rate of each CatIB 
variant given the experimental data is a suitable aggre-
gate KPI. For reasons of high throughput and automa-
tion, counting of CatIBs or manual determination of 
CatIB mass was omitted in the screening process, which 
would be required to screen based on a specific activity. 
Instead, the aggregate KPI can be obtained directly from 
the process model, which provides probability distribu-
tions of each kvariant . As a remaining task, a suitable strat-
egy to choose replicates for each round of experiments 
is required, which can be phrased as an optimization 
problem. For this, we applied the strategy of Thompson 
sampling, a well-known strategy for Bayesian optimiza-
tion [27, 32, 33].

In short, instead of using standard methods such as a 
triplicate design for each variant, Thompson sampling 
suggests designs based on the probability distributions 
of a KPI, in our case the reaction rate kvariant . In case of 
great uncertainty and thus wide distributions of the KPI, 
variants have a higher chance to be chosen since there is 
potential for improvement. On the other hand, variants 
with a narrow probability distribution and lower reac-
tion rates kvariant will be omitted in the next screening 
round. The algorithm therefore balances between explor-
ing in uncertain areas and exploiting knowledge from 
previous rounds. Combined with the process model to 

evaluate data after each screening round, this algorithm 
was applied in three consecutive experiments, after each 
of which the new variant design was generated (Fig. 4).

The graph shows the probability of each variant to 
be the best candidate in the library after the indicated 
screening round, based on the current estimation of the 
KPI. Round 0 denotes the probabilities before any experi-
mental data was measured, also called the prior prob-
abilities. The probabilities on the y-axis are obtained by 
repeatedly applying the Thompson sampling algorithm 
on correlated samples from the probability distributions 
of each reaction rate. It was then counted how often a 
candidate was chosen given the overall number of draws 
(see “Thompson sampling” section). For Round 0, it can 
be observed that all variants had the same probability to 
be the best in the library, which reflects that no a priori 
knowledge exists for the given library. The algorithm 
accordingly drew candidates for the next FlowerPlate cul-
tivation randomly, where the choice for the next round is 
indicated by the numbers above the bars. The choice of 
single replicates by the algorithm is a clear benefit in con-
trast to standard experimental designs, which commonly 
require multiple replicates.

The benefits of Thompson sampling can be seen from 
Round 1 on, where the probabilities are updated based 
on the measured data of the unicates. First, it can be 
observed that several variants such as the different 
(L6KD)n-SG-BsGDH constructs dropped to a probabil-
ity of 0% already after one round of experiments. This is 
the consequence of no activity in the respective NADH 
assay, indicating that no CatIBs were formed for the vari-
ant (compare to Fig.  6). In the scheme of exploitation, 
the algorithm decided not to assign further replicates to 
these variants as it would be done in a triplicate design. 
Instead, a mixture of unseen variants (e.g.,  BsGDH-
SG-L24KD) and the most promising so far (TDoT-PT-
BsGDH, BsGDH-PT-CBDCell, BsGDH-PT-3HAMP, 
BsGDH-PT-L6KD) was chosen for Round 2, which is 
indicated by the number above the bars of Round 1. After 
Round 2, a greater shift towards exploitation can be seen 
as 36 replicates are assigned to the most promising vari-
ant TDoT-PT-BsGDH for Round 3, already indicating 
converging behavior.

Moreover, the probability for unseen variants such as 
BsGDH-SG-L48KD dropped to around 1% in Round 
2. This is caused by the hierarchical structure of the 
process model (see “Process model” section). Since 
the expectation of the mean and standard deviation of 
the whole library was learned from the screening data 
and TDoT-PT-BsGDH clearly lay above this expecta-
tion, it became less and less likely that unseen variants 
could still outperform this CatIB candidate. Accord-
ingly, out of the six unseen variants BsGDH-SG-L48KD, 
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BsGDH-SG-(L6KD)4, BsGDH-G2-L6KD, BsGDH-G10-
L6KD, L6KD-PT-BsGDH and CBDCell-PT-BsGDH, 
only four were chosen for the third and final screen-
ing round. Afterwards, TDoT-PT-BsGDH showed a 
98% probability to be the best performer in the library 

(see Round 3), which exceed the termination criterion 
of > 95% probability. Overall, the top producer TDoT-
PT-BsGDH was measured in 50  replicates, while the 
second- and third-best variants were assigned nine and 
seven replicates, respectively. This led to a statistically 

Fig. 4 Probabilities of each of the 63 BsGDH-CatIB variants (plus soluble BsGDH as negative control) to be the best candidate. The probabilities 
are obtained using the sampling_probabilities function of the pyrff Python package, which essentially repeats Thompson sampling 
with several thousand samples from the probability distributions. The percentage in which a candidate was chosen by Thompson sampling 
is plotted as the probability to be the best variant in the library. Before any data is collected (Round 0, top), all variants are given the same prior 
probability for their reaction rate kvariant , which can be seen by the even distribution of probabilities. The number n above the bars indicates 
how often a variant was suggested by the algorithm for the upcoming round
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sound characterization of the top producers in three 
rounds only, saving approximately 25% of experimental 
capacity and resources. Given the 64 variants (63 in the 
library and BsGDHWT), a triplicate design would have led 
to 64 variants * 3 replicate per variant / 48 replicates per 
round = 4 rounds, i.e., an additional experimental round 
would be required. However, due to biological variance, 
pipetting errors and measurement noise, a higher num-
ber of replicates is needed to determine the top producer 
with 95% probability. Screening all variants with such a 
high number of replicates is unfeasible, thus demonstrat-
ing that Thompson sampling has great advantages by 
combining a statistically robust screening with exploita-
tion of knowledge after each round, thus reducing repli-
cates for bad CatIB producers and assigning them to the 
good producers instead.

Due to the probabilistic nature of the algorithm, two 
remaining variants, BsGDH-SG-L48KD, and CBDCell-
PT-BsGDH, where not chosen in any round. While the 
decision is statistically sound, it might be unsatisfying for 
a human operator. To confirm the results of the screen-
ing and challenge the decision policy of the algorithm, a 
fourth round was thus manually designed, in which the 
two unseen variants as well as the top ten candidates 
were measured in four replicates each (Fig. 5).

After the fourth round, it is clearly confirmed that 
TDoT-PT-BsGDH is the best performer in the library, 
which the algorithm determined with a probability 
of > 99% (Fig. 5, top). As a matter of fact, the previously 
unseen variants BsGDH-SG-L48KD and CBDCell-PT-
BsGDH did not lead to the successful formation of CatIBs 
and were weak performers not worth testing, thus con-
firming the low expectation of the algorithm given the 
mean rate constant of the whole library. While the prob-
ability to be the best variant is illustrative to explain how 
Thompson sampling is choosing replicates, it does not 
reveal how close variants are in their determined reaction 
rate constant kvariant. The ranking given the KPI for all 64 
variants is thus shown in (Fig. 6, bottom).

Here, the top four candidates, TDoT-PT-BsGDH, 
BsGDH-PT-3HAMP, BsGDH-PT-CBDCell and BsGDH-
PT-L6KD all have a median reaction rate constant 
between 0.15  min−1 and 0.19  min−1 (white dots). Such 
close rates make it harder to distinguish the top pro-
ducer since it does only exceed the activity of the other 

candidates by a small margin. However, the high number 
of replicates leads to narrow probability distributions in 
the estimation, which is indicated by the short tails in the 
forest plot (Fig. 5, bottom), showing the range in which 
the rate constants lie with 94% probability, similar to a 
confidence interval for frequentist statistics.

Overall, these experiments successfully demonstrate 
how a combination of automated workflow and model-
assisted decision making can enhance screening in a 
powerful way. This is realized by not only reducing the 
number of experiments but at the same time achieving 
greater certainty in decisions. These insights will hold 
true especially for libraries of larger number of variants, 
where the benefit is expected to increase substantially. 
Please note that suitability of Thompson sampling is not 
limited to CatIB applications but could be used in selec-
tion processes of microbial production strains, proteins 
engineering or other targets, where resource efficiency 
and throughput is an issue. As a final step of this case 
study, the Thompson sampling results were compared 
to microscopy and SDS-PAGE data to shed light on the 
structure/function learnings.

Insights on structure/function relationship
In addition to the automated CatIB screening work-
flow, the formation of BsGDH-CatIBs in the respec-
tive producer strain was visualized using phase contrast 
microscopy (Additional file 1: Figures S3-S6). Moreover, 
an SDS-PAGE analysis was performed to investigate the 
insoluble CatIB fraction after automated cell lysis and 
CatIB purification process (Additional file 1: Figure S7). 
The results are summarized in a qualitative manner in 
Fig. 6.

Several trends can be derived from Fig.  6. First, the 
control BsGDHWT, which is expressing soluble enzyme, 
did not form visible inclusion bodies on microscopic 
images or during SDS-PAGE analysis. Moreover, the 
enzyme assay revealed that no activity was measured for 
the insoluble cell pellet fraction. These results indicate 
that BsGDHWT did not form natural CatIBs, which con-
firms previous results from a manual BsGDH study [11].

Regarding the tag study (Fig. 6, panel 3), low to no CatIB 
formation was seen in microscopy (Additional file 1: Fig-
ure S6), showing that larger versions of the L6KD linker 
did not lead to better CatIB formation. In comparison, 

(See figure on next page.)
Fig. 5 Probability of each variant to be the best candidate in the library after a manually designed fourth screening round (top). The top ten 
candidates as well as two previously unseen variants, BsGDH-SG-L48KD, and CBDCell-PT-BsGDH, were screened in four replicates each. The 
final ranking (bottom) shows that the top four candidates have similar reaction rate constants kvariant. The white dot indicates the median 
of the distribution while thicker tails show the range in which 50% of the probability distribution lies. The thinner part of the tails spans the range 
to 94% probability
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Fig. 5 (See legend on previous page.)
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the linker study (Fig.  6, panel 2) included three of the 
best ten CatIB formation candidates of Thompson sam-
pling. In total, 10 of the 20 CatIB candidates in the linker 
study formed visible CatIBs (Additional file 1: Figure S5). 
However, successful CatIB formation and activity highly 
depend on the combination of aggregation-inducing tag, 
length and type of the linker and N-/C-terminal fusion, 
allowing for no general conclusion, which is in line with 
the findings in [31].

The top four variants found in Thompson sampling, 
TDoT-PT-BsGDH, BsGDH-PT-3HAMP, BsGDH-PT-
CBDCell and BsGDH-PT-L6KD, were all detectable 
via SDS-PAGE and microscopy (Fig.  6, panel 1). Con-
sequently, it seems that the more rigid structure of the 
PT linker led to the most active CatIB variants in this case 
study. Regarding the position of the aggregation-induc-
ing tag, C-terminal fusion was overall more beneficial, 
although successful CatIB variants were found for both 
fusion sides. This can also be seen for the linker study 
with proline and glycine linkers (Fig.  6, panel 2). These 
findings indicate beneficial structures with C-terminal 
fusion and PT  linker that led to high CatIB production 
for BsGDH, which is the goal of a DBTL cycle. Interest-
ingly, however, the top performer TDoT-PT-BsGDH is 
a variant with N-terminal addition of the tag, as such a 
perfect example of the still limited understanding of 
the structure–function relationship for CatIB design. 
These findings demonstrate again that enzyme-specific 

screening of linker and tag combinations seems to be 
required to identify the most efficient CatIB producers 
for each case. For this purpose, we demonstrated the use-
fulness of our toolbox, particularly the choice of Thomp-
son sampling in screening of larger libraries.

Conclusions
The aim of this study was to develop a CatIB toolbox 
towards a full DBTL cycle, which included automated 
strain construction, cultivation, microscopy, as well as 
CatIB purification and characterization, thus enabling 
the analysis of various CatIB candidates in parallel. The 
toolbox will contribute to finding the best performing 
CatIB variant of each enzyme and to get new insights of 
the CatIB structure–function relationship.

BsGDH-PT-CBDCell was used to implement, optimize 
and validate the automated CatIB processing workflow. 
After (I) increasing the cultivation temperature to elimi-
nate the position effect in the BioLector, (II) adaptation 
of  the liquid handling settings and pre-warming of assay 
solutions and (III) online measurements for a higher data 
resolution, the validation study revealed a highly repro-
ducible automated purification and enzymatic assay 
workflow with only 1.9% relative standard deviation 
across 42 replicates. For the whole CatIB toolbox, start-
ing from strain construction until enzymatic analysis, 
only 7 h of manual work instead of 59 h were needed, 
which equals a reduction of 88% for 48 CatIB variants.

Fig. 6 Overview of 63 BsGDH-CatIB analyses using microscopy (yellow), SDS-PAGE (light green) and enzyme assay (dark green). The gray areas 
indicate no detection of CatIBs or enzymatic activity during microscopy, SDS-PAGE or enzyme assay. The red-marked constructs represent 
CatIB combinations that could not be correctly constructed and were thus not tested. 1 Testing of different linker/aggregation-inducing tag 
combinations 2 Linker study with different length of proline and glycine linkers 3 Tag study with different length of L6KD tag
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The automated workflow was used to analyze all 63 
constructed BsGDH-CatIBs in combination with Thomp-
son sampling as a decision tool for strain selection for 
three rounds of FlowerPlate cultivations. Compared to a 
triplicate-based experimental design, which would have 
required four rounds to accommodate all replicates, the 
best candidate TDoT-PT-BsGDH was identified in only 
three rounds with superior statistical certainty. Due to 
the exploitation-exploration balancing, the Thompson 
sampling algorithm selected this variant in 50 biological 
replicates during the three screening rounds, leading to a 
statistically sound estimation of its reaction rate constant 
as the KPI for a library ranking.

The analysis of BsGDH-CatIBs revealed new insights 
in the CatIB structure–function relationship, in particu-
lar that the more rigid PT linker was again more likely 
to form successful CatIB variants compared to the SG 
linker. However, a priori prediction of necessary gene 
sequences for successful CatIB formation is still not pos-
sible. New target enzymes require different linker/aggre-
gation-inducing tag combinations, which can be added 
N- or C-terminal. In conclusion, the presented CatIB 
toolbox is an important step to enhance and simplify the 
screening of large CatIB libraries, facilitating the identifi-
cation of best CatIB producers.

In the future, development could be directed towards 
a feedback loop between process model and strain con-
struction, indicating novel variants that should be con-
structed in the lab. Moreover, investigating both CatIB 
variants and cultivation conditions simultaneously could 
reveal further insights into successful and more reliable 
formation of CatIBs. For both goals, further automa-
tion of experimental procedures as well as data analysis 
pipelines will play an important role. This will ultimately 
allow the generation of sufficient data for extended struc-
ture–function studies, shedding light on the underlying 
relationship between the different building blocks for 
highly performant CatIBs in biocatalytic applications.

Methods
Reagents and chemicals
All chemicals were purchased from ROTH (Karlsruhe, 
Germany) and Merck (Sigma-Aldrich, Burlington, MA, 
US), unless stated otherwise. Enzymes for molecular biol-
ogy were purchased from New England Biolabs GmbH 
(Frankfurt am Main, Germany).

Preparation of competent cells
10 mL LB medium were inoculated with the respective 
strain and cultivated in 100 mL shake flasks at 37 °C and 
170 rpm overnight. 1 mL of the preculture was trans-
ferred into 100 mL LB medium in 500 mL shake flasks. 

The shake flasks were incubated at 37 °C and 170 rpm 
until an  OD578nm of 0.6–0.8 was reached. The culture was 
subsequently filled into two 50 mL centrifuge tubes and 
centrifuged at 3300 xg and 4 °C for 10 min. The super-
natant was discarded and the cells were carefully resus-
pended with 10 mL ice-cold  CaCl2 (7.35 g  L−1)/glycerol 
(50 g  L−1) solution. A second centrifugation was con-
ducted with the same parameters and the supernatant 
was discarded. The cell pellets were resuspended with 
1 mL  CaCl2/glycerol solution in each centrifuge tube. 
The obtained suspensions in both centrifuge tubes were 
combined and aliquoted in prechilled, 1.5 mL reaction 
tubes, containing 0.5 mL each. The reaction tubes were 
immediately frozen and stored at – 80 °C. All steps were 
conducted on ice and in a sterile environment to avoid 
contamination.

Automated construction of expression plasmids
The synthetic gene of the BsGDH, the SG, PT, G1, G2, 
G3, G4, G5, G10 or P1, P2, P3, P4, P5 and P10 linker, as 
well as the aggregation-inducing tags, TDoT, 18AWT, 
L6KD, GFIL8, 3HAMP, TorA, CBDCell, ELK16, L12KD, 
L24KD, L36KD, L48KD, L96KD, (L6KD)2, (L6KD)4, 
(L6KD)6, (L6KD)8, (L6KD)16, were synthesized by Synbio 
Technologies (Monmouth Junction, NJ, US). The syn-
thetic sequences contained BsaI recognition and restric-
tion sites needed for GGA. The synthetic gene encoding 
for BsGDH was assembled with one of the linkers, one 
aggregation-inducing tag as well as the so-called suicide 
plasmid in a ratio of 1:1:1:3 during GGA. The suicide 
plasmid served as the expression plasmid backbone. It 
consisted of a pET28a(+) vector carrying the ccdB gene, 
coding for the CcdB toxin, which is lethal for standard E. 
coli strains, such as E. coli DH5α and E. coli BL21(DE3). It 
functioned as an accurate GGA control with zero-back-
ground cloning [34]. During GGA, the ccdB gene was 
removed by BsaI and the CatIB linker-tag sequence was 
inserted by the T4 ligase. After E. coli DH5α was trans-
formed with the GGA mixture, only strains carrying the 
successful CatIB plasmid were able to grow while strains 
carrying the original vector were killed due to the pro-
duced toxin. To start GGA, 2.5% (v/v) T4 ligase (400,000 
U  mL−1) as well as 2.5% (v/v) BsaI restriction enzyme 
(20,000 U  mL−1), was added to the mixture (Additional 
file  1: Table  S3). The GGA was performed in a PCR 
cycler (37 °C, 1 min and 16  °C, 5 min–15 cycles; 85 °C, 
20 min). Information about all plasmids that were used in 
this study are summarized in Additional file 1: Table S1. 
The final expression plasmids were sequenced and veri-
fied for the correct assembly (Eurofins GmbH, Hamburg, 
Germany).



Page 12 of 16Helleckes et al. Microbial Cell Factories           (2024) 23:67 

Heat shock transformation
For manual transformation, 20 µL of plasmid DNA were 
transferred to a 1.5 mL reaction tube and 80 µL of com-
petent E. coli cells were added. The reaction tube was 
stored on ice for 20  min and incubated at 42 °C in a 
ThermoMixer® (Eppendorf SE, Hamburg, Germany) for 
exactly 30 s. After heat shock, the samples were stored on 
ice for 2 min. To regenerate the transformed cells, 1 mL 
of super optimal medium with catabolic repressor (SOC) 
medium was added and the reaction tube was incubated 
at 37 °C and 300 rpm for 1 h. The cells were plated on LB 
agar plates with the appropriate antibiotic. LB agar plates 
were incubated overnight at 37 °C.

Automated retransformation was conducted with 
the OT-2 lab robot with the 20 µL and 300 µL pipettes 
(Opentrons, Long Island City, NY, US) using an inte-
grated thermocycler module. Unlike manual transforma-
tion, the automated transformation was conducted in a 
96-well microtiter plate with lower volumes. 5 µL of plas-
mid DNA were added to 25 µL of competent E. coli cells. 
The first cooling step (20 min at 4 °C), the heat shock (30 
s at 42 °C) and the second cooling step (2 min at 4 °C) 
were conducted in the thermocycler module. 170 µL LB 
medium were transferred to each well and the 96-well 
microtiter plate was incubated at 37 °C for 30 min in the 
thermocycler module. Afterwards, 5 µL of the suspen-
sion were plated on LB agar medium with the appropri-
ate antibiotic utilizing the automated pipetting setup of 
the platform. LB agar plates were incubated overnight at 
37 °C.

Plasmid preparation
All plasmid preparations were carried out with the 
NucleoSpin® Plasmid (NoLid) kit (Macherey–Nagel, 
Düren, Germany). To obtain a sufficient amount of plas-
mid, the respective E. coli strains were cultivated in 2.5 
mL LB medium with the appropriate antibiotic in a 5 mL 
square-well plate  (Ritter GmbH, Schwabmünchen, Ger-
many). The plasmid preparation was conducted with 2 
mL culture broth according to the manufacturer descrip-
tion for the isolation of high-copy plasmid DNA from E. 
coli of the NucleoSpin® Plasmid kit (Macherey–Nagel, 
Düren, Germany). All steps in which the supernatant was 
later discarded were conducted utilizing a vacuum pump 
(Büchi, Essen, Germany) with a NucleoVac 24 Vacuum 
Manifold (Macherey–Nagel, Düren, Germany) for the 
NucleoSpin® Plasmid kit columns.

Automated protein production and protein purification
CatIB production was performed by cultivating E. coli 
BL21(DE3) carrying the respective expression plasmids 
in M9 autoinduction medium (see Additional file  1: 

Table S2). The 1 mL main cultivation was performed at 
25 °C for 72 h in a FlowerPlate in a BioLector I and was 
inoculated with an  OD600nm of 0.1 of an overnight cul-
ture in LB complex medium with additional kanamycin 
(37  °C, 1000 rpm). For comparison to the CatIB stand-
ard procedure, cultivation took place at 37  °C for 3  h, 
followed by 69  h at 15  °C. The purification process was 
continued with 650 µL cell suspension. After harvesting 
the cells from the BioLector, the cells were washed with 
650  µL 0.9% (w  v−1) sodium chloride solution. The cell 
lysis was performed with 500 µL cell lysis buffer (Bug-
Buster® HT Protein Extraction Reagent (Merck KgaA, 
Darmstadt, Germany) with the addition of 0.146  g  L−1 
lysozyme) and the CatIB washing step afterwards was 
performed with 760 µL Milli-Q® water. During cell lysis, 
the samples were incubated on a BioShake® for 20 min at 
1000 rpm and 20 °C. All centrifugation steps were per-
formed at 3730 xg and 4 °C. The first two centrifugation 
steps for cell separation from cultivation broth and cell 
washing with NaCl were carried out for 15 min. In con-
trast, the last two centrifugation steps after cell lysis and 
CatIB washing with Milli-Q® water were performed for 
30 min.

Automated activity assay
To determine the enzymatic activity of BsGDH-CatIB 
variants, the fluorescence of the formed NADH was 
measured with a photometer (Tecan, Männedorf, Swit-
zerland). An excitation wavelength of 340 nm and an 
emission wavelength of 470 nm were chosen to meas-
ure NADH. The enzyme assay solution contained 40 
mM TAE buffer (pH 7), 200 mM glucose and 0.4 mM 
NAD+. The assay solution and the purified CatIB sus-
pension were pre-heated to 40 °C. After combining these 
two solutions, 250 µL of the mixture were incubated at 
37 °C in a UV microtiter plate in a photometer to enable 
online measurement of the formed NADH during the 
reaction. For pipetting, plate transfer and pre-heating 
steps, the liquid handling and robotic manipulator arms, 
as well as the shaking/heating devices of the robotic plat-
form Freedom Evo200 (Tecan, Männedorf, Switzerland), 
were used. A calibration curve with different NADH con-
centrations ranging from 0 mM to 0.25 mM was used 
to calculate the NADH concentration. This exponential 
relationship was fitted using the calibr8 Python pack-
age  [35]. The fitted calibration model is shown in Addi-
tional file 1: Figure S10.

Sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS‑PAGE)
For SDS-PAGE analysis, sample preparation was per-
formed by adding 2 × Laemmli sample buffer to a puri-
fied CatIB-water suspension. After incubation for 10 min 
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at 95 °C, the samples were applied to Criterion™ 4–12% 
Bis–Tris protein gel, 1.0 mm, with 18 wells (Bio-Rad Lab-
oratories GmbH, Feldkirchen, Germany), together with 
a protein marker (PageRuler Prestained Protein ladder, 
ThermoFisher Scientific Inc., Waltham, MA, US). Gel 
electrophoresis was performed in NuPAGE™ MES SDS 
running buffer (1 ×) at 200 V, 500 mA and 150 W. The gel 
was stained with Simply Blue™ SafeStain for 1 h.

Microscopic analysis
Phase-contrast microscopic analysis was performed for E. 
coli BL21(DE3) strains with CatIB formation. 1 µL of each 
sample was transferred to a microscope slide and covered 
with a coverslip. The microscope slide was positioned 
upside down on the desk of an inverted Nikon Eclipse Ti2 
microscope (Nikon GmbH, Düsseldorf, Germany). The 
sample was observed with a CFI Plan Apo Lambda 100X 
Oil objective (Nikon GmbH, Düsseldorf, Germany) and 
images were taken with a Thorlab camera DCC154M-GL 
(Thorlabs Inc., Newton, NJ, US). To determine the per-
centage of CatIB-producing cells during the cultivation 
process, cells with visible inclusion bodies at the poles 
were manually counted  (ncells = 45–200).

Software
All analyses and plots presented in this study were 
performed with recent versions of Python  3.8, 
PyMC == 4.0.0b2  [36, 37], ArviZ ≥ 0.11.4  [38], matplot-
lib ≥ 3.5  [39], NumPy ≥ 1.21  [40], pandas ≥ 1.4  [41, 42], 
SciPy ≥ 1.7  [43] and related packages. For calibration 
models, the in-house developed, publicly available calibr8 
package was used with versions ≥ 6.5 [35, 44]. For parsing 
of BioLector data, the bletl package [45, 46] was applied. 
Photometric measurements were analyzed using the in-
house developed retl package (not published). The robot-
ools Python package was used to facilitate multi-step 
liquid-handling instructions on the robotic platform [47]. 
For a full list of dependencies see the accompanying 
GitHub repository [48].

Process model
The process model for this study closely follows the ter-
minology and methods published in a recent study [24]. 
Briefly, a probabilistic model was created using PyMC v4, 
more precisely a Bayesian hierarchical model. Bayesian 
statistics allows to combine data-driven likelihoods with 
prior knowledge of the underlying process and its param-
eters. The resulting updated probability distributions 
of each parameter are called posterior probabilities. In 
this study, the process model was used to quantify vari-
ous experimental effects and their influence on the reac-
tion rate of each CatIB variant in the final activity assay 

(see “Automated activity assay” section). A computation 
graph of the model is shown in Fig. 7.

Round shapes in the computation graph represent 
probability distributions for a parameter, where the 
prior assumption is indicated by the sign ~ . Boxes with 
rounded edges represent observables while the rectan-
gles show deterministic variables, i.e.,  distributions that 
can be calculated from the other variables. Finally, the 
surrounding boxes indicate the dimensionality of the dif-
ferent variables, e.g., being specific for a run, variant or 
a reaction well (kinetic_id). First, the product con-
centration (center left) should be focused on. For a rank-
ing of the different CatIB variants, we chose to model 
their reaction in the activity assay with a first order mass 
action law, which results in the following equation for 
product formation:

Pt = S0 •

(

1− e
kassay•tcolumn

)

,

with Pt as the product concentration at time tcolumn , S0 as 
initial substrate concentration and kassay as the rate con-
stant in a well during a specific run. Due to column-wise 
pipetting, which is modeled as toffset , as well as additional 
time between reaction start and positioning of the micro-
titer plate in the photometric device ( tto_reader ), the time 
of reaction is specified per column as tcolumn . As shown 
in the computation graph, the rate constant kassay is influ-
enced by the reaction rate of the CatIB variant, kvariant , 
which we assume to be specific for the variant under 
reproducible reaction conditions. As such, this variable 
serves as the KPI. However, batch effects between runs 
and the error of the assay itself, which is dependent on 
the dilution factor of the sample, influence the reaction 
rate that is finally observed. These different effects are 
combined into the final reaction rate kassay , which is the 
variable that can be experimentally determined. As a 
consequence, the Bayesian model learns about the proba-
bility distributions of experimental errors over time while 
using a KPI for ranking that is only dependent on the bio-
logical differences, i.e., the variants themselves (Fig. 7).

To additionally learn about the expectation of the mean 
and standard deviation of the whole library, so-called 
hyperpriors kmean and kstd were introduced. Essentially, 
the distributions for the mean and standard deviation 
of the population were derived from experimental data 
over the rounds. The prior distribution for each vari-
ant, i.e., the prior belief in the reaction rate kvariant , was 
chosen as a Normal distribution that is parameterized 
by kmean and kstd. In practice, lower values for the mean 
of the whole population (e.g., because many CatIBs with 
very low activity were measured) also determine the 
expectation for an unseen variant, meaning that its prior 
distribution will have a lower mean value. For the choice 
of candidates for screening, such an unseen candidate 
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would have a lower chance compared to already observed 
candidates with over-average reaction rates. Vice versa, 
should the population mean increase because many 
well-performing variants were observed, the prior of an 
unseen variant would increase as well, raising its chances 
to be selected by Thompson sampling for better explora-
tion (see “Thompson sampling” section).

A mathematical notation of the model can be found in 
the Additional file 1. Additionally, the code for the pro-
cess model can be found in the accompanying GitHub 
repository  [48]. Posterior probabilities were obtained 
by Markov chain Monte Carlo sampling, using the No-
U-Turn sampler [49] in PyMC. Convergence checks and 
inspection of the traces were performed using ArviZ.

Thompson sampling
In our automated setup, 48 reaction wells could be used 
per batch experiments. To suggest the CatIB variants 
measured in each experiment, we used Bayesian opti-
mization. The Bayesian process model yielded probabil-
ity distributions for the estimated reaction rate of each 
variant, kvariant . Instead of using a fixed number of rep-
licates for each variant, we used these distributions and 
Thompson sampling [50] for experimental design. More 
precisely, after each batch experiment, we updated the 

posterior probabilities of the process model with the 
new data. To draw a batch of 48 suggestions, we used the 
sample_batch function from the pyrff package  [51] 
and applied it to the posterior probabilities of the rate 
constants. The suggested 48 candidates (allowing for rep-
licates) were randomly assigned to cultivation wells for 
the next experiment.

By sampling from the distributions, Thompson sam-
pling balanced exploration and exploitation naturally, 
i.e., allowing exploration for wide distributions with large 
uncertainty and excluding variants with low estimated 
reaction rates as means of exploitation. For a detailed 
tutorial on Thompson sampling, we refer to [27]. The 
experiment-model loop was interrupted when the model 
showed a probability of > 95% to have identified the top 
candidate in the library.

To obtain the probability of each candidate to be the 
best after the given round (Figs.  4, 5) we applied the 
sampling_probabilities function of pyrff, which 
essentially repeated Thompson sampling for correlated 
samples from the probability distributions and counted 
how often a candidate was chosen in the overall number 
of draws.

Fig. 7 Graphical representation of the process model. The dark blue ovals indicate probability distributions for a parameter while squares are 
deterministic combinations of parameters. The empty boxes surrounding groups of parameters indicate the dimensionality of the resulting 
distributions, where column_id refers to the eight columns in the microtiter plate of the assay and kinetic_id to the unique combination 
of well and run. Light blue boxes indicate data that can be experimentally observed. The KPI used for ranking is the rate constant of each variant, 
kvariant (center right). The two parameters below, kmean and kstd , are hyperpriors that describe the expectation for mean and variance of kinetic rate 
constants for the whole CatIB library
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Abbreviations
BsGDH  Glucose dehydrogenase from Bacillus subtilis
CatIB  Catalytically active inclusion body
CatIB  Catalytically active inclusion body
DBTL  Design-Build-Test-Learn
DoE  Design of Experiments
GDH  Glucose dehydrogenase
GGA   Golden Gate Assembly
KPI  Key performance indicator
PCR  Polymerase chain reaction
PT  Proline/Threonine
SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SG  Serine/Glycine
SOC  Super optimal medium with catabolic repressor (SOC)
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