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Quantifying microbial robustness in dynamic 
environments using microfluidic single-cell 
cultivation
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Abstract 

Background Microorganisms must respond to changes in their environment. Analysing the robustness of functions 
(i.e. performance stability) to such dynamic perturbations is of great interest in both laboratory and industrial settings. 
Recently, a quantification method capable of assessing the robustness of various functions, such as specific growth 
rate or product yield, across different conditions, time frames, and populations has been developed for microorgan-
isms grown in a 96-well plate. In micro-titer-plates, environmental change is slow and undefined. Dynamic micro-
fluidic single-cell cultivation (dMSCC) enables the precise maintenance and manipulation of microenvironments, 
while tracking single cells over time using live-cell imaging. Here, we combined dMSCC and a robustness quantifica-
tion method to a pipeline for assessing performance stability to changes occurring within seconds or minutes.

Results Saccharomyces cerevisiae CEN.PK113-7D, harbouring a biosensor for intracellular ATP levels, was exposed 
to glucose feast-starvation cycles, with each condition lasting from 1.5 to 48 min over a 20 h period. A semi-auto-
mated image and data analysis pipeline was developed and applied to assess the performance and robustness 
of various functions at population, subpopulation, and single-cell resolution. We observed a decrease in specific 
growth rate but an increase in intracellular ATP levels with longer oscillation intervals. Cells subjected to 48 min oscil-
lations exhibited the highest average ATP content, but the lowest stability over time and the highest heterogeneity 
within the population.

Conclusion The proposed pipeline enabled the investigation of function stability in dynamic environments, 
both over time and within populations. The strategy allows for parallelisation and automation, and is easily adaptable 
to new organisms, biosensors, cultivation conditions, and oscillation frequencies. Insights on the microbial response 
to changing environments will guide strain development and bioprocess optimisation.

Keywords Saccharomyces cerevisiae, Population heterogeneity, Dynamic environments, Scale-down, Biosensors, Live-
cell imaging, Microfluidic single-cell cultivation, Nutrient oscillation
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Background
Microorganisms encounter dynamic and heterogeneous 
environments, both in their natural habitat and in labora-
tory or industrial settings, which they experience as envi-
ronmental change within a few seconds or even days [1, 
2]. In large-scale industrial bioreactors, insufficient mix-
ing triggers gradients in multiple process parameters [2], 
which can decrease productivity [3], increase both cell 
viability [4] and metabolic cost [5], and favour population 
heterogeneity [6]. This, in turn, results in poorly repro-
ducible or predictable behaviour during scale-up, likely 
diminishing profitability [7]. Reproducibility and trans-
ferability of a bioprocess can be increased by selecting 
or engineering microorganisms with stable production 
under large-scale perturbations [8]. Robustness refers 
to the stability of a function (e.g. yield, titre or rates) in 
a system (e.g. a microorganism) subjected to perturba-
tions [8]. Comparison of robustness for specific functions 
across microorganisms is limited by the dearth of quanti-
fication methods. A recent study reviewed mathematical 
approaches for robustness quantification and derived a 
formula from the Fano factor, the variance-to-mean ratio, 
to compare the robustness of process-relevant functions 
for different yeast strains within a set of perturbations 
[9]. This equation helped identify trade-offs between 

robustness and performance [10], thereby providing 
information on function stability over time or across 
populations [11].

Performance in dynamic environments with large time 
constants (e.g. days or longer) has received more atten-
tion than that regulated by small time constants (e.g. sec-
onds or minutes). An example of the latter is represented 
by substrate, pH or gas gradients that form in a large 
reactor [12]. Instead, examples of the former include 
decreasing substrate concentration and increasing 
product concentration during cultivation, which cause 
product inhibition [13] or detoxification of inhibitory 
compounds in the substrate [14]. The effect of large time 
constant dynamics on microorganisms can be assessed 
using shaking flasks or microtiter plates, in which the cul-
ture broth is perfectly mixed [9]; whereas those involving 
small time constants can be established in scale-down 
bioreactors. The latter simulate large-scale gradients by 
circulating the microbial culture between multiple com-
partments with different cultivation conditions or by 
altering conditions in a continuous bioreactor [15]. The 
second approach was used to investigate the effect of 
changes between feast, nutrient limitation, and starva-
tion conditions on the metabolism and gene expression 
of Saccharomyces cerevisiae strains CEN.PK113-7D [5, 
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16] and Ethanol Red [17]. Scale-down approaches are 
a valuable tool to test and identify targets for improv-
ing microbial production performance against dynamic 
perturbations. In Escherichia coli, the deletion of genes 
induced repeatedly during glucose oscillations decreased 
maintenance costs while improving stability of the pro-
duction phenotype [18]. However, scale-down bioreac-
tors have some limitations. The environmental dynamics 
in them are often dictated by cellular metabolism, with 
the environment changing in response to consumption 
and production of substrates and byproducts. Further-
more, output data are mostly population-averaged, hid-
ing effects of population heterogeneity on bioprocess 
performance [19]. The metabolic burden of production, 
limiting growth conditions and numerous generation 
during the seed train to industrial size fermentations 
drive the selection process toward subpopulations with 
a higher fitness in these environments [20]. As a result, 
a decline in productivity and product yield can often be 
observed [21].

Although single-cell resolution can be achieved 
through automated real-time flow cytometry and popula-
tion heterogeneity within each sample can be determined 
[22], tracking individual cells in time is not possible. 
Moreover, running scale-down reactors in parallel with 
different conditions or strains is challenging due to space 
and resource requirements. Single-cell resolution and 
application of metabolism-independent varying envi-
ronments can be achieved with dynamic microfluidic 
single-cell cultivation (dMSCC) [23]. In perfusion-based 
microfluidic systems, a maximum of 150–1000 microbial 
cells can be cultivated and trapped in one monolayer-
growth chambers with femto- to nanolitre volumes, 
thereby achieving excellent heat and mass transfer that 
create well-defined environments [24]. Valves or on-chip 
laminar flow-control [25] can alter cultivation condi-
tions within a few seconds, independently from micro-
bial consumption or production rates [23, 26]. As these 
changes are within the time frame of large-scale reactor 
dynamics [27], dMSCC can be used to simulate such set-
tings, although limitations in stress amplitude modula-
tion, dynamics of dissolved gases, and multi-parameter 
dynamics remain [28]. While the use of dMSCC to mimic 
large-scale gradients is fairly new, it has been applied suc-
cessfully to investigate glycolytic oscillation [29], growth 
synchronisation [30], and ageing [31] in S. cerevisiae.

In the present study, we aimed to develop a method to 
investigate performance and robustness of desired func-
tions in a wide range of rapid environmental changes. 
To this end, we combined the principle of dynamic envi-
ronments of dMSCC [23] with a previously-published 
robustness quantification method [9], and grew the 
laboratory S. cerevisiae CEN.PK113-7D strain under 

feast-starvation oscillations with regular changes every 
1.5–48 min. Glucose gradients are a common perturba-
tion in industrial bioprocesses [2, 32]. Multiple cellu-
lar functions were monitored either via phase-contrast 
microscopy (growth, cell area, and circularity) or via the 
ratiometric fluorescent biosensor QUEEN-2m, which 
monitors intracellular ATP [33, 34]. Using tailored semi-
automated image and data analyses in Fiji [35] and R 
[36], respectively, we achieved a level of resolution span-
ning the population, subpopulation, and single-cell lev-
els. Distinct feast-starvation-cycles caused different 
physiological responses including frequency-dependant 
reduction of the specific growth rate, as well as morpho-
logical changes. Moreover, physiological characterisation 
and performance analysis were coupled with robust-
ness quantification to investigate the stability of func-
tions over time and within populations, thereby assessing 
population heterogeneity. The presented pipeline offers a 
powerful approach to study dynamic environments and a 
starting point for industrial strain selection already at the 
laboratory scale.

Methods
Strain, media composition, and cultivation
The yeast strain CEN.PK113-7D (MATa URA3 HIS3 
LEU2 TRP1 MAL2-8c SUC2) [37] bearing the ATP-bio-
sensor QUEEN-2m [33, 34] was cultivated in synthetic 
defined minimal Verduyn (“Delft”) medium [38] with 
pH adjusted to 5 with KOH. The medium contained 
20  g/L glucose, 5  g/L  (NH4)2SO4, 3  g/L  KH2PO4, 1  g/L 
 MgSO4 ·  7H2O, 1 mL/L trace metal solution, and 1 mL/L 
vitamin solution [34]. For the preculture cultivated in 
shaking flasks, 5.9 g/L succinic acid was added as buffer 
[39]. Starting from a cryostock, 10 mL of preculture was 
inoculated in a 100  mL-baffled shaking flask and culti-
vated for 16 h at 30 °C, 120 rpm, and a shaking throw of 
25  mm. To simulate starvation, glucose was substituted 
by water.

Dynamic microfluidic single‑cell cultivation
The microfluidic structure (Fig.  1a, b) consists of six 
connected cultivation structures, that include one dedi-
cated positive control and five oscillation-structures. 
Within each structure, six arrays of 23 monolayer-growth 
chambers were exposed to the dynamic condition, with 
one additional array acting as negative control (Fig. 1c). 
Each monolayer-growth chamber has dimensions of 
4 × 90 × 80  µm (height × width × length), while the chan-
nels have a height of 14 µm.

For the chip fabrication, a polydimethylsiloxane 
(PDMS) mould of the microfluidic structures was cut 
from a master wafer. To enable flow through the struc-
ture, inlets and outlets were punched using a biopsy 
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puncher. The PDMS-mould and a glass slide were 
cleaned, and their surfaces activated using oxygen 
plasma. In the final assembly step, the activated PDMS 

was bonded to the glass slide (Fig.  1a). The reader is 
referred to a previous protocol for a detailed descrip-
tion of the fabrication and application of dynamic 
microfluidic cultivation systems [40].

Fig. 1 Dynamic microfluidic single-cell cultivation. Photos of (a) the PDMS-based dynamic microfluidic cultivation chip, (b) the microfluidic 
structure and (c) a single oscillation-structure. Each structure contains six arrays of 23 cultivation chambers in the oscillation region and one 
separate array to the right that acted as control for the starvation condition. (d) Feast medium, containing glucose (blue), and starvation medium 
(red) are introduced via inlets. The left cultivation structure is constantly perfused with feast medium. (e) The flow profile in the oscillation structures 
can be switched between feast and starvation. (f) In each chamber, yeast cells grew in a monolayer under constant perfusion with either feast 
or starvation medium that was switched every 1.5 min
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The chip was placed in an inverted automated micro-
scope (Nikon Eclipse Ti2, Nikon) for live-cell imaging 
and inoculated with yeast cells at  OD600 ~ 0.3. The culti-
vation temperature inside the microscope’s incubation 
cage (OKO-H201, OKO Lab) was set to 30  °C. Using 
a 100 × oil objective (CFI P-Apo DM Lambda, Nikon), 
phase-contrast and fluorescent images were taken every 
8  min using two filters: GFP (Ex 472/30; DM 495; Em 
520/35, Nikon) and uvGFP (Ex 390/40; DM 425; Em 
520/35, AHF). Phase-contrast images were captured for 
100 ms at 25% intensity using the microscope’s DIA illu-
mination, GFP images were captured for 400 ms at 25% 
intensity, and uvGFP images for 800 ms at 25% intensity 
using a LED-based light source for episcopic fluorescence 
(Sola SE II Set, Lumencor).

A dynamic flow profile (Fig.  1d, e) was applied using 
pressure-driven pumps (Line-up EZ series, Fluigent) 
that maintained glucose-containing medium (blue) at 
100 mbar, but switched between 70 and 220 mbar to con-
trol flow of glucose-free medium. Medium was switched 
every 1.5, 6, 12, 24, and 48 min to cover different biologi-
cal timescales [1, 41]. The above frequencies were mul-
tiples of each other, owing to the pump programming. 
Perturbations were initiated 4 h after the onset of culti-
vation. Image acquisition was terminated after 24 h and 
each position was saved as an individual nd2 file for auto-
mated image analysis.

Image analysis
Image handling and analysis were performed in Fiji [35] 
using a semi-automated macro for an easier pipeline 
(https:// github. com/ lucat orep/ Robus tness_ Micro fluid 
ics). All single-point nd2 files were sequentially loaded, 
stabilised, tilted, and cut to the size of the monolayer-
growth chamber to minimise computation times. Rolling 
ball background subtraction was applied to the fluores-
cent channels to quantify the corresponding signal [33]. 
The resulting hyperstacks were saved as TIFF files.

We applied a StarDist 2D model for yeast cell segmen-
tation [26]. A machine learning model was trained on our 
own data using the StarDist 2D ZeroCostDL4Mic note-
book [42] and an augmentor algorithm [43]. The trained 
model “Yeast_Segmentation_v2.2” is available via GitHub 
(https:// github. com/ lucat orep/ Robus tness_ Micro fluid 
ics).

The TrackMate Fiji plug-in was used for cell track-
ing and lineage reconstruction (i.e. mother-daughter 
relationships) [44]. The StarDist model was applied for 
detection with a score threshold of 0.3; while the overlap 
tracker served for tracking, with the settings “Precise”, 
“Min IoU = 0”, and “Scale factor = 1.2”. After TrackMate 
analysis and manual track corrections, the regions 
of interest and edges (representing the lineage) were 

exported as.txt and.csv files, respectively. The TrackMate 
file (.xml) was saved to enable later editing, if necessary.

Robustness quantification
Robustness was determined as described previously [9, 
11], based on Eq. 1 [9].

Although this equation was originally used to compute 
the robustness of functions across different conditions, 
here, its versatility allowed to estimate function stability 
across populations and time. For robustness across popu-
lations, R(p), “σ” and “x” refer to the standard deviation 
and mean, respectively, of a function (ATP levels, area 
or circularity) across all cells at each time point. Instead, 
“m” refers to the mean of a function across all time points 
and conditions. Therefore, R(p) describes how homoge-
neous a function is across a cell population.

Robustness over time, R(t), identifies how stable a func-
tion is over time in each condition investigated and was 
computed at the population and single-cell levels. At the 
population level, the mean of a function across all cells at 
each time point was first computed; then, Eq. 1 was used 
to quantify R(t), with “σ” and “x” referring to the stand-
ard deviation and mean, respectively, of the population-
averaged function (ATP levels, budding ratio, area or 
circularity) across all time points for each condition and 
chamber. In this case, “m” refers to the mean of a func-
tion across all time points and conditions. For R(t) at the 
single-cell level, “σ” and “x” refer to the standard devia-
tion and mean, respectively, of a function (ATP levels, 
specific growth rate, area or circularity) across all time 
points for each individual cell; whereas “m” refers to the 
mean of a function across all cells in all conditions.

Data and statistical analysis
Analysis of performance and robustness was carried out 
in R [36]. To assess growth performance, the specific 
growth rate µ and budding ratio were used at single-cell 
and population level, respectively. The specific growth 
rates of single cells were computed according to Eq. 2:

where “t” represents the time (h) between two budding 
events detected by TrackMate for each cell. Accordingly, 
if a cell budded three times, it displayed three individual 
specific growth rates. Artefacts in µ, such as a cell bud-
ding 30 min after inoculation of the chamber (giving a µ 
of 1.3  h−1), were removed by setting a threshold of 0.6  h−1 

(1)R = −

σ
2

x
∗

1

m

(2)µ =

ln2

t

https://github.com/lucatorep/Robustness_Microfluidics
https://github.com/lucatorep/Robustness_Microfluidics
https://github.com/lucatorep/Robustness_Microfluidics
https://github.com/lucatorep/Robustness_Microfluidics
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(all values above were eliminated) based on maximum 
specific growth rate of yeast being around 0.5  h−1.

The budding ratio represents the number of buds per 
cell at any given time point and was computed according 
to Eq. 3:

Here, the number of new buds at a given time point “n” 
was divided by the number of cells at the previous time 
point “n-1”. The time between time points was 8  min. 
This approach was used for two reasons. First, chambers 
might fill up completely causing excess cells to be flushed 
away and preventing an estimation of specific growth 
rate using linear regression of the semi-logarithmic cell 
count. Instead, the budding ratio allows to estimate rep-
lication events even when the chamber is full. Second, it 
improves monitoring over time and at each time point of 
long oscillations because, unlike the specific growth rate 
derived from single-cell doublings, it does not average 
growth over time.

ATP levels were computed by dividing the uvGFP sig-
nal by the GFP signal of any given cell [33].

Error bars generally represented the standard deviation 
for the average robustness or performance of each repli-
cate chamber. Whenever statistical tests were performed, 
they are stated in the legend of the corresponding figure. 
Pairwise comparisons were carried out using unpaired 
Student’s t-test (e.g. each feast-starvation oscillation 
with respect to the control). ANOVA was used to test 
differences among performance means within subpopu-
lations (between 1 and 4) in each chamber. Statistical 
significance was defined as follows: *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001, and ****p ≤ 0.0001.

Results
Experimental design and development 
of a semi‑automated pipeline
In the present study, dMSCC was employed to cultivate 
the laboratory S. cerevisiae CEN.PK113-7D strain under 
rapidly changing conditions (Additional file  1: Video 
S1). Further development of the dMSCC chip allowed 
the simultaneous assessment of five independent media 
oscillation frequency (Fig.  1d), rather than the previ-
ous three [23], increasing the experimental throughput 
significantly. To simulate a process parameter gradient 
relevant in large-scale reactors, we chose to oscillate 
glucose between 20  g/L (feast) and 0  g/L (starvation). 
How fast microorganisms react to environmental oscil-
lations affects the behaviour of a specific function [1]. 
By switching media every 1.5, 6, 12, 24 or 48  min, sev-
eral timescales were covered, ranging from transcription 

(3)Budding Ratio =

(no.buds)t(n)

(no.cells)t(n−1)

and mRNA degradation (seconds) to protein processing 
(minutes) and cell division (hours) [1, 41]. Even though 
oscillation frequencies differed, the total time spent 
under starvation or feast conditions was the same for all 
cells.

Physiological functions, such as specific growth rate, 
morphology (cell area and circularity) and ATP level 
(Fig.  2) were determined. Intracellular ATP was moni-
tored via the genome-integrated fluorescent ratiometric 
biosensor QUEEN-2m [34]. Growth and morphology 
were captured by phase-contrast microscopy (Additional 
file 2: Figs S1, S2,). First, imaging conditions were set to 
capture the response within a suitable timeframe, avoid-
ing overexposure to fluorescent light and preventing 
phototoxicity [45]. Preliminary experiments suggested 
monitoring the cellular response every 8 min, which was 
sufficient to capture the biosensor’s behaviour, as well 
as slower processes such as growth. The response time, 
range, and time to a new steady-state of the biosensor 
were tested with a temporal resolution of 3.5  s (Addi-
tional file 2: Fig S3). The sensor reacted within the next 
timeframe after medium switching and a new steady-
state was reached within 68 s. This behaviour was repro-
ducible over the course of 2 h. Frequencies beyond 8 min 
were not feasible for long-term live-cell imaging, as pho-
totoxicity significantly influenced the specific growth rate 
(data not shown). Even though exposure to fluorescent 
light inevitably affects cell metabolism, all samples were 
exposed for the same time, thus enabling comparison 
within the study. Moreover, imaging settings for QUEEN-
2m were chosen to minimise the impact on the maximal 
specific growth rate under control conditions [34].

To perform image analysis and handle the large sets 
of raw data generated, we developed a computational 
pipeline for both image and data analysis. This pipeline 
allowed to analyse and match the increased throughput 
possible from the new dMSCC chip layout. For image 
analysis, a semi-automated macro was developed in Fiji 
[35]. Accurate cell segmentation and single-cell tracking 
were crucial points in this step. The StarDist-2D plug-in 
[46] was used for segmentation. It employed a machine 
learning model that was trained on phase-contrast 
images of yeast cells. Canonical thresholding methods 
were not possible due to the presence of organelles in 
eukaryotic cells. Single-cell tracking and determination 
of mother-daughter relationships (lineage reconstruc-
tion) were achieved using TrackMate [44]. Even though 
the segmentation and tracking steps were automated, 
the user was required to give the initial input param-
eters for each chamber separately, thus making this step 
semi-automated. Manual checking and editing of track-
ing and lineage reconstruction were necessary to ensure 
data quality. In the last step, automated data analysis was 
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carried out in R for performance and robustness quanti-
fication [9] at population, subpopulation, and single-cell 
level.

Yeast physiological response to dynamic feast‑starvation 
oscillations
The specific growth rate and budding ratio were deter-
mined by dMSCC at the single-cell and population level 

(see Methods), along with intracellular ATP content, 
cellular area, and circularity. Growth and morphology 
descriptors are functions that change on large time-
scales (hours) and provide indications about the gen-
eral state of cells. ATP is a key intracellular parameter 
and energy currency that functions as substrate, acti-
vator, and inhibitor in many metabolic networks [47]. 
Its levels change within seconds of varying conditions 
(Additional file 2: Fig S3).

Fig. 2 Three-step pipeline combining dMSCC and robustness analysis. The pipeline comprised three steps: data acquisition, image analysis, 
and data analysis. In the first step, dMSCC was performed on S. cerevisiae subjected to feast-starvation oscillations (Additional file 1: Video S1). Raw 
image data from live-cell imaging were pre-processed in Fiji, segmented with StarDist-2D, and single cells were tracked using TrackMate. Shape 
descriptors and fluorescence values were extracted for the segmented cells. Performance and robustness of the collected data were analysed in R
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Yeast cells exhibited lower growth in an oscillating 
environment (specific growth rates < 0.21  h−1) compared 
to the control condition (specific growth rate of 0.39  h−1); 
whereas ATP levels varied according to the feast and 
starvation cycle (Fig.  3a and Additional file  2: Fig S4). 
Slow oscillations (i.e. 48 min) triggered spikes in the bud-
ding rate during feast conditions which can be explained 
by lack of replication during starvation. Instead, shorter 
oscillations caused a more even distribution of bud-
ding events. Even though all cells were exposed to the 
same total feast or starvation time, the decrease in spe-
cific growth rate was frequency-dependent, dropping to 
a minimum of 0.11  h−1 with 24 min oscillations (Fig. 3b 
and Additional file  2: Fig S5). Frequency dependence of 
average specific growth rates in dynamic glucose envi-
ronments has been reported also for E. coli [26].

Cell morphology was also dependent on frequency, as 
cells tended to become rounder and smaller with slower 
oscillations (Fig.  3b and Additional file  2: Fig S5). This 
phenomenon might correlate with optimisation of the 
surface-to-volume ratio and, hence, maximal nutri-
ent uptake [48]. Such a hypothesis is supported by the 
observed increase in average ATP levels in cells exposed 
to longer oscillation frequencies (Fig. 3b and Additional 
file  2: Fig S5). The small cell size in the control condi-
tion can be correlated to the fast replication of cells. Cell 
circularity varied substantially with 1.5 and 6 min oscil-
lations, owing to a shift towards pseudohyphal growth 
(Additional file  2: Fig S2). Pseudohyphal growth is a 
known response to nitrogen starvation and stress [49]. 
As shown by these examples, morphological changes 
induced by nutrient dynamics can be attained success-
fully in the proposed dMSCC setup.

Live-cell imaging extended beyond population-aver-
aged measurements and achieved subpopulation reso-
lution (Fig.  4). As the data are time-resolved, it is also 
possible to compare performance across ATP levels in 
starvation vs feast conditions (Additional file  2: Fig S6). 
Single-cell tracking enables the reconstruction of lineages 
for individual cells. As chambers were inoculated with 
one to three cells each, lineage reconstruction allowed 
the comparison of subpopulations derived from each ini-
tial cell (Fig. 4 and Additional file 2: Figs S7, S8). In some 
cases, a different growth behaviour across subpopulations 

(Fig. 4a and Additional file 2: Fig S7) or different specific 
growth rate and ATP levels within subpopulations were 
detected (Fig. 4b and Additional file 2: Fig S8). The rise 
of subpopulations is a common challenge in bioprocesses 
and only a few tools such as real-time flow cytometry 
enable its assessment at elevated temporal resolution [22, 
50], further highlighting the potential of the proposed 
setup.

Quantification and comparison of robustness in time 
for populations and single cells
Bioprocesses can benefit from stable product formation 
during microbial cultivation [7, 18, 50]. This is essential in 
continuous cultures, but it also ensures that microorgan-
isms withstand stochastic perturbations [8]. The dMSCC 
setup allows the timely study of functions at single-cell 
resolution [23, 24, 50]. For instance, the monitoring of 
ATP levels in individual cells over time revealed large 
differences among cells and conditions (Fig.  5a). There-
fore, the dMSCC setup was combined with a previously 
proposed robustness quantification method [9] (Eq. 1) to 
measure the stability of cellular functions over time, R(t), 
for each feast-starvation oscillation frequency. Elevated 
R(t) values indicate strong stability over time, while low 
values are observed when a function is more dispersed 
with respect to its mean. According to Eq. 1, R(t) changes 
upon addition of more replicates or conditions, making it 
a relative and not an absolute term.

R(t) for the selected functions was computed both 
at the population (i.e. chamber) and single-cell levels 
(Fig.  5b). At the population level, the average perfor-
mance for a function at each time point is computed, 
after which R(t) is generated based on the averaged meas-
urement over time, with all time points contributing 
equally. Information describing the distribution of per-
formance for a function at each time point is lost because 
of averaged measurements, thus masking single-cell 
behaviour. In contrast, at the single-cell level, R(t) is com-
puted based on the mean performance of individual cells 
over time. As all cells contribute equally, time points with 
more cells may be overrepresented. The two R(t) values 
are, therefore, not expected to be equal, as confirmed for 
R(t) of ATP levels (Fig. 6), cell area, and circularity (Addi-
tional file 2: Fig S9).

(See figure on next page.)
Fig. 3 Population response and performance in dynamic feast-starvation oscillations. Error bars represent the standard deviation of triplicates 
(three chambers). (a) Line plots showing growth curve, budding ratio, and intracellular ATP level over the course of 12 h. The black vertical line 
indicates the beginning of glucose oscillation after 4 h of cultivation. Full 24-h screening data are available in Additional file 2: Figure S1. (b) Average 
specific growth rate, budding ratio, intracellular ATP level, area, and circularity of cells exposed to feast-starvation oscillations. Student’s t-test 
was performed to assess statistical differences between each feast-starvation oscillation frequency and the control condition (constant feast); 
*p ≤ 0.05, **p ≤ 0.01
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Fig. 3 (See legend on previous page.)
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R(t) was computed for growth descriptors (specific 
growth rate and budding ratio, see Methods), intracel-
lular ATP, and morphology descriptors (Fig. 6 and Addi-
tional file 2: Fig S9). On the one hand, at population level, 
R(t) of the budding ratio decreased with slower oscilla-
tions due to longer stalls in replication (Fig. 6a). On the 
other hand, at single-cell level, R(t) of the specific growth 
rate was lowest at 12 min oscillations (Fig. 6b). This dis-
crepancy confirmed the different trends for R(t) in popu-
lations vs single cells. Intracellular ATP levels displayed 
comparable trends in R(t) at chamber and single-cell 
levels between 1.5 and 24  min oscillations (Fig.  6 and 

Additional file  2: Fig S9), but differed substantially with 
48-min oscillations, whereby R(t) was much lower for 
single cells. For morphology descriptors, the lowest R(t) 
values were associated with oscillations of 6 and 12 min, 
while the highest with those of 24 and 48 min (Additional 
file 2: Fig S9). The budding ratio and ATP levels became 
less stable over time, when exposed to starvation as 
opposed to feast conditions (Additional file  2: Figs S10, 
S11). Even though information on single-cell behaviour 
was lost in population-averaged data, R(t) often showed a 
similar trend at both levels, pointing to the usefulness of 
both approaches.

Fig. 4 Subpopulation analysis in dMSCC. Subpopulations formed from the cells present in a chamber at the beginning of cultivation. Four 
chambers were analysed (XY02, XY19, XY35, and XY65), each characterised by a different oscillation frequency (control, 1.5, 6, and 48 min). 
A full overview of all chambers is provided in Additional file 2: Figure S8. (a) Growth curves of each subpopulation. (b) Violin plots highlighting 
the performance of single cells within the two subpopulations. Red dots denote the mean performance across all cells. Student’s t-test 
was performed to assess differences between the two subpopulations in each chamber; **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001
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Fig. 5 Computing robustness over time. (a) Representation of ATP levels over time for individual cells during the course of the first 12 h 
of cultivation. Each line represents a single cell. A random cell has been highlighted in each chamber – XY02 (control), XY19 (1.5 min), XY35 (6 min), 
and XY65 (48 min). (b) Graphical overview of R(t) at both population (chamber) and single-cell levels. Elevated R(t) values denote a stable function 
over time. At the single-cell level, mean and standard deviation of a function (e.g. ATP) in each individual cell (A, B, C, D) for all points in time (t1, 
t2, t3) are computed and used to derive R(t). At the chamber level, for each condition (oscillation frequency) and replicate (chamber), the average 
of a function for all cells at each time point is calculated and then used to compute the averaged function in time. The latter serves to calculate 
the mean and standard deviation of that function over time
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Robustness quantification as a tool to describe population 
heterogeneity
R(t) was useful to describe the degree to which a func-
tion fluctuated or changed over time. However, informa-
tion about the distribution of the function within the cell 
population at each time point was lost due to population-
averaged data. Hence, the same robustness quantification 
method was applied to estimate the degree of popula-
tion homogeneity, R(p) [11]. A population with elevated 
R(p) displays a homogeneous performance for a function 
across all cells at a given time point. Conversely, a low 
R(p) indicates greater population heterogeneity for that 
function (Fig. 7a).

In the present study, slower feast-starvation oscillations 
led to greater heterogeneity in intracellular ATP levels 
(Fig. 7b and Additional file 2: Fig S12), as manifested by 
a decrease in R(p) with longer oscillations. Populations 
showed elevated R(p) for ATP levels during exposure 
to starvation as opposed to feast conditions (Additional 
file  2: Figs S10a, S11). For cellular area and circularity, 
the lowest R(p) was observed with 6-min and 12-min-
oscillations (Additional file 2: Fig S12a). Instead, at 6-min 

oscillations, pseudohyphal growth was triggered (Addi-
tional file  2: Fig S2), causing cells to present variable 
shapes and sizes. Overall, R(p) facilitates the comparison 
of population heterogeneity between different perturba-
tion conditions by quantifying the distribution of per-
formance for a population in a single value. This method 
marks a step forward towards understanding and study-
ing such phenomena in both small-scale and large-scale 
fermentations.

Discussion
Interpretation in the context of bioprocess development
The design of modern bioprocess setups must consider 
strain performance and robustness in dynamic environ-
ments, as well as analysis of population heterogeneity at 
an early stage of development. So far, microbial selec-
tion and development have been based on consumption-
based environmental changes and population-averaged 
measurements. As shown here, combining dMSCC with 
robustness quantification methods offers a high-through-
put multi-level analysis of microbial cells in dynamic 
environments. Performance, its stability over time, and 

Fig. 6 Robustness over time for growth functions and ATP levels. Representation of R(t) at the chamber (a) and single-cell (b) level for intracellular 
ATP and budding ratio/specific growth rate for all oscillation frequencies tested. Standard deviations represent the distribution across triplicates 
(chambers). For data about functions and distribution of single cells, refer to Additional file 2: Figure S9. *p ≤ 0.05
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its distribution within a population can be measured at 
single-cell resolution. This enables the identification of 
stressful conditions and their effect on microbial cells.

Optimal bioprocess productivity requires a stable and 
predictable microbial performance. Population het-
erogeneity lowers the predictability of a bioprocess and 
may affect its performance due to the emergence of a 
low-performing subpopulation [19, 21]. Changes in 

bioprocess conditions that may have a high impact on a 
microbial cell factory can be easily identified by inves-
tigating the relationship between either R(t) or R(p) 
and the respective performance of a function (Fig.  8 
and Additional file  2: Fig S12). Taking ATP levels as an 
example, the highest performance was observed for cells 
subjected to 48 min oscillations, but this coincided with 
some of the lowest R(t) and R(p) values (Fig. 8). Cells in 

Fig. 7 Robustness across populations as a description of population heterogeneity. (a) Visual representation of R(p) computation. R(p) denotes 
how homogeneous a function is within the same population at a single time point (t1, t2 or t3). Elevated R(p) describes a homogeneous 
function within the population, low R(p) a heterogeneous function. Here, the mean and standard deviation of a function among all cells (A, B, 
C, D) at each time point (t1, t2, t3) were calculated and used to compute R(p) for each time point. (b) R(p) of intracellular ATP levels for all tested 
oscillation frequencies. Standard deviations represent the distribution across triplicates (chambers). See Additional file 2: Figure S12 for all functions 
and distribution of R(p) at each time point (in violin plots)

Fig. 8 Robustness-vs-performance plots. Plots representing the correlation between performance (ATP level) and either R(p) (a) or R(t) 
at population (b) and single-cell level (c)
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all other conditions had lower ATP levels, but higher 
R(t) and R(p). While those perturbations lowered the 
performance, stability was higher and therefore more 
predictable and reproducible. For other functions, such 
as growth, circularity or cell area, the optimal trade-
off between performance and function stability varied 
widely (Additional file 2: Fig S12). Therefore, each com-
bination of bioprocess condition and microorganism(s) 
should be evaluated separately to determine whether per-
formance or robustness of a function is more important. 
For instance, a lower-performing but stable strain might 
be preferred for continuous cultures; whereas a higher-
producing strain, which is less-stable over long periods of 
time, might be more suitable for batch cultures.

Another interesting aspect is the correlation between 
R(t) and R(p), which might facilitate the identification of 
physiological responses to different conditions (Fig.  9a). 
For instance, oscillation frequencies that result in a sta-
ble function and no population heterogeneity will lie in 
section A, while both low R(t) and R(p) will define a con-
dition as being in section C. Sections B and D are inter-
mediate cases, in which cells are either stable over time 
or belong to a homogeneous population. For intracellular 
ATP levels (Fig.  9b), most oscillation frequencies fell in 
section A, indicating good stability over time and within 
the population. In contrast, cells subjected to 48-min 
oscillations fell in section C, which coincided with popu-
lation heterogeneity and unstable ATP levels over time. 
Cells undergoing 1.5  min oscillations featured homoge-
neity and high instability of functions over time, thereby 
falling in section B. Finally, slower oscillations had a sta-
bilizing effect on cell area and circularity over time and 
within a population (Fig.  9b). These considerations are 
of interest when comparing strains and their production 
performance in dynamic environments, particularly if the 
strains fall into sections B or D. In section B, strains dis-
play an unstable function over time but a homogeneous 
population, which would make them particularly sensi-
tive to environmental fluctuations and, consequently, 
alter production. Therefore, efforts should be aimed at 
improving either the strains to withstand fluctuations 
or the reactor to maintain a more stable environment. 
Strains in section D might be composed of distinct sub-
populations with different production abilities, but a sta-
ble performance over time. In this case, efforts should be 
directed towards improving the strains to avoid subpopu-
lations characterised by different production abilities. 
Notably, these points do not consider strain performance, 
but only its stability.

So far, performance of desired functions has been 
the main criterion when selecting microorganisms 
for industrial applications. Robustness quantification 

in combination with dMSCC enables a more tailored 
approach, as different aspects of function stability in 
dynamic environments and possible population hetero-
geneity can be integrated into strain selection. The pipe-
line allows for easy identification of adverse conditions 
based on their influence on performance, R(t), and R(p). 
In future applications, the high experimental parallelisa-
tion and analysis depth offered by the proposed method 
will facilitate testing and comparison between strains.

Towards downscaling of bioreactor gradients
Cell responses to environments that change within sec-
onds or minutes have been largely overlooked when 
designing microbial cell factories, even though they 
are important in large-scale processes. Implementing a 
quantitative assessment of how stable a function is would 
improve strain and bioreactor design. In the present 
work, dMSCC was combined with robustness quantifica-
tion to study growth, ATP levels, cell area, and morphol-
ogy under feast-starvation oscillations in S. cerevisiae at 
population, subpopulation, and single-cell level. Such 
oscillations were symmetric and spanned from 1.5 to 
48 min, thereby covering different biological timescales. 
A decrease in the specific growth rate but increase in 
ATP levels was observed with longer oscillation intervals. 
Furthermore, a change in cell morphology was observed, 
as pseudohyphal growth was triggered by glucose shifts 
every 1.5 and 6 min (Additional file 2: Fig S1). Cells sub-
jected to 48 min oscillations exhibited the highest aver-
age ATP content, but the lowest stability over time and 
the highest population heterogeneity.

To increase the applicability of the pipeline for bio-
process development, the oscillations can be adapted to 
better represent large-scale heterogeneities. For example, 
glucose oscillations below 2 min are a reasonable choice, 
as they fall within the mixing time for 95% homogeneity 
in large-scale vessels [51]. Other scale-down approaches 
limited the residence time in starvation regimes to 2 min, 
followed by an asymmetric recovery time [17]. The 
amplitude (concentration range) of glucose oscillations 
can be easily adapted to resemble common large-scale 
conditions. A glucose concentration range of 0–25 mg/L 
has been reported for yeast fermentations [32, 52], while 
simulations used a range of 0–100 mg/L of glucose [53]. 
Experimental conditions can be guided also by lifeline 
analysis of broth heterogeneity, as is modern practice for 
scale-down bioreactor experiments [53, 54].

By assessing the correlation between robustness and 
performance or between R(t) and R(p) in representative 
glucose oscillations, it is possible to estimate effects of 
dynamic perturbations early in bioprocess development.
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Fig. 9 Robustness in time vs robustness across population. (a) Sections of the R(t) vs R(p) plot. In section A, the function is stable over time 
and homogenous in the population. In section B, the function is unstable over time but homogeneous within the population. In section C, 
the function is unstable over time and the population is heterogeneous. In section D, the function is stable over time, but heterogeneity is present 
in the population. (b) Data plots of R(t) vs R(p) for the following functions: relative ATP level, area, and circularity. The black cross indicates the mean 
R(t) and R(p) of each function for all oscillation frequencies. Standard deviation represents the distribution of replicates
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Advantages and limitations of the pipeline
The dMSCC offered multiple advantages, such as excel-
lent environmental control and manipulation, high par-
allelisation, and single-cell resolution, which enabled the 
tracking of individual cells and their reactions in time 
[24]. Nevertheless, some trade-offs were inevitable. The 
number of tested conditions, replicates, and applied bio-
sensors limits temporal resolution as time is needed for 
image acquisition. Imaging rapid changes with a low tem-
poral resolution, however, introduces aliasing effects. On 
the one hand, imaging frequency faster than the target 
oscillation offered a detailed overview of the fluctuations 
characterising the studied function (Additional file  2: 
Fig S3). On the other hand, imaging frequencies slower 
than the target oscillation (e.g. 1.5 and 6 min), provided a 
lower temporal resolution of the dynamics studied (Addi-
tional file  2: Fig S4). These considerations are valid for 
rapidly changing functions such as ATP levels, but do not 
apply to slow-adapting functions, such as specific growth 
rate or morphology. Furthermore, live-cell imaging in 
monolayer-growth chambers affects yeast cells through 
phototoxicity when applying fluorescent biosensors [45]. 
Cells perturbed by environmental stress were reported to 
be more susceptible to phototoxicity than unperturbed 
cells [55]. As the perceived light dose is a major deter-
minant of the severity of phototoxicity, a trade-off arises 
between high temporal resolution, multiple biosensors, 
and fluorescence detection. Another factor is mechanical 
stress. Cells in monolayer-growth chambers are immo-
bilised by trapping between PDMS and glass during 
cultivation and movement is only possible when culture 
expansion pushes cells outside the chamber. Such con-
ditions exert compressive and tensile forces on the cells, 
which are absent from cells in suspension [56]. Arguably, 
other cultivation devices also introduce mechanical arte-
facts such as pumping. Importantly, dMSCC allows for a 
preliminary, high-throughput, lab-scale investigation of 
rapid changes, which could validate mathematical pre-
dictions and improve in silico metabolic models [54].

Increasing the experimental throughput requires auto-
mated data processing. Therefore, a semi-automated 
pipeline for image analysis in Fiji was developed herein, 
combining StarDist-2D for segmentation with TrackMate 
to track individual cells and their time-dependent func-
tions and lineages. In previous microfluidics setups, only 
mother cells were monitored over time in single-cell traps 
[57] or they were grown in a small narrow chamber for 
easier bud identification [58]. Recently, other approaches 
to monitor cells have been developed [59], but the pipe-
line proposed in this study has the advantage of requir-
ing no programming skills and easy adaptability to new 
developments or research goals. In particular, converting 
the pipeline from a Fiji macro to python language can 

fully automate the procedure, although tracks would still 
need to be checked and edited manually, as they might 
not be reliable in the case of rapid growth or low tem-
poral resolution. Overall, this pipeline for image analysis 
was built to be easily customisable by the user, as well as 
to enable the integration of new and faster tools for seg-
mentation and tracking. For example, if only population 
behaviour data are needed, it is possible to have a fully 
automated pipeline using only StarDist-2D, with no track 
checking and editing steps. Despite losing time-depend-
ency information on single cells, R(p) provides an assess-
ment of population heterogeneity (Additional file 3).

Here, we quantified robustness by applying a formula 
that identified stable functions across different conditions 
[9], including time and populations [11]. R(t) enabled the 
quantification of how much the desired functions were 
dispersed with respect to their mean during the experi-
mental period. Such analysis is generally qualitative and 
unsuitable for a comparison of high-throughput data. 
R(t) is not able to differentiate between oscillating and 
steadily changing functions. However, other mathemati-
cal approaches, like derivatives or peak analysis, can 
be applied on the same data for more detailed analysis. 
Therefore, R(t) is a useful parameter to describe sta-
ble performances of strains in large-scale environments 
and estimate the success of strain engineering for higher 
stability. E. coli production rates and titres, estimated 
by eGFP-marked proteins, have been ameliorated by 
strengthening the cells’ performance in dynamic environ-
ments, partly as a result of reduced population heteroge-
neity [18]. Such improvement in stability over time could 
have been quantified using the approach proposed in this 
study to facilitate strain comparison.

Population heterogeneity is common during large-
scale fermentation or long-term cultivations [19]. In the 
applied dMSCC system, a maximum of 35.000 yeast cells 
can be analysed when all monolayer-growth chambers 
in an oscillation structure are captured (six arrays × 23 
chambers × 250 cells per chamber). Arguably, this popu-
lation size is multiple magnitudes smaller than in any 
bioreactor. Rare events within populations (< 1/1000) 
can therefore not be captured. In bioprocesses, averaged 
yield, titers and rates are however determined by major 
subpopulations and not by rare events [21]. Such sub-
populations can be detected within a population of 1000 
cells, allowing for the application of dMSCC for analysis. 
By computing R(p) of a function in this work, it was pos-
sible to estimate population heterogeneity at each time 
point of the screening and, therefore, compare condi-
tions and strains. Mathematical description of population 
heterogeneity using mean- and standard deviation-based 
methods is limited by the appearance of distinct sub-
populations, which generate bi-modal or multi-modal 
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distributions [60]. Nevertheless, if a heterogeneous pop-
ulation is detected, the same data can be used to deter-
mine the type of heterogeneity based on e.g. population 
entropy [50].

Furthermore, R(p) can be applied to other acquisition 
approaches such as real-time flow-cytometry, which can 
capture population heterogeneity in dynamic environ-
ments when coupled to a scale-down reactor [22]. R(p) 
evaluation in combination with dMSCC enables easy 
detection and comparison of heterogeneity for different 
conditions and strains.

The presented pipeline could facilitate the study of 
cell behaviour in a rapidly dynamic environment, but 
also assess robust microbial performance under gradi-
ents similar to those in large-scale fermentations. In this 
work, multiple timescales describing microbial reac-
tions were covered. Moreover, the proposed pipeline, as 
well as the combination of robustness quantification and 
dMSCC, can be easily adapted to accommodate different 
setups and questions, including a more accurate imita-
tion of large-scale heterogeneities. Overall, the benefits 
of robustness quantification in dynamic environments 
using dMSCC rest mainly on experimental through-
put, different levels of resolution, a multitude of possible 
applications, as well as comparability between strains, 
conditions, and experiments. These benefits can facilitate 
and accelerate bioprocess development and strain opti-
misation for new and robust bioprocesses.

Conclusion
Here, we offer a pipeline that implements robustness 
quantification to rapid environmental changes (seconds 
to minutes) in response to nutrient availability. The pipe-
line served to investigate the performance and robust-
ness of the following functions: growth, ATP levels, and 
morphology of yeast cells. Using dMSCC to simulate 
a dynamic environment, yeast cells were subjected to 
feast-starvation cycles ranging between 1.5 and 48  min. 
We believe the proposed method is valuable not only for 
answering basic questions about strain performance, but 
also to understand effects of the dynamics that cells are 
subjected to during large-scale production. In fact, the 
combination of dMSCC and robustness quantification 
might help bridge the gap between lab- and large-scale 
settings, allowing for a more reliable characterisation of 
microbial strains already during bioprocess development 
or improvement. Including robustness quantification in 
the analysis might reveal different trade-offs with respect 
to performance. Here, it was used to assess the stability 
of various functions over time and their heterogeneity 
within the cell population, as well as at subpopulation 
and single-cell level.

Abbreviations
dMSCC  Dynamic microfluidic single-cell cultivation
R(t)  Robustness over time
R(p)  Robustness over population
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Additional file 1: Video comparing growth of one replicate (chamber) for 
each feast-starvation oscillation frequency, along with the control condi-
tion (constant feast).

Additional file 2: Figure S1. Microscopy images from the dMSCC setup. 
Microscopy images showing one replicate (chamber) for each feast-
starvation oscillation frequency (from 1.5 to 48 min) and constant feast 
conditions (control). Images were taken at 4 h (a) and 24 h (b) from the 
onset of cultivation. Colour denotes the ATP content inside each cell, with 
green indicating low and blue high levels. The scale bar is 15 µm. Figure 
S2. Pseudohyphal growth in the dMSCC setup. Microscopy images show-
ing one replicate (chamber) for each feast-starvation oscillation frequency 
(from 1.5 to 48 min) and constant feast conditions (control). Images 
were taken at 20 h from the onset of cultivation. Colour denotes the ATP 
content inside each cell, with green indicating low and blue high levels. 
In cells subjected to oscillations of 1.5 and 6 min, pseudohyphal growth 
was observed, as shown by red arrows in enlarged images. The scale 
bar is 15 µm. Figure S3. High temporal-resolution imaging of yeast in 
feast-starvation oscillations. Line plots indicate ATP levels in cells exposed 
for 2 h to oscillating feast-glucose conditions (1.5 and 6 min) or constant 
feast conditions (control). ATP levels were monitored using the fluorescent 
biosensor QUEEN-2m. Images were taken every 17 s. Each line plot repre-
sents a single replicate (chamber, named as “XY”). The standard deviation 
corresponds to the distribution of ATP levels across the cell population at 
each time point in each chamber. Figure S4. Overview of cellular func-
tions throughout the screening period. Line plots for functions (budding 
ratio, relative ATP concentration, cell area, and cell circularity) of yeast cells 
subjected to feast-starvation oscillations. Error bars denote the standard 
deviation within the population-averaged performance of triplicates 
(three chambers). Line plots for individual chambers can be found in 
Additional File 3. Figure S5. Distribution of performance data. Distribution 
of performance data relative to cellular functions and based on single-cell 
data except for budding rate, which was computed at the chamber level. 
Violin plots encompass distinct time points and red dots represent the 
mean across all cells/time points in that condition. All triplicates (three 
chambers) were considered together. Violin plots for each individual 
replicate (chamber) are found in Additional File 3. Student’s t-test was 
performed to assess statistical differences between each feast-starvation 
oscillation frequency and the control condition (constant feast); ****p ≤ 
0.0001. Figure S6. Comparison of performance with respect to condition. 
Performance data for budding ratio and ATP levels have been divided 
based on whether they were taken during a feast or starvation condi-
tion. “TOT” refers to data for the whole screening. Dispersion of the data 
corresponds to the standard deviation across triplicates (three chambers). 
Figure S7. Growth line plots for distinct cell subpopulations. For each rep-
licate (i.e. chamber named “XY”), different subpopulations formed during 
the cultivation period are shown. Each line represents the subpopulation 
originating from an individual cell present at the beginning of the cultiva-
tion. Each chamber was inoculated with 1–4 cells. Figure S8. Performance 
distribution of functions across subpopulation. For each chamber (named 
“XY”), subpopulations originating from an initial inoculum of 1–4 cells are 
shown. Violin plots present the single-cell performance for the following 
functions: specific growth rate, ATP levels, area, and circularity. The red dot 
in each violin plot represents the mean performance of that subpopula-
tion. ANOVA was performed for each chamber to determine if the mean 
performances of subpopulations differed from one another; *p ≤ 0.05, **p 
≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Figure S9. Robustness over time. 
Robustness over time, R(t), denotes how stable a function is over time. 
Elevated R(t) values are associated with stable functions over time, while 
low R(t) values with unstable ones. R(t) was computed for the desired 
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functions at the population (a) and single-cell (b) levels. The standard 
deviation refers to the distribution of triplicates (three chambers). (c) 
Distribution of R(t) for each individual cell. Red dots represent the 
mean R(t) for each condition. Student’s t-test was used to evaluate the 
statistical difference of single-cell R(t) between each condition and the 
control; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Figure 
S10. Comparison of robustness with respect to condition. Robustness 
data for ATP levels (a) and budding ratio (b) are categorised based on 
whether they were taken during a feast or starvation condition. “TOT” 
refers to data for the whole screening. Dispersion of the data refers to 
the standard deviation across triplicates (three chambers). Robust-
ness quantification was used to compute robustness over time, R(t), 
at population (panel a, top, and panel b) and single-cell levels (panel 
a, middle), as well as robustness across populations (panel a, bottom), 
R(p), to assess the stability of a function with respect to population 
heterogeneity. Figure S11. Violin plots of robustness with respect to 
pulse. (a) Distribution of single-cell-level robustness over time for ATP 
content with respect to pulse (feast or starvation). “TOT” refers to data 
for the whole screening. Red dots represent the mean R(t) across all 
cells at each pulse. (b) Distribution of robustness across populations 
for ATP levels with respect to pulse (feast or starvation). “TOT” refers to 
data for the whole screening. Red dots represent the mean R(p) across 
all time points for each pulse. Student’s t-test was used to evaluate the 
statistical difference of either R(t) or R(p) between starvation and feast 
pulses; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Figure 
S12. Robustness across populations. Robustness across populations, 
R(p), denotes how stable a function is across a population at each 
time point. Elevated R(p) values are associated with homogeneous 
populations, while low R(p) values with heterogeneous ones. R(p) was 
computed for the desired functions (ATP levels, area, and circularity). (a) 
The standard deviation refers to the distribution across triplicates (three 
chambers). (b) Violin plots denote the distribution of R(p) for each time 
point. Each violin plot considers triplicates (three chambers) together. 
Data pertaining to each chamber are presented in Additional File 3. Red 
dots represent the mean R(p) across all time points for each condition. 
Student’s t-test was used to evaluate the statistical difference between 
each condition and the control; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and 
****p ≤ 0.0001. Figure S13. Robustness vs performance plots. Correla-
tion between performance and robustness over time at the population 
level (a) or robustness over time at the single-cell level (b), as well as 
robustness across populations (c) for selected cellular functions.

Additional file 3: Figure S1. Line plots for ATP levels over time. Line 
plots for ATP levels measured throughout the screening (24 h) in each 
chamber (named “XY”). Error bars refer to the standard deviation of 
the function at each time point across the entire cell population. The 
vertical line at 4 h identifies the beginning of the starvation-oscillation 
period. Figure S2. Line plots for growth curves. Line plots for growth 
curves measured throughout the screening (24 h) for each chamber 
(named “XY”). The vertical line at 4 h identifies the beginning of the 
starvation-oscillation period. Figure S3. Line plots for budding ratio 
over time. Line plots for the budding ratio measured throughout the 
screening (24 h) for each chamber (named “XY”). The vertical line at 4 h 
identifies the beginning of the starvation-oscillation period. Figure S4. 
Line plots for area over time. Line plots for the cellular area measured 
throughout the screening (24 h) for each chamber (named “XY”). Error 
bars refer to the standard deviation of the function at each time point 
across the whole cell population. The vertical line at 4 h identifies the 
beginning of the starvation-oscillation period. Figure S5. Line plots 
for circularity over time. Line plots for cellular circularity measured 
throughout the screening (24 h) for each chamber (named “XY”). Error 
bars refer to the standard deviation of the function at each time point 
across the whole cell population. The vertical line at 4 h identifies the 
beginning of the starvation-oscillation period. Figure S6. Violin plots 
showing the performance of individual chambers. Violin plots showing 
the distribution of performance data in individual chambers (named 
“XY”). “Merged” refers to the chamber triplicates considered altogether. 
The red dot denotes the mean across all cells in that chamber. The 

dashed horizontal line is the mean of the merged chambers. Figure S7. 
Violin plots showing robustness over time of individual chambers. Violin 
plots showing the distribution of data for robustness over time at single-
cell level in individual chambers (named “XY”). “Merged” refers to the 
chamber triplicates considered altogether. The red dot denotes the mean 
across all cells in that chamber. The dashed horizontal line is the mean of 
the merged chambers. Figure S8. Violin plots showing robustness across 
populations in individual chambers. Violin plots showing the distribution 
of data for robustness across populations in individual chambers (named 
“XY”). “Merged” refers to the chamber triplicates considered altogether. 
The red dot denotes the mean across all cells in that chamber. The dashed 
horizontal line is the mean of the merged chambers.
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