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Abstract 

Overproduction of desired native or nonnative biochemical(s) in (micro)organisms can be achieved 
through metabolic engineering. Appropriate rewiring of cell metabolism is performed by making rational changes 
such as insertion, up-/down-regulation and knockout of genes and consequently metabolic reactions. Finding 
appropriate targets (including proper sets of reactions to be knocked out) for metabolic engineering to design 
optimal production strains has been the goal of a number of computational algorithms. We developed FastKnock, 
an efficient next-generation algorithm for identifying all possible knockout strategies (with a predefined maximum 
number of reaction deletions) for the growth-coupled overproduction of biochemical(s) of interest. We achieve 
this by developing a special depth-first traversal algorithm that allows us to prune the search space significantly. 
This leads to a drastic reduction in execution time. We evaluate the performance of the FastKnock algorithm 
using various Escherichia coli genome-scale metabolic models in different conditions (minimal and rich mediums) 
for the overproduction of a number of desired metabolites. FastKnock efficiently prunes the search space to less than 
0.2% for quadruple- and 0.02% for quintuple-reaction knockouts. Compared to the classic approaches such 
as OptKnock and the state-of-the-art techniques such as MCSEnumerator methods, FastKnock found many more 
beneficial and important practical solutions. The availability of all the solutions provides the opportunity to further 
characterize, rank and select the most appropriate intervention strategy based on any desired evaluation index. Our 
implementation of the FastKnock method in Python is publicly available at https:// github. com/ leila hsn/ FastK nock.
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Introduction
Metabolic engineering aims at the proper rewiring of 
cell metabolism to construct genetically engineered 
strains that can serve as robust cell factories for a 
variety of purposes, including the biosynthesis of target 
substances [1]. Extensive studies have been conducted 
in this field to develop methods for efficiently 
producing suitable natural compounds by using either 
native cells or heterologous hosts [2, 3]. Systems 
metabolic engineering employs the concepts and 
capabilities of systems biology, synthetic biology, and 
evolutionary engineering at the systems level. It uses 
approaches from these disciplines and combines them 
with standard metabolic engineering techniques to 
facilitate the development of high-performance strains 
[4–7]. Metabolic systems biology plays a significant 
role in systems metabolic engineering because it 
incorporates a systems-level perspective on cellular 
metabolic functionalities [8–11]. Using metabolic 
systems biology, scholars can integrate omics data with 
results from genome-scale computational simulations 
to improve metabolic engineering techniques. These 
techniques can lead to the development of potentially 
productive and operationally optimized microbial 
strains [10–13].

The growth-coupled overproduction of (bio)
chemicals is one of the most vital and practical 
objectives in systems metabolic engineering. Using 
this approach, synthesis of a desired compound can 
be guaranteed along with the reproduction of the 
engineered cell(s) [14, 15]. Genome-scale metabolic 
network reconstructions (GENREs) [16] and their 
relevant mathematical representatives (genome-scale 
metabolic models (GEMs)) have been developed for 
numerous microorganisms (e.g., Escherichia coli [17–
20], Pseudomonas putida [21, 22], and Saccharomyces 
cerevisiae [23–26]). These tools are commonly used in 
computational systems biology for in silico production 
strain design. In particular, biased COnstraint-Based 
Reconstruction and Analysis (COBRA) computational 
techniques such as flux balance analysis (FBA) [27] 
and flux variability analysis (FVA) [28] are useful in 
analyzing GEMs [11, 12, 29, 30] (Additional file  1: 
Supplement A). Using COBRA, one can take advantage 
of the synergistic effects of a variety of basic elements 
including genes, gene products and metabolites to 
evaluate cells’ potential and make model-driven 
discoveries. Accordingly, in silico studies based on 
systems-level analyses inspire researchers to examine 
intervention strategies, including gene or reaction 
insertions, knockouts, and up- or down-regulations 
[31, 32]. For example, in several studies on gene 
and reaction knockouts, the candidates for the best 

combination of eliminations were identified [15, 
33–36].

There are two basic conventional approaches for 
designing metabolic intervention strategies: top-down 
(e.g., OptKnock [33], OptGene [37], MoMAKnock [34], 
CiED [38]) and bottom-up (e.g., FSEOF [39], CosMos 
[40]) procedures [41, 42]. The top-down strategies are 
used to determine whether the potential interventions 
are advantageous and they iteratively search for 
the metabolic reaction network of interest until the 
optimal solutions are identified. The search space in the 
corresponding problems includes all combinations of 
a predefined number of reactions in a GEM. Due to the 
size of the developed and highly curated GEMs, this 
search space is extremely large and would explode with 
the cardinality of the combination. Thus, it would not be 
feasible to conduct an exhaustive exploration within a 
reasonable time frame.

Optimization techniques are commonly proposed 
to address this computational challenge. For example, 
OptKnock [33] is one of the most popular top-down 
frameworks. It uses bi-level optimization for in silico 
metabolic engineering. It aims to identify the appropriate 
sets of genes or reactions that, when knocked out, 
maximize the production rate of the desired biochemical 
coupled with biomass formation. To find an optimal 
solution for the growth-coupled production of the 
biochemical(s) of interest, OptReg [31] expands the 
capabilities of OptKnock by predicting appropriate 
up- or down-regulation of revealed crucial genes or 
reactions. RobustKnock [43] has been developed based 
on optimization techniques that guarantee the minimum 
production rate of the desired biochemical. Despite its 
novel approach, RobustKnock has not been widely used 
due to the difficulty of implementation.

The challenge in employing these optimization 
approaches is that the time required for finding an 
optimal solution grows exponentially with the cardinality 
of the combination. Worse, the solvers may fall into a 
deadlock situation and become trapped in an infinite 
loop. Several metaheuristic algorithms have been 
proposed to overcome this obstacle. These algorithms 
can pinpoint the suboptimal solutions within a 
reasonable time. For example, BAFBA [44] is a top-down 
metaheuristic method that deploys the bees algorithm 
[45] to find candidate gene knockouts and evaluate the 
results through FBA (Additional file 1: Supplement A).

Bottom-up approaches discover appropriate 
intervention strategies by comparing two flux 
distributions. One of these distributions relates to the 
wild-type, which aims to maximize the cell’s growth 
rate. The other distribution relates to the functional 
state, which takes into account the goal of the desired 
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biochemical overproduction. Examples include 
the flux distribution comparison analysis (FDCA) 
algorithm [46] and OptForce [32]. Using OptForce, all 
coordinated reaction modifications contributing to 
target overproduction are identified based on significant 
differences between the two flux patterns (initial and 
desired) in the introduced network, calculated using 
FVA. FVA finds the boundaries of the reaction fluxes that 
can satisfy the optimality of the solution under steady-
state flux analysis (Additional file 1: Supplement A).

In a nutshell, primitive top-down approaches use 
optimization methods to find an optimal solution at 
the cost of significant execution time. While top-down 
metaheuristic approaches require less computational 
resources, they are not guaranteed to find a globally 
optimal solution because the search space contains many 
local optima. On the other hand, bottom-up approaches 
can be used to find a set of potential solution candidates 
[14]. Despite various integrated computational and 
experimental studies, it is challenging to identify the 
most proper and operative alterations by only comparing 
the flux distributions of the wild-type to the ideally 
engineered states. Considering high order cardinalities 
and interventions [47] adds to the complexity of the 
problem.

State-of-the-art approaches have been developed to 
dramatically alleviate the computational challenges and 
significantly reduce the computational costs including 
(iteratively) pruning the search space [48, 49] and 
sequentially enumerating the smallest minimal cut sets 
(MCSs) in order to provide several solutions [50]. For 
example, Fast-SL properly explores a metabolic network 
of interest to find the most appropriate synthetic lethal 
reaction sets. Fast-SL improves the performance of a 
brute-force search algorithm by iteratively reducing the 
size of the search space, which substantially shortens the 
execution time [49]. MCSEnumerator is another novel 
method that attempts to find many solutions using MCSs 
aimed at the identification of either synthetic lethal sets 
or optimal strain design targets [50].

Calculating the MCSs in GEMs is a complex and 
challenging computational problem [51]. The scalability 
of MCSEnumerator algorithms paves the way for both 
theoretical and practical studies considering high-order 
simultaneous reaction interventions for strong growth-
coupled product formation [52, 53]. However, for in silico 
strain design, the  MCSEnumerator approach require 
predefining of the acceptable thresholds for growth and 
target product yields and this contributes to different 
drawbacks such as neglection of some appropriate 
suboptimal solutions [54].

In this paper, we present FastKnock as a next-
generation knockout strategy algorithm that provides 
the user with all possible solutions for multiple gene 
and reaction knockouts to overproduce a (bio)chemical 
of interest. Unlike the MCSEnumerator approach, 
FastKnock does not rely on any special parameter settings 
and additional assumptions (except for predefining the 
maximum number of simultaneous reaction knockouts). 
We developed a delicate search and prune algorithm to 
accomplish this goal at a greatly reduced computational 
time and cost. Our method combines (and benefits 
from) both basic approaches to tackle the problems 
described above. It incorporates reaction knockouts to 
couple the biosynthesis of both primary (e.g., succinate, 
lactate, ethanol, etc.) and secondary metabolites (e.g., 
dodecanoic acid, polyketides such as erythromycin and 
terpenoids such as lycopene) with cell reproduction. It 
examines the GEM at the level of metabolic reactions 
while checking the corresponding genes to consider the 
gene dependency of the reactions.

The availability of all solutions allows us to 
systematically characterize and rank these strategies in 
accordance with some criteria including (a) substrate-
specific productivity (SSP) [14, 15, 55, 56], (b) strength 
of growth coupling (SoGC), defined as the square of 
the product yield per unit substrate divided by the 
slope of the lower edge of the production curve [14, 
15, 55, 56], (c) strain dynamic performance, which 
depends on yield, productivity, and titer [57, 58], and (d) 
other important indices reflecting environmental and 
operational considerations such as minimal production 
of undesired or toxic byproducts and the feasibility of 
 CO2 biofixation. Some alternative criteria are discussed 
in [59]. Furthermore, it would be possible to evaluate 
the solutions and categorize them in the different major 
classes: potentially, weakly, directionally growth-coupled 
production (pGCP, wGCP, dGCP) and substrate-uptake 
coupled production (SUCP) raised in [60].

The article is structured as follows: Initially, the 
FastKnock algorithm is introduced. Subsequently, we 
present the outcomes of in silico experiments utilizing 
meticulously curated GEMs of E. coli. Finally, discussions 
and conclusions are articulated.

The proposed method
We developed the FastKnock algorithm, a versatile 
framework intended to enhance the production rate of a 
targeted metabolite within a cell while promoting growth. 
This desired metabolite may belong to either a primary or 
secondary category and can be of native or heterologous 
origin. Specifically, the algorithm can be applied to 
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heterologous metabolites through the inclusion of the 
associated pathways into the GEM set.

In other words, FastKnock identifies reactions to be 
deleted from the network while ensuring that the flux of 
the biomass formation reaction remains above a specific 
cut-off (i.e., 1% of grWT, (Additional file 1: Supplement D) 
and maximizes the production of the desired substance(s) 
[61]. For practical applications, FastKnock can be utilized 
to identify subsets of network reactions that can be 
removed to significantly enhance the production of the 
desired biochemical. Specifically, FastKnock identifies 
the strains in which the production rate of the desired 
biochemical surpasses a predefined threshold in the base 
model (i.e., the model without any interventions). We 
refer to this threshold as Thchemical, defined as 5% of the 
maximum theoretical yield (i.e., the optimal production 
rate of the desired biochemical when it is considered 
the objective of the cell metabolism) in the base model. 
FastKnock, like other common approaches, employs 
preprocessing to reduce the size of metabolic model 
reactions and the search space. In the preprocessing 
phase (Additional file  1: Supplement C), a subset of 
reactions is identified and structurally excluded from the 
metabolic network to generate a reduced model denoted 
as Reduced_model. Additionally, the set of candidate 
reactions for deletion from the model is determined and 
denoted as Removable.

The search space of the exhaustive search includes all 
members of the power set of the Removable set with a 
particular maximum cardinality.

The search space grows exponentially as the size of 
the set increases. Therefore, conducting an exhaustive 
search and examining all subsets of reactions is highly 
time-consuming and infeasible. To address this challenge, 
our proposed algorithm utilizes information available 
only during the search procedure to dynamically narrow 
the search space—iteratively pruning the space and 
temporarily excluding certain reactions. This reduced 
search space is employed to identify knockout strategies, 
and we refer to it as the target space.

The FastKnock algorithm
Our proposed method aims to identify all solutions 
to a strain optimization problem (with a predefined 
maximum number of reaction deletions), enabling 
the growth-coupled overproduction of a metabolite 
(biochemical) of interest. Each solution represents a set 
of k reactions (i.e., a knockout strategy) in which the 
elimination of these reactions results in a new engineered 
strain, coupling the overproduction of the biochemical of 
interest with cell growth.

Testing whether a set of reactions is a proper solution 
is equivalent to solving an optimization problem in 
which the objective function is the growth of the 
cell and the elimination of reactions corresponds to 
modifying the associated constraints of the optimization 
problem (Additional file  1: Supplement F). By solving 
this optimization problem, we obtain the flux of all the 
reactions including the production rate of a desired 
biochemical. An appropriate solution (i.e., a knockout 
strategy) should satisfy the objective function along 
with providing a suitable production rate for the desired 
biochemical product.

To find all reaction subsets of size ≤ k, we employ a 
tree-based representation that encompasses all combina-
tions of reactions with a maximum size of k, as outlined 
below. Figure  1 illustrates the overall procedure using 
a depth-first traversal tree. The root node at level zero 
corresponds to the base model in which no reaction is 
deleted (i.e., the reduced model). All sets of k reactions 
are placed in nodes of the tree in depth k (i.e., at the level 
k). The FastKnock procedure starts with investigating the 
elimination of a single arbitrary reaction r1 at level one. 
Whether knocking out r1 is a solution or not, we proceed 
to explore the simultaneous elimination of r1 and another 
reaction at level two. At each level, we consider only the 
reactions with nonzero flux, determined by the optimiza-
tion problem solved in the parent node at the upper level 
(Additional file 1: Supplement F, part 2). The procedure 
of adding reactions with nonzero flux to the set of knock-
out reactions continues at lower levels of the tree until 
one of the two stopping conditions is met: a) we reach a 
leaf at level k (the predefined number of knockouts), or 
b) we reach a node guaranteed to have no solution in its 
subtree.

To check condition b in each node at level l < k, we 
determine whether the subtree may lack a solution 
by investigating the optimization problem. If the 
optimization problem already indicates an infeasible 
region at a node, adding more constraints in the subtree 
of the node would not lead to a proper solution (see 
Additional file 1: Supplement F).

The merit of the procedure is the technique of 
bounding the search by a) excluding the reactions with 
zero flux at each node from the target space of the node 
(Additional file 1: Supplement F, part 2) and b) checking 
the feasibility of reaching a solution before expanding the 
subtree of each node. If a reaction has zero flux based on 
the functional state of a node in the traversal tree, it is 
excluded from the target space of that node. However, 
in the children of that node, the functional states may 
change and the reaction can get nonzero flux. Thus, it 
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might reappear in the search space when we explore 
the descendants at consequent levels. This dynamic 
and effective pruning of the search space enhances the 
efficiency of the algorithm.

Algorithm 1 represents the definition of a node in the 
tree, as well as, the main procedure of the FastKnock 
algorithm. Each instance of the Node contains the model, 
the set of the removed reactions, the search space, and 
the target space for the next level (Fig. 1). Specifically, at 
each node X of the tree at level L, we investigate a set of 
L reactions (deleted_rxns) to determine (a) whether X is a 
solution and (b) the new target space, which is the set of 

all reactions that could potentially be added to deleted_
rxns for investigation at the next level.

Determining the target space at each node is critical, 
and it allows us to avoid the combinatorial explosion of 
the tree that would inevitably result from an exhaustive 
search. In particular, while we investigate drastically 
fewer subsets of reactions at the children nodes in Level 
L + 1, our analysis guarantees that FastKnock will find 
every candidate solution (Additional file  1: Supplement 
F).

In Algorithm 1, the traversal of the tree shown in Fig. 1 
is represented by a set of queues: queue1 to queuetarget_

level. Each queue contains a set of nodes. At each moment 

Fig. 1 The traversal tree: All possible solutions are identified through a depth-first traversal of the tree. First, the identifyTargetSpace function 
is applied in the root node to the reduced wild-type network to determine the target space. Each reaction in this set is individually selected 
and removed from the network in Level 1. For each deleted reaction (or equally node) in Level 1, the identifyTargetSpace function is recalled 
to obtain the target space for the next level. For simplicity, we show only two levels of the traversal of the tree, which is enough to identify all single 
and double deletions
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during the execution of the algorithm, queue l contains all 
children of a certain node at level l-1 being investigated. 
In this way, the subtrees are gradually constructed and 
removed (pruned).

Algorithm 1: The FastKnock main procedure

The main algorithm consists of three functions: 
identifyTargetSpace, constructSubTree, and traverseTree. 
For each node, we compute a target space and a flux 
distribution using the identifyTargetSpace function. 
This function temporarily narrows the search space for 
the whole subtree of the node. The subtree of a node is 
constructed using the constructSubTree function. The 
traverseTree function recursively navigates the tree, based 
on a depth-first traversal.

1: Object Node
2: level ▷ Level of the node.
3: deleted_rxns ▷ List of deleted reac�ons for the node.
4: target_space ▷ Target space of the node.
5: flux_dist ▷ Op�mal flux distribu�on of the model in which deletex_rxns are knocked out.

1: func�on FastKnock (model, Removable, target_level) Returns results
2: Input:

model: the reduced metabolic model,
Removable: the set of removable reac�ons in the model,
target_level: the predefined number of desired simultaneous reac�on knockout

Output:
results: a set of all solu�on subsets

3: for l = 1 to target_level do
4: queuel = [] ▷ The nodes that must be inves�gated at level l.
5: checkedl = [] ▷ Set of all previously checked reac�ons in level l that do not require 

further inves�ga�on in level l.
6: solu�onsl = [] ▷ Solu�ons with l reac�ons knocked out.
7:   root = new Node ▷ Create the root node, which contains all reac�ons a�er preprocessing
8:   root.target_space = iden�fyTargetSpace(root, model, Removable) ▷Iden�fy the target space of root
9: level_one = constructSubTree(root, target_level, checked1, queue1, solu�ons1, model, Removable)
10: traverseTree (queuelevel_one , checkedlevel_one, solu�onslevel_one, target_level)
11: results = [solu�onsl for l = 1 to target_level] ▷ The results set is a set of all obtained 

solu�on subsets in each level
12: return results

We elaborate on these functions in the following 
subsections. Firstly, we determine the target space and 
subsequently describe the search procedure—detailing 
how the traversal tree is partially constructed and 
traversed. In our implementation, we enhanced the 

quality of the obtained solutions by ensuring a minimal 
chemical production rate (Additional file 1: Supplement 
I) and increased the speed of the algorithm through 
parallel processing (Additional file 1: Supplement G).

Identifying the target space
At steady state, a specific flux range for each reaction 
r is obtained (minFluxr ≤ fr ≤ maxFluxr), which leads 
to the optimal cellular objective (e.g., maximizing the 
biomass formation flux). Knocking out a reaction r is 
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implemented by setting the allowable flux range [62] of 
the reaction to zero (i.e.,  lbr =  ubr = 0 in the optimization 
problem of Equations a.1 and a.5 in Additional file  1: 
Supplement A). Note that when a reaction is reversible 
(i.e., the obtained flux range of a reaction includes zero 
 minFluxr ≤ 0 ≤  maxFluxr), knocking out that reaction 
alone has no effect on the optimal linear objective value 
of the network in FBA (Additional file 1: Supplement F).

Here, the main idea is to prune the target space by con-
sidering only the set of reactions with nonzero flux values. 
This approach significantly reduces the size of the target 
space and thus reduces the execution time of the algorithm.

We denote reactions that lack a zero value in their 
obtained flux range as Rxns+ in each node of the tree:

Rxns
+ = {r ∈ Rxns |minFluxr > 0 or maxFluxr < 0}. 

The target space of each node, which is the set of reac-
tions that could be appropriate for deletion, is obtained 
using the identifyTargetSpace function (Algorithm  2). 
The search operation at each node is limited to 
Rxns+  ∩ Removable, as shown in Line 6 of Algorithm 2.

It is worth mentioning that by any manipulation of the 
model, the fluxes of other reactions may change. Therefore, 
the functional states (i.e., flux distributions) should be ana-
lyzed repeatedly after each modification (i.e., after each reac-
tion knockout) using FBA to identify the reactions that carry 
nonzero flux in the network (modelX) (Lines 4–5). The flux_
dist variable of the node is updated at Line 4. The intersec-
tion of these reactions and the Removable set construct the 
target space of node X in Line 6.
Algorithm 2: Identifying target space for each node

1: func�on iden�fyTargetSpace (Node X, model, Removable)

2: Input:
X: a node of the tree,
model: reduced metabolic model,
Removable: the set of removable reac�ons in the model

Updates X.target_space and X.flux_dist

3: ConstructmodelX from model by se�ng the upper and lower bounds of all reac�ons in X.deleted_rxns
to zero
4: X.flux_dist = FBA (modelX) ▷ FBA returns an op�mal flux distribu�on of the reac�ons 
5: iden�fy Rxns+, which is the list of reac�ons that have nonzero flux.
6: X.target_space = Rxns+ ∩ Removable

The search procedure
Here, we introduce a depth-first search procedure 
based on the traversal tree shown in Fig.  1. Each node 
of the tree has its own subtree, which is traversed before 
moving on to its sibling nodes. This depth-first search 
procedure is implemented using the traverseTree function 
of Algorithm 3.

In each call, the traverseTree function visits a certain 
node X (i.e., the first node of the queuelevel) and, if 
needed, calls the constructSubTree function to create 
the corresponding subtree of the node (Algorithm  4). 
The constructSubTree function creates the children 
nodes of X, which is a set of nodes that are placed 
in level = X.level + 1. For each child, deleted_rxns is 
initialized by adding one of the reactions in X.target_
space to the X.deleted_rxns.

It is clear that the order of the knocked-out reactions 
is not important. In FastKnock, repetitive permutations 
of the reactions are ignored using a checkedlevel queue for 
each level of the tree. Generally, N levels are considered 
for simultaneously knocking out N reactions from the 
cell. Precisely, the reaction selected for the ith level is 
not allowed in the (i + 1)th to Nth levels. To generate all 
combinations of these reactions, the checkedL queue is 
used at level L. At level L, by deleting a reaction r from 
the target space, r is added to the checkedL. This excludes 
the reaction from the target space of the subsequent 
levels.
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Algorithm 3: Traversing the tree

1:  func�on traverseTree (queuelevel, checkedlevel, solu�onslevel, target_level) Returns null 

2: Input:
queuelevel: the queue of the level
checkedlevel: the checked list of the level
solu�onslevel: the solu�ons list of the level
target_level: the final level of the algorithm

Output: 
This recursive func�on returns null and all of the queues are empty at the end.

3: if level == 0: ▷ All nodes of the tree are inves�gated.
4: return null
5: if queuelevel is empty then ▷ All nodes in this level and their descendants have been

inves�gated. So, we must ascend one level.
6: checkedlevel = [] ▷ The checked list of the level is refreshed when the queuelevel is empty
7: return traverseTree (queuelevel -1, checkedlevel-1, solu�onslevel-1, target_level)
8: else: ▷ There is a node at this level to be inves�gated.
9: Node X = queuelevel.remove () ▷ Remove node X from queuelevel.
10: next_level = constructSubTree(X, target_level, checkednext_level, queuenext_level, solu�onsnext_level, 
model, Removable) ▷ Construct subtree of the node X.
11: return traverseTree (queuenext_level, checkednext_level, solu�onsnext_level, target_level) ▷ A�er running 
this line, the next level has at least one node. So, the next level queue should now be traversed in a 
depth-first fashion. 
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Algorithm 4: Constructing subtrees of the traversal tree

1: func�on constructSubTree (Node X, target_level, checkednext_level, queuenext_level, solu�onscurrent_level, 
model, Removable) Returns next_level

2: Input:
X: an object of type Node 
target_level: final level of the algorithm, the predefined number of simultaneous knockouts
checkednext_level: the next checked list from the X.level or null if X.level equals target_level
queuenext_level: the queue of the next level from X.level
solu�onscurrent_level: set of the solu�ons of the X.level

Output: 
next_level: the next level to be inves�gated, which can be X.level or X.level+1

3: current_level = X.level
4: if current_level == target_level:     ▷ No need to a construct subtree for the nodes at the target_level nodes
5: return target_level
6: else: ▷ construc�ng subtree of node X
7: for each rxn in X.target_space do ▷ For each reac�on in target space of X that is not

already checked, create a new node as a child of X
8: if rxn not in checkedcurrent_level+1: ▷ The reac�on has not been previously

inves�gated at the lower levels
9: create node r such that 

r.level = current_level +1, 

r.deleted_rxns = {rxn} X.deleted_rxns, 
r.target_space = NULL,
r.flux_dist = NULL 

10: if r is a solu�on then ▷ inves�gate node r
11: add r to solu�onscurrent_level.
12: r.target_space = iden�fyTargetSpace(r, model, Removable)
13: queuecurrent_level +1.insert(r) ▷ insert r into the next level queue 
14: checkedcurrent_level+1.add (rxn) ▷ add rxn to checkedcurrent_level+1

15: return current_level + 1
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A traversal example
To illustrate the formation of the traversal tree, a sample 
node of Fig. 1 is explained here. Consider node X = {r1, 
r4} representing a double knockout of the reactions r1 
and r4. Deletion of the reaction r1 as a single reaction 
knockout strategy has been checked in the parent node 
{r1} beforehand. Also, double knockout of the reactions 
r1 and r2 and triple knockout of {r1, r2, r3}, {r1, r2, r4}, 
and {r1, r2, r6} have been checked in the sibling node 
{r1, r2} and its children nodes before visiting node X. 
Visiting node X corresponds to checking the removal 
of {r1, r4} as a potential knockout strategy. Afterward, 
its subtree is generated to investigate the simultaneous 
removal of all the subsets of the removable reactions 
along with r1 and r4.

Naively, for each reaction in the removable set, we 
should generate a child node for X (obviously except for 
the reactions r1 and r4). As mentioned in the root node 
of Fig. 1 in this example, the set of removable reactions is 
supposed to be {r1, r2, r3, r4, r5, r6}. In a very simple search 
procedure, node X would have four child nodes (i.e., {r1, 
r4, r2}, {r1, r4, r3}, {r1, r4, r5}, {r1, r4, r6}). Generally in an 
exhaustive search, for each node, we may have too many 
children nodes and such a branching factor leads to a 
large search space and hence an excessive runtime.

In FastKnock, the size of the target space determines 
the number of children nodes of X, which is limited to 
Rxns+  ∩ Removable, where Rxns+ consists of nonzero 
flux reactions (suppose {r2, r3, r7} for node X). Because 
the reaction r2 is checked in the subtree of the sibling 
node {r1, r2} (see checkedL2 = {r1, r2, r4} in node X), and 
the reaction r7 does not exist in the removable set of the 
model, the target space of node X contains only r3. In this 
way, the search space is drastically narrowed down by 
generating a limited number of children.

In this example, the reaction r5 does not exist in the 
Rxns+ of node X, due to its zero flux. It means that the 
node {r1, r4, r5} will not be added as a child of X, because 
it produces the same conditions as exist in node X (i.e., 
the same target space that results in a duplicate node). As 
discussed in Part 2 of Supplement F, no feasible solution 
would be missed because of this search space reduction 
(See Additional file 1: Supplement F).

It should be noted that the target space is temporarily 
reduced and its size may increase in the descendant 
nodes. In the node {r1, r4, r3}, the set of nonzero flux 
reactions could include any of the reactions in the model.

Co‑knockout of the reactions
For practical applications, one important feature of 
FastKnock is that it can optionally consider genes as the 
basis of candidate reactions for deletion. This is a realistic 
assumption because knocking out genes to remove a 

specific reaction often leads to removing a predetermined 
set of reactions that are simultaneously knocked out.

In fact, a reaction cannot be removed from a living cell 
while its genes are being manipulated in vivo. Therefore, 
the mapping of reactions to genes should be considered 
in the algorithm to reach realizable results. In other 
words, a reaction is knocked out from the network based 
on its associated gene rule. Furthermore, the clustering 
of reactions based on the associated gene rules could 
improve the efficiency of the search procedure for finding 
the appropriate targets.

In the simplest form of gene rules, a reaction could 
be removed by knocking out at least one gene from a 
set of genes (logical AND relation) or by simultaneously 
deleting a set of genes (logical OR relation). However, in 
general form, gene rules describe complex relationships 
between genes and reactions. Thus, well-known 
knockout strategies for in silico strain design are based 
on reactions or genes but do not simultaneously consider 
both of them.

For capturing the complexity of gene-reaction 
relationships, in this work, we label a set of reactions 
as co-knocked out if they are removed due to the 
elimination of a single gene. In the preprocessing phase 
of the proposed framework, for each reaction r, a set 
of reactions named Co_KnockedOutr is defined that 
contains all the reactions that are intrinsically removed 
by the deletion of a set of genes that should be knocked 
out for removing the reaction r. Supplement E elaborates 
a modified version of the proposed algorithm based 
on knocking out genes rather than reactions, which 
discusses different forms of gene rules (See  Additional 
file 1: Supplement E).

Although the presented method enhances time 
efficiency, it can be excluded from the main method 
to obtain comparable results with the state-of-the-art 
reaction-based approaches. On the other hand, this 
technique can be incorporated as a preprocessing step 
in other metabolic engineering algorithms and in silico 
strain design approaches.

Results
We implemented the FastKnock algorithm using 
Python language programming (Version 2.7) and the 
COBRApy library (Version 0.15.4) [63]. We evaluated 
the performance of FastKnock using various examples, 
and we compared these results to OptKnock and 
MCSEnumerator approaches.

To assess FastKnock’s performance and demonstrate 
its capabilities while addressing potential limitations 
of other methods, such as the impact of model size and 
culture medium richness on method performance, 
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we selected four highly-curated GEMs for E. coli (i.e., 
iJR904 [17], iAF1260 [18], iJO1366 [19], and iML1515 
[20]) for our experiments. We investigated the excessive 
production of renowned metabolites (succinate, 
lactate, 2-oxoglutarate, and lycopene, functioning 
as both primary and secondary biological products) 
across various media types, including mineral and rich 
mediums, as diverse case studies.

We assessed the overproduction of the primary 
metabolites using these GEMs as wild-type models 
(referred to as Strain0 in the  in-silico experiments), 
focusing on two mineral and one rich cultivation 
conditions. The first condition, CM1, involved iM9 
mineral medium supplemented with glucose (a 
maximum allowable glucose uptake rate of 10  mmol.
gDW−1   h−1) under aerobic conditions (a maximum 
allowable oxygen uptake rate of 15  mmol.gDW−1   h−1). 
The second condition, CM2, included iM9 mineral 
medium with the same glucose supplementation (a 
maximum allowable glucose uptake rate of 10  mmol.
gDW−1   h−1) under anaerobic conditions (an oxygen 
uptake rate of 0 mmol.gDW−1.h−1). In a complex and rich 
environment, more inputs activate cellular functions, 
leading to the involvement of more pathways and 
reactions in the network. In order to further evaluate the 
exhaustive enumeration performance of the FastKnock 
algorithm in a rich cultivation condition, we conducted 
additional in silico experiments considering succinate 
overproduction in Luri-Bertani (LB) medium. The iLB 
medium constraints were determined based on [64, 65].

The secondary metabolite, lycopene, as a heter-
ologous product is produced in E. coli only under 
aerobic conditions. We considered two strains for 
lycopene production. For the first recombinant strain 
(Strain1), the lycopene biosynthesis pathway (i.e., the 

methylerythritol phosphate (MEP) pathway [66]) is 
added to the wild-type E. coli model [39, 67, 68]. For 
the second recombinant strain (Strain2), some other 
modifications are applied based on [69]. This provides 
an intracellular pool of pyruvate as the important pre-
cursor of lycopene production [70]. Additional file  2: 
Tables S1 and S2 in Supplement J.I show the maximum 
theoretical yield for the biosynthesis of the metabolites 
(i.e., maximum of vchemical) and our threshold for their 
production (Thchemical = 0.05 × vchemical).

Some results of the preprocessing phase is shown in 
Additional file 2: Table S3 of Supplement J.I, illustrating 
the number of reactions excluded from the search 
space before the main exploration procedure and 
before obtaining the removable reactions. The size of 
the search space is drastically reduced to 20% of all the 
reactions. In the Reduced_model, the blocked reactions 
and dead ends are removed [62]. Also, as described after 
the preprocessing phase, the search space is reduced 
iteratively and temporally during the search procedure 
of the FastKnock algorithm. This significantly reduces 
the number of linear programming problems (LPs) 
that must be solved. Specifically, compared to an 
exhaustive search, the reduction rates are 80%–85% for 
single knockouts, 96%–97.5% for double knockouts, 
99.0–99.5% for triple knockouts, and above 99.8% for 
quadruple and quintuple knockouts (Table  1). The 
number of LPs is equal to the number of nodes in the 
traversal tree shown in Fig. 1, and it is independent of 
the target metabolite to be produced.

In comparison, in the exhaustive search the algorithm 
must check all the combinations of the reactions in the 
search space. For instance, iJR904 in CM2 has 208 reac-
tions in its search space. For finding double-knockout 
results in the exhaustive search, the algorithm must 

Table 1 The number of linear programming problems (LPs) solved by the FastKnock algorithm compared to an exhaustive search of 
the preprocessed search space (Strain0 in CM2 cultivation medium)

Single Double Triple Quadruple Quintuple

Strain0 in CM2 iJR904 Exhaustive search 208 21,528 1,478,256 75,760,620 3,091,033,296

FastKnock 41 820 11,613 125,815 1,178,030

% Reduction 80.29 96.20 99.22 99.84 99.97
iAF1260 Exhaustive search 315 49,455 5,159,805 402,464,790 25,033,309,938

FastKnock 57 1,506 25,985 348,966 4,058,061

% Reduction 81.91 96.96 99.50 99.92 99.99
iJO1366 Exhaustive search 385 73,920 9,437,120 901,244,960 68,674,865,952

FastKnock 58 2,038 43,565 732,315 10,822,208

% Reduction 84.93 97.24 99.53 99.91 99.98
iML1515 Exhaustive search 403 81,003 10,827,401 1,082,740,100 86,402,659,980

FastKnock 61 2193 58,750 1,674,010 25,489,714

% Reduction 84.87 97.30 99.46 99.85 99.98
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check all the double combinations of the elements in the 
search space (c(208, 2) = 21,528). Due to its time com-
plexity, the exhaustive approach is not feasible for high-
order reaction knockouts; thus, we compared FastKnock 
to a simple exhaustive search method for single, double, 
or triple knockouts. Our experiments showed that a sig-
nificant reduction in the number of LPs is critical because 
it allows us to investigate and find all possible solutions.

Table  2 presents the total number of solutions 
obtained (regarding CM2 cultivation medium) using 
the FastKnock algorithm. The results are reported in 
two cases: the maximum production rate (vmax) and 
the guaranteed production rate (vgrnt) as discussed in 
Supplement I.

We also compared our solutions to the results of 
the exhaustive search for single, double, and triple 
deletions for succinate production in iJR904 to verify 
the completeness of the FastKnock algorithm. Both 
approaches found two solutions for a single deletion. 
The exhaustive search for a double deletion found 398 
solutions, of which only 58 solutions were true double 
deletions. The rest of the solutions were not acceptable 

because either (a) the combination of each single dele-
tion solution and a zero-flux reaction was inappropri-
ately considered as a double-deletion solution or (b) 
the elimination of a reaction in the co-knocked-out sets 
led to the removal of all the reactions in the set, while 
in the exhaustive search, the removal of each reaction 
in the set is counted as a separate solution. For triple 
deletions, the exhaustive search found 39,407 solutions, 
of which 887 were unique and acceptable. FastKnock 
found all the 887 solutions.

Table  3 presents the best solutions found for iJR904 
GEM (See also Additional file  2: Tables S4-S10). Sup-
plement J.II includes the results for the iAF1260 (Addi-
tional file  2: Tables S11-S17) and iJO1366 (Additional 
file  2: Tables S18-S27) GEMs as well. As an example, 
we found that the best result for succinate overproduc-
tion is obtained by deleting one reaction, ADHEr, which 
is knocked out by the deletion of the gene b1241. Con-
sequently, the deletion of the b1241 gene also causes the 
deletion of the LCADi_copy2 reaction. In this situation, 
the growth rate is 0.16  (h−1) as shown in the “biomass 
formation rate” column. After the deletion of ADHEr, 

Table 2 The number of solutions in iJR904 (Strain0 in CM2 cultivation medium)

* vmax: maximum production rate (mmol.gDW−1  h−1)
** vgrnt: guaranteed production rate (mmol.gDW−1  h−1)

Order of reaction 
knockout

Strain0 in CM2

succinate 2‑oxoglutarate D‑lactate

vmax
* vgrnt

** vmax vgrnt vmax vgrnt

Single 2 1 0 0 0 0

Double 58 27 0 0 10 7

Triple 887 416 0 0 308 228

Quadruple 10,090 4794 0 0 4941 3790

Quintuple 98,300 48,693 29 0 58,481 13,639

Table 3 The guaranteed rate of succinate growth-coupled production in in iJR904 (Strain0 in CM2 cultivation medium)

Number of 
knocked out 
reactions

Deleted reactions Biomass 
formation 
rate  (h−1)

Succinate 
production 
rate (mmol.
gDW−1  h−1)

SoGC  (h−1) Deleted genes Co‑knockout reactions

min max

Single ADHEr 0.16 5.11 9.50 1.41E-2 b1241 LCADi_copy2

Double ADHEr, LDH_D 0.15 8.08 9.51 1.43E-2 b1241, b2133, b1380 LCADi_copy2

Triple ADHEr, LDH_D, PFL 0.12 11.08 12.73 1.53E-2 b1241, b2133, b1380, 
b3114, b0902, b3951

LCADi_copy, OBTFL

Quadruple ADHEr, LDH_D, PFL, THD2 0.11 12.29 13.01 2.58E-2 b1241, b2133, b1380, 
b3114, b0902, b3951, b1602

LCADi_copy, OBTFL

Quintuple ADHEr, LDH_D, GLUDy, PFL, 
THD2

0.10 12.34 13.06 2.61E-2 b1241, b2133, b1380, 
b1761, b3114, b0902, 
b3951, b1602

LCADi_copy, OBTFL
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the succinate production can vary between 5.11 and 
9.50  mmol.gDW−1   h−1, which is more than the consid-
ered 0.85 mmol.gDW−1  h−1 threshold; hence, an accept-
able amount of succinate production is guaranteed. 
Figure 2 presents the production envelopes calculated for 
the best cases presented in Table 3.

The analyses carried out with relatively older models, 
specifically iJR904, iAF1260, and iJO1366, were 
primarily focused on comparing the performance of 
FastKnock with both earlier methods (i.e., OptKnock) 
along with experimental studies and more recent 
approaches (i.e., MCSEnumerator) documented in the 
literature. As previously mentioned, additional tests 
were conducted to demonstrate that the effectiveness of 
the FastKnock method remains unaffected by the size 
of the model and the richness of the culture medium. 
These supplementary examinations included assessing 
succinate overproduction in medium CM2 using model 
iML1515 and investigating succinate overproduction 
in iLB rich environment under aerobic conditions 
using both iJR904 and iML1515. The maximum rates of 
succinate growth-coupled production associated with 
these supplementary examinations are presented in 
Tables 4, 5, 6.

For practical applications, various evaluation indices, 
including product yield, SSP, and SoGC [55], and other 
important indices reflecting environmental and opera-
tional considerations, can be used to choose the most 
appropriate cases from the solutions found by FastKnock 
(Tables 7 and Table 8). In particular, the feasibility of  CO2 
biofixation and minimal production of undesired or toxic 
byproducts are also significant indexes for systems meta-
bolic engineering purposes. For instance, an engineered 
strain that can simultaneously fix  CO2 and produce a 
suitable biochemical might be preferred regarding envi-
ronmental considerations. When all solutions are avail-
able, the analysis and identification of such appropriate 
cases is easily possible.

Comparing FastKnock to OptKnock (case study: succinate 
overproduction in E. coli iJR904)
We analyzed FastKnock solutions in order to find the 
most appropriate outcomes based on three criteria, 
yield, SSP, and SoGC (Table 8). Additionally, the feasibil-
ity of  CO2 biofixation is also examined and the relevant 
results are summarized, where a negative  CO2 exchange 
flux represents a desirable  CO2 uptake rate. We com-
pared these best solutions obtained by FastKnock with 

Fig. 2 Production envelopes for the best solutions presented in Table 3 regarding succinate production from single to quintuple reaction deletions 
in iJR904. Knocking out more genes improves growth coupling. In particular, with quadruple and quintuple knockouts, significant production 
is guaranteed for any growth rate
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the associated OptKnock results as well as experi-
mental data available in the literature [71–73]. Note 
that OptKnock aims at, and terminates on, finding a 

single solution. Therefore, comparing it with FastKnock 
in terms of computational costs is not meaningful.

We found that a solution with the best production rate 
or an optimal solution of the optimization algorithms 

Table 4 The maximum rates of succinate growth-coupled production in iML1515 (Strain0 in CM2 cultivation medium)

Number of 
knocked out 
reactions

Deleted reactions Biomass 
formation rate 
 (h−1)

Succinate production 
rate (mmol.
gDW−1  h−1)

Deleted genes Co‑Knockout reactions

Single ATPS4rpp 0.25 12.73 b3735, b3737, b3738, b3732, 
b3733, b3736, b3734, b3731, 
b3739

–

Double ATPS4rpp, PGL 0.24 16.54 b3735, b3737, b3738, b3732, 
b3733, b3736, b3734, b3731, 
b3739, b0767

–

Triple PGI, ATPS4rpp, G6PDH2r 0.17 23.16 b4025, b3734, b3733, b3736, 
b3732, b3737, b3731, b3738, 
b3739, b3735, b1852

–

Quadruple PFL, ACALD, THD2pp, 
THD2pp

0.19 23.49 b0351, b1241, b0903, b3951, 
b2579, b3952, b3114, b0902, 
b1602, b2913

OBTFL, ’ALCD2x’, ’ALCD19’

Table 5 The maximum rates of succinate growth-coupled production in iJR904 in rich medium (Strain0 in LB cultivation medium)

Number of 
knocked out 
reactions

Deleted reactions Biomass 
formation 
rate  (h−1)

Succinate production 
rate (mmol.
gDW−1  h−1)

Deleted genes Co‑Knockout reactions

Single ADHEr 1.35 20.10 b1241 LCADi_copy2

Double F6PA, PFK 1.28 33.69 b0825, b3946, b3916, b1723 −

Triple ACKr, GLCpts, PYK 0.56 54.88 b2296, b3115, b1849, b1819, 
b2415, b2416, b1621, b1101, 
b2417, b1817, b1818, b1854, 
b1676

DHAPT, GART, PPAKr

Quadruple ACKr, ARGDC, GLCpts, PYK 0.56 64.72 b2296, b3115, b1849, b2938, 
b4117, b1819, b2415, b2416, 
b1621, b1101, b2417, b1817, 
b1818, b1854, b1676

GART, PPAKr, DHAPTs

Table 6 The maximum rates of succinate growth-coupled production in iML1515 in rich medium (Strain0 in LB medium)

Number of 
knocked out 
reactions

Deleted reactions Biomass 
formation 
rate  (h−1)

Succinate production 
rate (mmol.
gDW−1  h−1)

Deleted genes Co‑Knockout reactions

Single ARGDC 1.08 19.72 b4117 –

Double ARGDC, FADRx 1.05 22.09 b4117, b3844 FADRx, FE3Ri, FLVRx

Triple NDPK5, ASPTA, ARGDC 1.03 28.14 b0474, b2518, b0928, 
b4054, b4117

ADK1, NDPK2, ADNK1, 
NDPK3, NDPK6, DADK, 
ADK4, NDPK1, ADK3, NDPK4, 
NDPK7, NDPK8, TYRTA, 
PHETA1, LEUTAi

Quadruple NDPK5, PFL, LDH_D, 
ACALD

0.75 40.97 b0474, b2518, b2579, 
b3952, b0902, b3951, 
b0903, b3114, b1380, 
b0351, b1241

ADK1, NDPK2, ADNK1, 
NDPK3, NDPK6, DADK, 
ADK4, NDPK1, ADK3, NDPK4, 
NDPK7, NDPK8, OBTFL, 
ALCD2x, ALCD19
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such as OptKnock does not necessarily bring the best 
SoGC and the other desired indexes. However, by iden-
tifying all the possible solutions for the problem, Fast-
Knock allows a comprehensive analysis. For example, 
knocking out ADHEr, ATPS4r, and LDH_D is expected 
to lead to the best biomass formation rate (0.16  h−1) and 
the highest SoGC (3.01E-2   h−1), which is twice the best 
SoGC provided by OptKnock solutions while the other 
indices corresponding to this knockout are comparable 
with the best numbers shown in the table (i.e., a produc-
tion rate of 8.90 vs. 12.24  mmol.gDW−1.h−1, a yield of 
0.89 vs. 1.22, an SSP 1.42E-1 vs. 1.46E-1  h−1, and a  CO2 
exchange flux of −8.76 vs. −9.36  mmol.gDW−1.h−1). A 
relatively high value of SoGC can also be desirable from a 
dynamic perspective because it indicates that even under 
non-optimal conditions, the biosynthesis of the target 
biochemical is coupled with the growth of the production 
strain. This situation is usually encountered in batch and 
fed-batch cultivations in the logarithmic phase of growth.

A more striking example is the comparison between 
the PTAr, PYK, ATPS4r, and SUCD1i quadruple 
knockout identified by OptKnock with the two solutions 
with the best production rate (ADHEr, LDH_D, PFL, 
and THD2) and the best SoGC (ADHEr, LDH_D, HEX1, 
and THD2) identified by FastKnock. While the biomass 
formation rate of the FastKnock solutions (0.11, 0.13  h−1, 
respectively) are comparable with the OptKnock solution 
(0.16   h−1), the yield and SSP is an order of magnitude 
higher for FastKnock solutions. A serious issue with this 
OptKnock solution is the very low SoGC (1E-4   h−1), 
which indicates that the production rate would be hardly 
coupled with growth. In comparison, the predicted SoGC 
for FastKnock solutions are 2.85E-2 and 3.09E-2   h−1, 
respectively. Another disadvantage of OptKnock solution 
is a relatively high  CO2 production rate of 9.03  mmol.
gDW−1.h−1 while in the FastKnock solutions the  CO2 
exchange fluxes are −6.12 and −8.77  mmol.gDW−1.h−1, 
respectively.

Table 8 Comparison of FastKnock, OptKnock and experimental results reported in the literature for succinate production. The iJR904 
model (Strain0) is used in the in silico experimentations (M9 cultivation medium)

Knockout Knockout 
strategy

Method Biomass 
formation rate 
 (h−1)

Succinate 
production 
rate (mmol.
gDW−1  h−1)

yield SSP  (h−1) × 10 SoGC 
 (h−1) × 100

CO2 exchange 
flux (mmol.
gDW−1  h−1)

Triple ADHEr, LDH_D, 
PTAr

OptKnock [33],
FastKnock

0.08 9.37 0.94 0.75 0.79 −9.36 (uptake)

ADHEr, LDH_D, 
PFL

OptKnock,
FastKnock (best 
production rate)

0.12 12.24 1.22 1.46E 1.53 −5.87
(uptake)

PTAr, PYK, GLCpts OptKnock,
FastKnock

0.09 9.32 0.93 0.83 0.87 3.24
(production)

PFL, LDH_D, 
GLCpts

Experimental [71]
(production 
is lower 
than considered 
threshold)

0.16 0.71 0.07 0.11 0.11 16.78
(production)

ADHEr, ATPS4r, 
LDH_D

FastKnock
(best SoGC)

0.16 8.90 0.89 1.42 3.01 −8.76
(uptake)

Quadruple PTAr, PYK, ATPS4r, 
SUCD1i

OptKnock 0.16 1.18 0.11 0.18 0.01 9.03
(production)

ADHEr, LDH_D, 
PFL, THD2

FastKnock
(best production 
rate)

0.11 12.72 1.27 1.39 2.85 −6.12
(uptake)

ADHEr, LDH_D, 
HEX1, THD2

FastKnock
(best SoGC)

0.13 9.88 0.98 1.28 3.09 −8.77
(uptake)

Quintuple ADHEr, LDH_D, 
PTAr, PYK, GLCpts

OptKnock,
FastKnock

0.05 9.96 0.99 0.49 1.19 −9.51
(uptake)

ADHEr, LDH_D, 
PFL, ACKr, FORt

Experimental [71], 
FastKnock

0.08 9.57 0.95 0.76 0.80 −9.16
(uptake)

ADHEr, LDH_D, 
HEX1, THD2, DRPA

FastKnock
(best SoGC)

0.13 9.87 0.98 1.28 3.10 −8.76
(uptake)

ADHEr, LDH_D, 
GLUDy, PFL, THD2

FastKnock
(best production 
rate)

0.10 12.77 1.27 1.27 2.61 −6.17
(uptake)
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Among the quintuple knockouts, the predicted SSP 
and SoGC for one of the FastKnock solutions (ADHEr, 
LDH_D, GLUDy, PFL, and THD2) are almost twice those 
of the OptKnock solution (ADHEr, LDH_D, PTAr, PYK, 
and GLCpts) while the other indices are comparable.

An important concern about OptKnock is possible 
false positive outcomes due to different scenarios. 
Firstly, false positives could be obtained due to the 
associated linear programming problem, focusing 
on maximizing the target reaction flux neglecting 
minimum possible production flux. In other words, 
OptKnock relies on FBA, potentially leading to false 
positives by not considering flux variabilities [43]. In 
contrast, FastKnock could guarantee the minimum 
production flux, regarding FVA. The second scenario 
is about the nature of the associated primal bi-level 
optimization problem, which is reformulated in 
the form of a single-level Mixed-Integer Linear 
Programming (MILP) problem. To solve the MILP 
problem, OptKnock utilizes the branch and bound 
method, which may generate false positives and even 
pose a risk of the algorithm getting trapped in an 
infinite loop. In contrast, FastKnock employs a different 
approach based on a search problem to explore the 
entire solution space. With appropriate evaluation 
criteria, unlike OptKnock, if it fails to provide a 
solution, it implies that no valid solution exists for the 
given criteria.

It is also important to note that, in some cases, false 
positives stem from limitations of the models due to 
incomplete knowledge of the genotype–phenotype 
relationships of the (micro)organism at hand in the 
process of model development. In this case, any in 
silico strain design approach intrinsically produces false 
positives [19].

Comparing FastKnock to MCSEnumerator (case study: 
ethanol overproduction in E. coli iAF1260)
As mentioned previously, MCSEnumerator is a novel 
method for metabolic engineering based on the 
identification of minimal cut sets [50]. This approach 
applies a filtering step to reduce the computation time, 
which allows the user to find thousands (but not all) 
of the most efficient knockout strategies in genome-
scale metabolic models. MCSEnumerator can be 
used to find a large number of metabolic engineering 
interventions, but it has various drawbacks. In this 
section, we compare MCSEnumerator with FastKnock. 
To aid in this comparison, we consider the case study 
of ethanol production in E. coli iAF1260 GEM with 
an 18.5  mmol.gDW−1   h−1 glucose uptake rate under 
anaerobic conditions (iM9 medium) as presented in the 
MCSEnumerator publication.

We should discuss the effect of the MCSEnumerator 
thresholds on its solution set. It would not be feasible to 
apply MCSEnumerator using thresholds that are relaxed 
enough to find all the solutions (Supplement H). We illus-
trate this with an example in Fig. 3. The blue production 
envelope, which has the best SoGC value, is associated 
with a solution found by both MCSEnumerator and Fast-
Knock. The associated solutions (with the red and green 
diagrams), which are the worst cases among the shown 
envelopes, were not found by MCSEnumerator because 
of the production threshold considered. This illustrates 
the efficiency of the primary filtration of the MCSEnu-
merator method. The starting point might not be the best 
factor for filtering appropriate solutions. For example, the 
minimum production rate based on the orange envelope 
is similar to the green envelope in Region Y3, which is 
below the threshold considered for ethanol production 
flux. Nevertheless, the orange envelope may still be asso-
ciated with a proper solution due to its relatively high 
SoGC, but it was not found by MCSEnumerator.

Moreover, the predefined thresholds may result 
in the situation where some solutions obtained by 
MCSEnumerator are not necessarily and genuinely 
minimal. This implies that an appropriate solution with a 
cardinality of ’n’ might exist but goes undiscovered, while 
it may appear in some higher-order solutions (> n) that 
include irrelevant additional reactions.

While the MCSEnumerator algorithm and its modified 
versions may exhibit shorter execution times, the 
number of solutions they can provide, given certain 
settings, constitutes only a very small percentage of 
the total potential solutions. Therefore, comparing the 
MCSEnumerator and FastKnock algorithms based solely 
on execution time is not rational, as these algorithms 
neither yield the same output nor pursue the same 
objective.

Discussion
Overproduction of biochemicals of interest coupled with 
significant growth rates might be optimistic and may 
not always be easily achievable due to e.g., competing 
pathways in a metabolic network [43]. This can lead 
to weak coupling especially under suboptimal growth 
conditions. Alternatively, strong coupling requires 
that production must occur even without growth [14]. 
Specifically, product synthesis rate is said to be strongly 
coupled with biomass formation if the product yields of 
all steady-state flux vectors are equal to or larger than a 
predefined product yield threshold [15]. Accordingly, 
SoGC is defined as the square of the product yield per 
unit substrate divided by the slope of the lower edge of 
the production curve [55] (see Fig. 2).
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SoGC is a non-linear objective function and thus Opt-
Knock and most of the in silico strain design methods 
cannot be used to find knockouts with optimal SoGC. 
OptGene [37] is a heuristic approach that can be used to 
identify a single knockout strategy with optimal SoGC 
[55]. However, knocking out the single identified solu-
tion by OptGene may not be practically feasible e.g., due 
to the genes’ loci. Therefore, identification of all knock-
out strategies by FastKnock is desired and provides the 
expert experimentalists with the opportunity to choose 
from a short list of knockout strategies that are filtered 
for a relatively high SoGC, SSP, yield, etc. This shortlist 
can be investigated for advantageous solutions in terms 
of environmental considerations such as  CO2 biofixa-
tion [71, 72], minimal production of undesired or toxic 
byproducts, practicality of knocking or silencing genes, 
etc. (Table 8) [6, 55, 73–75].

We proposed an efficient next-generation algorithm, 
FastKnock, which identifies all proper reaction or 
gene knockout strategies (with predefined maximum 
number of deletions) for the overproduction of a desired 

biochemical. We reached this goal by significantly 
pruning the search space without omitting any solutions. 
For example, in our experiments, FastKnock was required 
to explore only 1% of the search space in the pruned 
model when identifying all triple-knockout strategies. 
The rate of this reduction increases as more reactions are 
knocked out (e.g., about 0.1% for quadruple-knockout 
strategies and about 0.01% for quintuple-knockout 
strategies) (Table 1). This drastic reduction of the search 
space enables our novel FastKnock method to find the set 
of all possible solutions in a feasible time duration.

Finding the best and most suitable trade-off between 
cellular growth and the production of the desired 
biochemical is one of the key benefits of FastKnock 
results. Moreover, determining all possible solutions 
allows for the selection of the most appropriate strategy 
based on any desired evaluation index, including 
product yield, SSP, and SoGC (Tables  7 and 8). This is 
an important and useful feature of our search strategy, 
especially for practical applications [59].

Fig. 3 Five exemplar production envelopes for strategies identified by FastKnock for ethanol production in iAF1260, which is partitioned into four 
regions based on the growth rate (x axis) and the production flux (y axis) as in [15]. The horizontal dashed line indicates the threshold for production 
rate as considered in [15], and the vertical dashed line indicates the growth rate threshold. SoGC(× 100), product yield (Yp/s) and SSP(× 10) 
of the quadruple knockout strategies are shown in the top right legend. Unlike FastKnock, MCSEnumerator finds none of these strategies 
except the one shown in blue
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We compared FastKnock to MCSEnumerator [50], 
which has been shown to find more efficient solutions 
than the MCS methods [76–78]. We found that the solu-
tions identified by MCSEnumerator may not be minimal. 
Also, due to initial filtering, MCSEnumerator misses 
solutions that may be practically more appropriate than 
the best solutions it finds. In comparison, FastKnock 
identifies all minimal solutions, which can be mined later 
based on any desired criteria.

When all solutions are available, one interesting analy-
sis that can be conducted is to identify the reactions or 
genes that are common among a relatively large number 
of solutions. For instance, in the case of iJR904, to pro-
duce succinate in iM9 under anaerobic conditions (CM2), 
about 70% of solutions include at least one of ADHEr or 
PFL  reactions (Fig.  4). Moreover, when three or more 
reactions are to be deleted, the best results in terms 
of the succinate production rate include both  ADHEr 
and  PFL (Table  7). Collectively, this analysis suggests 
that ADHEr  and  PFL reactions support pathways that 
compete with succinate production, and these path-
ways are blocked when ADHEr and  PFL are eliminated 
[79, 80]. Based on this analysis, we suggest using a heu-
ristic for higher-level knockout combinations in which 
one or more reactions (e.g., ADHEr or PFL) are removed 
in searches for six or more knockouts. In this way, one 
would need to search for fewer reactions to knockout. 
We believe this heuristic would reduce the search space 
by an order of magnitude at the expense of losing not 
more than half of the solutions.

Conclusion
While in silico strain design results do not necessarily 
lead to in  vivo overproduction, obtaining all possible 
knockout strategies is critical for determining the best 
practical and most efficient strategy. The FastKnock 
algorithm is a general framework that can be used to 
overproduce any metabolite. It is not limited by factors 

such as richness and complexity of the cultivation 
conditions or large size of the metabolic network of the 
strain of interest. FastKnock identifies strategies, if exist, 
with a production rate higher than the desired threshold 
determined by the user.
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