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Abstract
Background Identifying individual characteristics based on trace evidence left at a crime scene is crucial in forensic 
identification. Microbial communities found in fecal traces have high individual specificity and could serve as 
potential markers for forensic characterization. Previous research has established that predicting body type based 
on the relative abundance of the gut microbiome is relatively accurate. However, the long-term stability and high 
individual specificity of the gut microbiome are closely linked to changes at the genome level of the microbiome. No 
studies have been conducted to deduce body shape from genetic traits. Therefore, in this study, the vital role of gut 
bacterial community characteristics and genetic traits in predicting body mass index (BMI) was investigated using gut 
metagenomic data from a healthy Chinese population.

Results Regarding the gut microbial community, the underweight group displayed increased α-diversity in 
comparison to the other BMI groups. There were significant differences in the relative abundances of 19 species 
among these three BMI groups. The BMI prediction model, based on the 31 most significant species, showed 
a goodness of fit (R2) of 0.56 and a mean absolute error (MAE) of 2.09 kg/m2. The overweight group exhibited 
significantly higher α-diversity than the other BMI groups at the level of gut microbial genes. Furthermore, there were 
significant variations observed in the single-nucleotide polymorphism (SNP) density of 732 contigs between these 
three BMI groups. The BMI prediction model, reliant on the 62 most contributing contigs, exhibited a model R2 of 
0.72 and an MAE of 1.56 kg/m2. The model predicting body type from 44 contigs correctly identified the body type of 
93.55% of the study participants.

Conclusion Based on metagenomic data from a healthy Chinese population, we demonstrated the potential of 
genetic traits of gut bacteria to predict an individual’s BMI. The findings of this study suggest the effectiveness of a 
novel method for determining the body type of suspects in forensic applications using the genetic traits of the gut 
microbiome and holds great promise for forensic individual identification.
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Introduction
Height, weight, and body type are important characteris-
tics for identifying individuals in forensic science, as they 
help to narrow down suspects and provide clues and a 
basis for determining culpability [1]. BMI is an interna-
tionally recognized measure of human body type, calcu-
lated by dividing weight (kg) by the square of height (m2), 
expressed as kg/m2. Because it visually represents an 
individual’s body shape, it is sometimes used to describe 
the appearance of criminal suspects. Body type is related 
to height, weight, bone structure, and other factors. 
Forensic anthropology and forensic genetic approaches 
can be used to indirectly indicate a person’s body type by 
estimating their height and weight. Forensic anthropol-
ogy methods determine height through regression equa-
tions derived from direct measurements or CT scans of 
the long bones of the upper and lower extremities, ster-
num, and vertebrae [2–4]. As an example, Giurazza and 
colleagues [2] employed a regression equation contain-
ing three variables (femur length, cranial base length, and 
distance from the posterior cranial base to the inferior 
nasal bone point) to generate the most accurate infer-
ence, and it had an average absolute error value (E%) 
of 2.9%. The regression equation with a single variable 
(femur length) had an E% of 3.2%. However, the fact that 
the skull and femur may not be discovered concurrently 
makes the one-way regression equation more applicable 
in practical applications. Weight was estimated using dif-
ferent equations based on femur dimensions, double iliac 
width, and height, as described in previous studies [5–7]. 
The weight prediction errors of the methods displayed a 
strong correlation with individual BMI: the weight pre-
diction error was 16.7% when the entire sample was 
considered, whereas it was reduced to 9.6% when only 
individuals with normal BMI were considered. Morpho-
metric methods for estimating height and weight, as dis-
cussed earlier, may involve subjective factors and require 
prior measurement of the skeletal information of the 
subject, which has some limitations in forensic practice. 
Forensic genetics employs SNP loci related to height to 
formulate models for predicting it. In their study, Liu et 
al. [8] constructed a prediction model for height using 
180 height-related SNPs, which displayed a moderate 
accuracy range (AUC = 0.75, R2 = 0.12). Subsequently, a 
more accurate prediction model was obtained by using 
689 height SNPs (AUC = 0.79, R2 = 0.21). The results of the 
study indicated that an increase in the number of height-
related SNP loci led to an improvement in the accuracy 
of the height prediction model. In their study, Jiao et al. 
[9] utilized 547 height-related SNP loci from a European 
population to develop a height prediction model for the 
Chinese population. This model, with an AUC of 0.67, 
was effective in predicting the height of Han Chinese 
men in northern China. However, there is currently no 

relevant research in forensic anthropology and forensic 
genetics where body type was directly quantified.

Dietary factors, in addition to genetic factors [10], 
mainly influence body type. Therefore, predicting per-
sonal characteristics solely based on morphology and 
genetics has limitations. Forensic microbiology has gar-
nered attention from forensic scientists as an emerging 
field in recent years. Changes in the gut microbiome may 
offer new opportunities for predicting personal body 
type. A previous study [11] showed that dietary habits 
influence the gut microbiota, which in turn affects obe-
sity phenotypes. Numerous studies have also suggested 
that obesity is influenced by genetic factors [12] and per-
sonal factors such as gender, age, ethnicity [13], stress 
[14], and dietary habits [10]. However, of all these factors, 
dietary habits are deemed a significant and indispens-
able influence. Hence, the gut microbial community may 
play a mediating role in the relationship between diet and 
obesity phenotypes. A large-scale study [15] confirmed 
differences in gut microbiota composition, function, and 
ecological networks in relation to BMI. The study showed 
that the underweight group had significantly higher 
α-diversity of the bacterial community than the other 
BMI groups. Additionally, obese individuals were found 
to have an increased susceptibility to the enrichment of 
butyrate-acetoacetate CoA-transferase. These findings 
suggest a close relationship between the gut microbial 
community and body type. It may be possible to predict 
body type based on gut microbial community structure. 
Wang et al. [16] confirmed the forensic application of 
predicting body type based on gut bacteria using 16  S 
rRNA sequencing technology to assess microbiota diver-
sity in healthy adults. They also developed a linear regres-
sion model that accurately predicted individual body 
types with 74% accuracy. The applicability of this study 
to forensic practice is limited by the inclusion of only 54 
volunteers, all local students between the ages of 20 and 
30 living in the same school in the Chengdu area. The 
abovementioned studies focused on the structure and 
abundance of microbial communities. However, changes 
at the microbial genome level have also been shown to be 
closely associated with individual characteristics.

Metagenomic sequencing allows for a thorough exam-
ination of microbial composition, abundance, gene 
function, and metabolic pathways in various habitats. 
Compared to 16 S rRNA gene sequencing, metagenomic 
sequencing increases sequencing depth, comprehensive-
ness, and accuracy and has important benefits for iden-
tifying microbial species and mining genomic data [17]. 
According to Chen et al. [18], metagenomic sequenc-
ing data revealed that the genetic characteristics of the 
gut microbiota are stable over time and highly specific 
to individuals. This information can be used to create a 
host “microbial fingerprint” and correctly classify fecal 



Page 3 of 14Liang et al. Microbial Cell Factories          (2023) 22:250 

samples with 85% accuracy four years apart using genetic 
traits such as gut microbial SNP haplotypes and DNA 
sequence structure variances (SVs). In the same vein, 
Schloissnig et al. [19] showed that genetic characteristics 
of the microbiota can serve as “microbial fingerprints” 
of individuals. By analyzing samples from the same indi-
vidual at varying times of the year, SNP patterns in the 
human gut were found to be relatively stable over time, 
whereas the structure and abundance of the microbial 
community were not. The findings suggest that the sta-
bility, specificity, and predictability of individual traits are 
greater at the gene level of gut microbial traits than traits 
related to microbial community diversity.

This study included adults from different provinces in 
China aged between 21 and 72 years to investigate the 
association between individual BMI and gut microbial 
characteristics using second-generation gut metage-
nomic sequencing data. The aims of this study were to 
develop a population BMI prediction model and a body 
type estimation model based on various indicators, such 
as the density of bacterial SNPs, and to provide a novel 
method for predicting the BMI characteristics of sus-
pects in criminal investigations for practical forensic 
applications.

Materials and methods
Selection and retrieval of data
A literature search was performed using the PubMed [20] 
database. The search was limited to research articles writ-
ten in English on healthy Chinese populations with freely 
available full text between June 2012 and June 2022, using 
the following terms: ‘metagenome,‘ ‘obesity,‘ and ‘gut,‘ and 
excluding literature reviews. To minimize systematic 
errors prior to analyzing the data, we chose fecal metage-
nomic data that were sequenced exclusively on the Illu-
mina platform. This approach allowed us to amalgamate 
all available metagenomic data for analysis. Raw data 
from three studies in the NCBI database were aligned 
based on sequence and retrieved with correspond-
ing phenotype information mentioned in the literature. 
The accession numbers of the papers used in the study 
included PRJNA539850, SRA045646, and PRJEB6997. 
We downloaded the raw sequencing data from the NCBI 
database using SRA Toolkit (v3.0.0) software for further 
analysis [21].

Processing of metagenomic sequencing data
The analysis protocol used in this study was constructed 
based on prior research [22]. All metagenomic data from 
the three cohorts were processed together as a single 
dataset.

1. The SRA file (raw sequencing data) format 
was converted to the Fastq file format using 

parallel-fastq-dump (v2.11.0) with the following 
parameters: -t 12 -O./--split-3 --gzip.

2. FastQC (v0.11.9) was used to assess the quality of 
the metagenomic data [23] and establish data quality 
control protocols. Fastp (v0.23.2) was used for quality 
control [24]. First, each segment of the sequence was 
at least 45 bases in length, and the average quality 
of the sequence was not below 20. Bases that had a 
mass fraction of less than 20 were removed, starting 
from the 3’ end. A 5-mer sliding window was applied, 
and if the average quality of the window fell below 
10 at a specific position, that section of the sequence 
was eliminated (parameters: -l 45 -q 20 -e 20 -W 5 -r 
10).

3. Since there are no standard microbial reference 
genomes currently available, we constructed 
reference genomes for sequence alignment. 
MetaPhlAn (v3.1.0), based on approximately 
17,000 reference genomes [25], was used to 
annotate the bacterial species in each sample. The 
genome sequences of these microbial species were 
downloaded from the NCBI genome database using 
ncbi-genome-download (v0.3.1) and then combined 
to form the reference genomes for this study.

4. BWA-MEM (v0.7.17) was used to align each sample 
sequence to the reference genome. We only kept 
the unique alignments [26] (parameters not labeled 
indicate that the software runs according to the 
default parameters).

5. SAMtools (v1.15.1) was used to convert alignment 
files in SAM format to BAM format [27], and 
Picard was used for annotation and filtering [28]. 
The parameters employed for SAMtools and 
Picard are “view -q 1 -bS” and “MarkDuplicates 
REMOVE_DUPLICATES = true MAX_FILE_
HANDLES_FOR_READ_ENDS_MAP = 65000 
VALIDATION_STRINGENCY = LENIENT”, 
respectively.

6. BCFtools (v1.15.1) was used to retrieve SNPs 
and determine their number in all samples, and 
VCFTools (v0.1.16) was used to filter the data to 
obtain high-quality SNPs [29]. Indel sequences 
were skipped, and data regarding ineligible loci 
were removed. The data were filtered based on the 
following criteria: minimum depth of coverage of 
10, minimum of 4 reads supporting mutations, 
minimum quality score of 15, and minimum 
comparison quality of 15. The parameters employed 
for BCFtools and VCFTools were “-vm -Oz -V 
indels” and “-H -f +/d = 10/a = 4/Q = 15/q = 15”, 
respectively.
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Bioinformatics analysis and visualization
We conducted all statistical analyses in the Python 
(v3.11.2) and R (v4.2.2) environments. We expressed 
changes at the gut microbial community level as the rela-
tive abundance of species and changes at the gene level as 
the SNP density (number of SNPs per base per kilobase 
pair) of overlapping clusters (contig). After applying the 
SNP search method, we obtained multiple VCF format 
files, with each file representing a sample that included 
the contig length and the number of SNPs on the contig. 
To calculate the total SNP density of all contigs in each 
sample and the SNP density of each contig, we employed 
Python and used the SNP density formula: SNP density 
= (N × 1000)/L, where N represents the number of SNPs 
on the contig and L represents the length of the contig. 
We used R scripts to estimate α-diversity (species and 
genetic diversity within a sample) and β-diversity (species 
and genetic diversity between samples). Shannon (even-
ness estimation) and Ace (richness estimation) indices 
were calculated, and box plots were plotted using the 
‘vegan’ R package. Furthermore, the Wilcoxon test was 
utilized to assess differences between groups. The analy-
sis of our samples’ beta diversity was conducted using the 
Bray‒Curtis distance. We used an analysis of similarities 
(Anosim) to evaluate whether there were any noteworthy 
dissimilarities between groups. These dissimilarities were 
visualized using principal coordinate analysis (PCoA) 
plots. We also used the Spearman correlation test to 
assess the association between SNP density and individ-
ual BMI. Benjamini‒Hochberg (BH) was employed for 
correcting multiple testing to control for the false discov-
ery rate (FDR). We considered a corrected p value < 0.05 
to be statistically significant. We used the R package 
“tidyverse” to compare the relative abundance of species 
and SNP density of genes in each study group.

The random forest (RF) is a robust machine learning 
technique [30]. Using RF (the “randomForest” package 
of R), the relative abundance of taxa in the gut micro-
biota of healthy populations was classified and regressed 
against their actual BMI. The top 500 species with the 
highest sum of relative abundance were selected as indi-
cators for building the model. After that, the SNP density 
of contigs in the gut microbiota of healthy populations 
was classified and regressed against their actual BMI. 
The top 500 contigs with the highest correlation rankings 
were selected as indicators to build the prediction model. 
During 100 iterations of the RF model, bacterial taxa 
and contigs were ranked based on feature importance. 
The number of biomarkers was determined by 10-fold 
cross-validation using the rfcv() function to minimize 
the model error. Based on the generated biomarkers, RF 
regression and classification models were constructed. 
Model performance for training and testing was deter-
mined using mean absolute error (MAE) and R2.

Results
Overview of research data
The characteristics of the studies included in Table  1, 
published between 2012 and 2022, are presented. The 
participants were from various provinces in China, and 
a total of 308 independent fecal samples were generated 
for gut metagenomic analysis. After data analysis, we 
obtained the species annotation files and VCF files of 308 
samples, which included information on the name and 
relative abundance of each species (Additional file 2), as 
well as the number and length of contigs for the 735 spe-
cies. The sample ID and corresponding BMI information 
for the 308 case samples are also shown in Additional 
file 2. We calculated the SNP densities of contigs using 
Python for all samples and obtained a total of 81,881 

Table 1 Overview of data included in the study
Study ID Age(years)

Mean ± SD
Sex BMI (kg/m2)

Mean ± SD
Stool Sample Col-
lection Method 
and Storage

Se-
quenc-
ing 
Platform

Zeng2021 [31]
DOI:https://doi.org/10.1099/mgen.0.000639

44.7 ± 9.1 93♀
57♂

27.44 ± 2.25 Collected from 
sterile stool con-
tainers and frozen 
at -80℃ (1)

Illumina

Zhang 2015 [32]
DOI:https://doi.org/10.1038/nm.3914

42.9 ± 8.4 49♀
20♂

23.62 ± 3.53 Collected in hos-
pital and stored at 
-80℃ (2)

Illumina

Qin 2012 [33]
DOI:https://doi.org/10.1038/nature11450

40.8 ± 12.8 46♀
43♂

21.23 ± 3.17 Collected at home 
and frozen − 80℃ 
(3)

Illumina

(1). During physical examination, fresh stools were collected from individuals using sterile stool containers. Approximately 5  g stool from each individual was 
obtained using swabs (Huachenyang Technology). The stool samples were preserved in stool collection tubes (Axygen), and then transferred to a − 80 °C refrigerator 
(DW-86L626; Haier) within half an hour.

(2). Fecal samples were collected at Peking Union Medical College Hospital, transported frozen, and extracted at BGI-Shenzhen as Qin 2012 [33] described.

(3). Fresh faecal samples were obtained at home, and samples were immediately frozen by storing in a home freezer for less than 1  day. Frozen samples were 
transferred to BGI-Shenzhen, and then stored at -80 °C until analysis.

https://doi.org/10.1099/mgen.0.000639
https://doi.org/10.1038/nm.3914
https://doi.org/10.1038/nature11450
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contigs (Additional file 3). Of these, 767 had a statistically 
significant correlation with individual BMI. For subse-
quent analyses, we selected the top 500 species with the 
highest relative abundance sums as well as the top 500 
contigs with the strongest correlations. Participants were 
categorized into three groups according to their BMI 
[16]: LW (underweight): BMI < 18.5 kg/m2, NW (normal 
weight): 18.5  kg/m2 ≤ BMI < 24.0  kg/m2, and HW (over-
weight): BMI ≥ 24.0 kg/m2.

Analysis of the differences in microbial communities 
among BMI groups
Alpha diversity was used to indicate changes in the over-
all gut microbial community across the three BMI groups. 
The Shannon index (Fig.  1a) and Ace index (Additional 
file 1: Figure S1a) were higher in the underweight group 
and lower in the overweight group than in the other 
groups. However, there was no significant difference in 
α diversity between the BMI groups. Beta diversity was 
measured with Bray‒Curtis distance and visualized with 
PCoA (p = 0.001). The classification between the normal 
weight and overweight groups, as well as between the 
underweight and overweight groups, showed significant 
differences (Fig. 1b). Most samples clustered within their 
own groups, implying that the overweight group had a 
different overall gut microbial community structure than 
the other two groups. Moreover, most of the samples in 
the underweight group formed a cluster with the nor-
mal weight group, and no clear distinction was observed 
between them.

Differences in the composition of gut microbial com-
munities were analyzed. The fecal samples contained 
12 phyla and 735 species. In each BMI group, the major 
phyla of the bacterial community were Bacteroide-
tes, Firmicutes, Proteobacteria and Actinobacteria. The 
sum of the abundances of Bacteroidetes and Firmicutes 
accounted for more than 90% of the total (Fig.  2). The 
abundance of Bacteroidetes in the normal weight group 
was lower than that in the other two groups, and the 
abundance of Firmicutes was lower than that in the nor-
mal weight group in both the underweight and over-
weight groups, but no significant difference was observed 
between the groups. The abundance of Actinobacteria 
showed a significant difference between the underweight 
group and both the overweight and normal weight 
groups. The ratio of Firmicutes to Bacteroidetes (F/B) was 
calculated and was lower in the underweight and over-
weight groups than in the normal weight group. Correla-
tion analyses between the F/B ratio and BMI showed no 
meaningful associations (Additional file 1: Figure S1c). 
Differences in taxonomic units in the gut microbiota at 
the species level were assessed. The most abundant spe-
cies were Prevotella copri, Bacteroides vulgatus, Bacte-
roides uniformis, Bacteroides plebeius, Faecalibacterium 
prausnitzi, Bacteroides stercoris, Bacteroides dorei, 
Eubacterium rectale, Lachnospira pectinoschiza, and 
Alistipes putredinis, as shown in Fig. 2.

Figure  3 illustrates differences in gut microbial com-
munities between each BMI group, with a total of 19 
species exhibiting significant differences between the 

Fig. 1 Comparison of gut microbial diversity at the species level. The Shannon index represents α-diversity, and principal coordinate analysis (PCoA) 
based on the Bray‒Curtis distance represents β-diversity. The overweight group is designated pink, the normal weight group is designated yellow, and 
the underweight group is designated green (Wilcox test, NS: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001)
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groups. Participants in the overweight group had a sig-
nificant increase in the abundance of one species, and 
those in the underweight group had a significant increase 
in the abundance of seven species, as shown in Fig.  3a. 
The comparison between the overweight group and 
normal weight group revealed a statistically significant 
increase in the abundance of three species in the over-
weight group and seven species in the normal weight 
group (Fig. 3b). In contrast, the analysis of the difference 

between the normal weight group and the underweight 
group revealed a significant increase in the abundance of 
only one species in the normal weight group (Fig. 3c).

Metagenomic analysis offers the advantage of exam-
ining the gut microbiota at the gene level to study its 
connection to the host. Previous studies have analyzed 
the genetic diversity in the gut microbiota of healthy 
and nonhealthy participants in terms of the number of 
genes with changes at the gene level [34]. We refer to this 

Fig. 2 Species composition in all samples. (i) Inner: pie chart of phylum composition of all samples. (ii) Outer: a doughnut chart of species composition in 
all samples, with the top ten species listed. All species belonging to the same phylum are grouped and labeled with a gradient of color for the correspond-
ing phylum in the inner pie chart. The names and proportions of each species are marked in the corresponding positions. Prevotella copri and Bacteroides 
vulgatus were the most common species in the intestine
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literature to examine the correlation between gut micro-
biota and host BMI based on the density of SNPs in the 
contig with changes at the gene level. First, we analyzed 
the overall changes in the gene levels of gut microbiota 
in each BMI group. The Shannon index (Fig. 4a) and Ace 
index (Additional file 1: Figure S1b) of the overweight 
group were significantly higher than those of the other 
two groups. Of note, the difference between the over-
weight and normal weight groups was the most signifi-
cant. In summary, the α diversity of the overweight group 
was the highest among the three groups, which is differ-
ent from our previous findings regarding species abun-
dance. The PCoA revealed clear differentiation between 
each BMI group (p = 0.001), with the samples cluster-
ing separately within the groups. Only a small number 
of overweight samples clustered in the normal weight 
group, as shown in Fig. 4b. Differences in gut microbiota 
gene levels were assessed between BMI groups. Among 
the total of 372 contigs with significant differences 
between groups (Additional file 4), we observed a signifi-
cant increase in SNP density for 10 contigs in overweight 
participants and 3 contigs in underweight participants 
when comparing the overweight and underweight groups 
(Fig.  4c). Although there was a significant difference of 
359 contigs in SNP density between the overweight and 
normal weight groups, we restricted our analysis to the 
top 20 contigs showing differences. We observed a sig-
nificant increase in the SNP density of 19 contigs for 

overweight participants and 1 contig for normal weight 
participants (Fig.  4d). Our results revealed that there 
were significantly more genetic trait differences than 
community trait differences between BMI groups.

Building prediction models
Building three BMI prediction models
All data were randomly divided into an 80% training set 
and a 20% test set. A model for predicting BMI based 
on gut microbiota was built by regressing the relative 
abundance of gut microbiota on BMI at the species level. 
The test set of the prediction model had an R2 value of 
0.64 and an MAE of 2.15  kg/m2. To minimize predic-
tion errors and exclude biomarkers that do not impact or 
negatively affect the model, we employed tenfold cross-
validation to evaluate the importance of bacterial taxa 
as biomarkers in predicting BMI. Our cross-validation 
analysis demonstrated that the model’s prediction error 
significantly decreased with an increase in the number of 
species used until it exceeded 31 (Fig. 5a). The 31 most 
important species are displayed in Additional file 1: Fig-
ure S2. In the BMI prediction model, Bacteroides plebeius 
was the most important species, followed by Prevotella 
copri, Elizabethkingia bruuniana, and Clostridium sp. 
AM22_11AC. Using these 31 biomarkers, we developed 
a new BMI prediction model with an R2 of 0.56 and an 
MAE of 2.09 kg/m2, as shown in Fig. 5b.

Fig. 3 Comparison of gut metagenomes of different BMI groups at the species level. Significant differences in the relative abundance of species were 
observed between BMI groups (p < 0.05). HM: overweight group; NM: normal weight group; LM: underweight group
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Fig. 5 The prediction of BMI by random forest regression analysis. (a) Model cross-validation error rate. (b) Species abundance regression model results 
with an R2 of 0.56 and an MAE of 2.09. (c) Species abundance and single-sample SNP density regression model results with an R2 of 0.62 and an MAE of 
2.06. (d) Contig SNP regression model results with an R2 of 0.72 and an MAE of 1.56. The green line represents the species level, the yellow line accounts 
for both the species and gene level, and the orange‒red line pertains solely to the gene level

 

Fig. 4 Differential analysis of gut microbiota in various BMI groups at the gene level. (a) The Shannon index shows α-diversity. (b) Principal coordinate 
analysis (PCoA) based on the Bray‒Curtis distance shows β-diversity (Wilcox test, NS: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001). (c) (d) Contigs with 
significant differences in SNP density between different BMI groups. HM: overweight group; NM: normal weight group; LM: underweight group
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This paper demonstrates that genetic characterization 
of the gut microbiota is more stable than taxon abun-
dance and may be a more effective predictor of individual 
traits. We used SNP densities to represent changes at 
the genetic level of the gut microbiota. Total SNP den-
sity was calculated for each sample using Python, and it 
was combined with species abundance as a metric for 
predictive modeling. Tenfold cross-validation was used 
to minimize cross-validation error while selecting the 
31 biomarkers that contributed the most to the regres-
sion model (Fig.  5a). The R2 of the model test set was 
0.62 with an MAE of 2.06  kg/m2 (Fig.  5c). The species 
that most contributed to the predictive model was Pre-
votella copri, followed by Bacteroides plebeius and Eliza-
bethkingia bruuniana. The fourth highest contribution 
was the individual sample SNP density. The inclusion of 
genetic indicators resulted in a slight improvement in the 
model’s accuracy, suggesting that genetic characteristics 
of the gut microbiota may be more effective in predicting 
actual BMI values.

Therefore, the SNP density of each contig in all samples 
was obtained through Python computation and used 
as a biomarker to construct an individual BMI predic-
tion model with the RF machine learning algorithm. 
The R2 of the model test set was 0.73 with an MAE of 
1.52  kg/m2. Through tenfold cross-validation, we deter-
mined that the prediction model constructed with 62 
contigs had the lowest error (Fig.  5a). Information on 
the species corresponding to the top 62 most significant 
contigs was obtained. The analysis revealed that the top 

five significant contigs were two from Parabacteroides 
distasonis and three from Lachnospira eligens. Prevotella 
copri exhibited the highest contig count, with 17. The 
selected contigs were used to reconstruct the predictive 
BMI model. The ’R2 of the model was 0.72 with an MAE 
of 1.56 kg/m2 (Fig. 5d).

Prediction of three body types (LW, NW, HW)
Using the RF classification algorithm and based on the 
two biomarkers of species relative abundance and contig 
SNP density, we built separate body type prediction mod-
els. All data were randomly divided into an 80% training 
set and a 20% test set. Through tenfold cross-validation, 
44 imperative biomarkers were selected by the two clas-
sification models. Interestingly, 70% of these biomarkers 
were also among the top markers identified by the BMI 
prediction model. A total of two confusion matrices 
(Fig.  6) were obtained. The accuracy of predicting body 
shape based on the species abundance index in the test 
set was 80.65% (Fig.  6a), while the accuracy of predict-
ing body shape based on the SNP density index was as 
high as 93.55% (Fig. 6b). The accuracy of the latter body 
shape prediction was significantly higher than that of the 
former. Moreover, the prediction error rate decreased 
for both the overweight and normal weight groups, with 
100% of the samples in the normal weight group being 
predicted correctly. Our results are consistent with previ-
ous findings for BMI prediction, which indicated that the 
SNP density model was the most accurate predictor.

Fig. 6 The prediction of body type by random forest classification analysis. a is the species abundance model, and 80.65% of the individuals were cor-
rectly predicted. b is the contig SNP density model, and 93.55% of the individuals were correctly predicted. HM: overweight group; NM: normal weight 
group; LM: underweight group
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Discussion
The gut microbial community is closely related to human 
health, as it is the largest and most complex microbial 
system in the human body. The number of microbial cells 
in the human gut is ten times greater than the number 
of cells in the human body [35]. The large number of gut 
microbiota contains much more information than tradi-
tional human DNA genetic markers. However, effective 
methods for interpreting and analyzing this informa-
tion are currently lacking. For instance, in some specific 
real-life cases, feces may be the only valuable physical 
evidence that remains at the crime scene. However, iden-
tifying human DNA in feces is challenging due to inhibi-
tors, degradation, and low concentrations of template 
DNA [36]. The gut microbiota may aid in locating sus-
pects if it can be used to accurately infer their personal 
characteristics. Thus, the gut microbiota has potential as 
a promising new direction for solving challenging cases 
or as a crucial clue in unique circumstances.

Most current research on individual characteristics 
such as age [37] and body type [16] based on microbiome 
information has focused on the species level. A com-
monly used strategy is to collect species data from all 
samples using second-generation sequencing technology. 
Here, the α-diversity and β-diversity of microbial com-
munities were then analyzed based on species abundance 
to explore intra- and interindividual diversity. Differ-
ences in microbial community composition and abun-
dance between groups were also analyzed, and a model 
to predict individual characteristics was created using 
taxa with significant differences. However, it has been 
shown that microbial gene-level variation is also closely 
linked to individual traits. Genetic traits at the gene level 
are more stable over time and more specific to each indi-
vidual than the diversity of the gut microbial community 
[18].

Therefore, the aim of this study was to establish the 
correlation between species community characteristics, 
genetic traits and BMI. We assessed the α and β diver-
sity of gut microbial communities at the species and 
gene levels to reflect changes in microbial communities. 
Whether there were differences in microbial diversity 
within and between groups at the species and gene lev-
els was explored. We analyzed the major bacteria at the 
species level and compared them with previous studies 
to identify similarities and differences. Specific bacte-
rial and gene ANOVAs were performed at the species 
and gene level to examine the bacteria and genes that 
showed significant differences within each BMI group. 
These findings provide a theoretical basis for developing 
predictive models. Finally, we constructed an RF model 
using selected biomarkers and compared the accuracy of 
the species and gene models in predicting BMI and body 
type.

Using the same sequencing platform can minimize 
systematic errors in the analysis. We identified healthy 
Chinese populations from the database to serve as study 
participants based on gut metagenomic data obtained 
through the Illumina sequencing platform. Furthermore, 
the phenotypic information of each sample correspond-
ing to the database must be clearly stated in the litera-
ture. Subject to the strict screening conditions described 
above, a total of 308 fecal samples from healthy Chinese 
volunteers with metagenomic data were included in the 
study. Body type can serve as a descriptive data point 
for suspects’ appearances, allowing forensic scientists 
to limit the pool of suspects. Recent studies have dem-
onstrated a correlation between body type and the com-
position of the gut microbial community [38–41]. We 
examined the gut microbial community diversity in vari-
ous BMI groups and discovered that α-diversity declines 
with increasing BMI, while not having significant differ-
ences between each BMI category. This suggests that the 
richness and evenness of gut microbes tend to decline 
with increasing BMI. A study [16] that examined gut 
microbiota diversity to predict BMI in Chinese university 
students displayed findings similar to ours. Specifically, 
BMI demonstrated a slightly negative association with 
gut microbiota α-diversity, as supported by a Pearson 
correlation. Other studies with similar subgroup types to 
ours have shown mutually inconsistent results [42, 43]. 
Yun et al. [43] found that the overall α-diversity of study 
participants significantly decreased as BMI increased 
in a large Korean cohort based on a comparative analy-
sis of the gut microbiota in relation to BMI. According 
to a Japanese study [42], microbial diversity and richness 
were significantly higher in obese volunteers than in non-
obese volunteers. This could be attributed to the influ-
ence of external factors on gut microbes, such as place of 
residence [44], health status [45], and mental stress [46]. 
Furthermore, a study indicated that there are differences 
in the gut microbiota among various populations in the 
United States, possibly due to cultural dietary adapta-
tions [47]. Despite being Asian countries, China, Japan, 
and Korea have different dietary cultures that could 
explain the inconsistent results in the aforementioned 
studies.

Obesity is associated with an abundance of Firmicutes 
and Bacteroidetes, as well as the F/B ratio, as demon-
strated by numerous studies. In our study, overweight 
participants had a lower abundance of Firmicutes, 
higher abundance of Bacteroidetes, and a reduced F/B 
ratio compared to normal weight participants. However, 
these changes were not statistically significant, which is 
in line with the results of a large cohort study in Korea 
[43]. Ley RE et al. reported that the obese population 
had higher levels of Firmicutes and lower levels of Bacte-
roidetes than the normal population, whereas Schwiertz 
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A et al. demonstrated a significant decrease in Firmicutes 
and a significant increase in Bacteroidetes in the obese 
population, resulting in a significant decrease in the F/B 
ratio [48, 49]. The discrepancies in the aforementioned 
findings could be attributed to the complex and diverse 
factors affecting the composition of the gut microbial 
community, including sex and age [50]. Our study was 
specifically designed to address the complexity and vari-
ability of forensic scene conditions. As such, we did not 
artificially control for age and sex variables when analyz-
ing the data. This is in contrast to other studies where 
the distribution of age ranges and sex ratios among vol-
unteers varied. Furthermore, the accuracy of the results 
in a study is highly dependent on the sample size. An 
inadequate sample size may result in insignificant dif-
ferences within and between groups, thereby affecting 
the categorization of individuals based on their body 
type. For example, the previous studies [42, 48, 49] had 
a sample size of only a few dozen or even a dozen sub-
jects, whereas our study with Yun et al. [43] analyzed 
more than 300 subjects. Several other studies have dem-
onstrated the influence of factors such as the geographic 
origin [51]and dietary habits [52] of the population on 
the composition and diversity of the gut microbial com-
munity in both the short and long term. The participants 
in this study were from different provinces in China, each 
with its own set of dietary habits and preferences. This 
might explain the variations in BMI-related gut micro-
biota composition and diversity among different BMI 
groups in various studies.

Compared to 16  S rRNA, second-generation metage-
nomic sequencing offers deeper sequencing depth, 
higher annotation accuracy at the species level, and a 
more comprehensive analysis at the gene level. In this 
study, Prevotella copri was the most abundant species in 
the three BMI groups. The overweight group had a sig-
nificantly higher relative abundance of P. copri than the 
normal weight group. Conversely, Bacteroides uniformis 
had a significantly lower relative abundance in the over-
weight group than in the normal weight group. Duan 
et al. conducted a study in a Han Chinese population in 
northern China that showed a phenomenon consistent 
with ours [53]. Vallianou et al. reported that B. unifor-
mis, as a next-generation probiotic (NGP), had beneficial 
properties against obesity and was associated with weight 
loss in animal models [54]. This finding is consistent 
with the significant reduction in B. uniformis observed 
with increasing BMI in the present study. Our analysis 
showed that the abundance differences between the BMI 
groups at the species level significantly distinguished the 
overweight group from the normal weight group, which 
may explain why the two sample groups are easily distin-
guished in the PCoA analysis.

Forensic scientists currently utilize microorganisms to 
deduce individual characteristics by primarily examining 
the structure and abundance of microbial communities, 
i.e., by focusing on the presence and quantity of micro-
organisms. Nonetheless, studies have demonstrated that 
changes at the microbial genome level are closely linked 
to individual characteristics. In their research, Li et al. 
[55] observed that a high-fiber diet heightened the SNP 
proportions of Faecalibacterium, Bifidobacterium, and 
Clostridium while reducing those of Bacteroides in obese 
children. According to Chen et al. [18], the accuracy of 
categorizing two samples as belonging to the same indi-
vidual based on species abundance was only 12%. In con-
trast, the classification accuracy significantly increased 
to 94% when using genetic characteristics such as SNP 
haplotypes and SVs. This indicated that the genetic char-
acteristics of gut microorganisms are more stable and 
individual specific, making them useful as ‘microbial fin-
gerprints’ for profiling personal characteristics. Conse-
quently, the changes at the microbial genome level should 
not be dismissed. To account for the effect of fragment 
length on the number of SNPs, we compared fragments 
of equal length and expressed the results in terms of 
the density of gut microbial SNPs, which represents the 
number of SNPs per kilobase of DNA. Our study found 
inconsistencies between the gene levels of gut micro-
bial communities and the taxonomic levels. Specifically, 
we observed a significant difference in the α-diversity of 
SNP density between BMI groups. The α-diversity of the 
overweight group was appreciably higher than that of the 
other groups (p < 0.001). In addition, both the richness 
and evenness of gut microbial genes revealed a signifi-
cant positive trend with increasing BMI. Samples from 
each BMI group were clustered significantly in PCoA. 
This phenomenon suggests that there are significant 
characteristic differences among the bacteria and genes 
of different BMI groups, which effectively differentiates 
the groups and provides the necessary theoretical sup-
port for the body type prediction model that follows. In 
addition, our results showed that there were 19 biomark-
ers with significant differences at the species community 
level between each BMI group and 372 biomarkers with 
significant differences at the gene level. This demon-
strated that more characteristics were measurably linked 
to BMI at the gene level, indicating a stronger correlation 
between genetic traits and BMI compared to commu-
nity traits. These significant differences could be helpful 
in inferring BMI from the perspective of species genes, 
which will provide a more accurate method for inferring 
individual characteristics.

Advances in high-throughput sequencing technol-
ogy have increased the amount of microbial informa-
tion available to forensic scientists. This information can 
be used to differentiate between individuals or groups 
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based on the abundance of species present in the gut 
microbial community or to infer various traits to aid in 
investigation and trial evidence. Wang et al. [16] devel-
oped a regression model based on 44 unique genera in 
three BMI groups to investigate the association between 
BMI and the gut microbiome. This model proved suc-
cessful in correctly predicting body shape in 74% of the 
samples. This indicates the possibility of distinguish-
ing between individuals using bacteria with significant 
variation. To determine whether genetic or community 
characteristics of bacteria are more effective predictors 
of individual traits, we constructed two RF regression 
models. The first was based on the relative abundance 
of species, and the second was based on the SNP density 
of contigs. Both models were used to predict BMI. The 
regression model, which was based on the importance 
ranking of the top 31 species, had an R2 value of 0.56 and 
an MAE of 2.09  kg/m2, which is similar to the regres-
sion analysis results of Wang et al.16]. Following this, we 
included the SNP density of individual samples as a bio-
marker to the model, which led to better predictive per-
formance compared to the model based only on species 
abundance. Specifically, the R2 value increased while the 
MAE decreased, and the SNP density index of individual 
samples played a significant role in improving model per-
formance, suggesting that genetic characteristics of gut 
bacteria may be more effective in predicting individual 
BMI. To investigate this, we measured the SNP densi-
ties of all sample contigs and used the Spearman test to 
determine the correlation between species abundance 
and contig SNP density with BMI. Our findings indicate 
that there is a low and almost statistically nonsignificant 
correlation between species abundance and BMI. On 
the other hand, the correlation between SNP densities 
of the 767 contigs is relatively high, which may suggest 
that genetic traits are more influential than community 
traits. Based on these findings, the SNP densities of 62 
contigs were chosen as indicators to create the prediction 
model, and we achieved the best fit and accuracy with an 
R2 value of 0.72 and an MAE of 1.56 kg/m2. These results 
highlighted the effectiveness of the BMI prediction 
model based on contig SNP density, which demonstrated 
the highest accuracy and the lowest mean absolute error. 
In conclusion, the findings indicate that the genetic spec-
ificity of gut bacteria is a more reliable predictor of indi-
vidual characteristics than community specificity, and 
using genetic characteristics of gut bacteria to predict 
individual BMI is an innovative and effective approach 
that requires further research.

To further validate the utilization of gut bacterial 
genetic specificity for the prediction of individual traits 
over community specificity, we established a model for 
the prediction of body shape based on two markers, spe-
cies abundance and contig SNP density. The SNP density 

model showed 94% accuracy in predicting body shape, 
which was significantly higher than that of the species 
abundance model. However, all the underweight samples 
were inaccurately predicted by both models. This might 
be due to the limited number of underweight volunteers 
who participated in our study, and their BMI was close 
to normal weight, which averaged 17.60 (± 0.47), making 
it impossible to correctly characterize the samples in the 
underweight group. The comparable gut microbial com-
position in the underweight and normal weight groups 
may also be a plausible explanation. Our study showed a 
significant difference in the abundance of just one species 
between the two groups, but none of the contigs’ SNP 
densities varied significantly. Furthermore, Wang et al. 
[16] used a linear regression model to estimate body type; 
however, only one sample from the underweight group 
was accurately predicted. This observation also highlights 
the challenge of distinguishing between the underweight 
and normal weight groups and needs to be addressed in 
future studies.

This study presents an initial investigation into gut 
metagenomes and genetic characterization of microor-
ganisms as they relate to forensic practice. Examination 
of gut metagenomes allows for the investigation of poten-
tial correlations between bacteria and hosts, such as 
specific species and gene-level associations. The genetic 
characterization of gut microbes can predict the individ-
ual’s BMI and body type with higher accuracy than the 
community characterization of species. This implies that 
the genetic attributes of bacteria can be utilized to infer 
individual characteristics with precision. In this study, 
the correlation between the gut microbiome and human 
BMI were examined in a healthy Chinese population. It 
must be noted that an individual’s smoking status, alco-
hol consumption, and medication history are typically 
unknown in forensic cases, as is their health status and 
whether they suffer from any diseases. Future studies 
should take into account a broader range of factors that 
affect the gut microbiome. In conclusion, the applicabil-
ity of the gut microbiome in forensic personal character-
ization requires further research.

Conclusion
In this study, the association between changes in the 
microbial community and gene levels and host BMI 
characteristics was investigated using gut metagenomic 
data. We utilized the RF machine learning algorithm 
to develop two prediction models, and these models 
exhibited high accuracy on both the training and test 
sets, indicating a significant correlation between the 
gut microbiome and personal BMI characteristics. In 
particular, the prediction model based on species SNP 
density delivered the best performance: the model accu-
rately predicted BMI with an R2 of 0.72 and an MAE of 
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1.56 kg/m2, and the accuracy of predicting body type was 
94%. This corroborates the potential of forensic BMI or 
body type trait inference at the genome level, offering 
novel ideas and methods for practical forensic applica-
tions to deduce external features of criminal suspects.
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