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Abstract 

Background Triterpenoids have shown a wide range of biological activities including antitumor and antiviral 
effects. Typically, triterpenes are synthesized through the mevalonate pathway and are extracted from natural plants 
and fungi. In this work, triterpenoids, ganoderic acids (GAs) were discovered to be produced via biotransformation 
of a diterpene, 15,16-dihydrotanshinone I (DHT) in the liquid cultured Ganoderma sessile mycelium.

Results Firstly, the biotransformation products, two rare GAs were isolated and purified by column chromatogra-
phy, and characterized using HR-ESI-MS spectrometry and NMR spectrometry. The two compounds were Lanosta-
7,9(11),24-trien-15α,22,β-diacetoxy-3β-hydroxy-26-oic acid (LTHA) and Lanosta-7,9(11),24-trien-15α,22,β-diacetoxy-
3β-carbonyl-26-oic acid (LTCA). Then, transcriptome and proteome technologies were employed to measure 
the expression of mRNA and protein, which further confirmed that triterpenoid GAs could be transformed from exog-
enous diterpenoid DHT. At the molecular level, we proposed a hypothesis of the mechanism by which DHT converted 
to GAs in G. sessile mycelium, and the possible genes involved in biotransformation were verified by RT-qPCR.

Conclusions Two rare GAs were obtained and characterized. A biosynthetic pathway of GAs from DHT was pro-
posed. Although the synthetic route was not confirmed, this study provided important insights into omics resources 
and candidate genes for studying the biotransformation of diterpenes into triterpenes.
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Background
Triterpenoids represent a major group of compounds 
that can be extracted from nature plants and fungi, 
have aroused attention for showing broad-spectrum 

activities including antitumor, antibacterial, anti-
HIV-1, hepatoprotection, etc. [1, 2]. In general, trit-
erpenoids are biosynthesized from the universal 
triterpenoid compound precursors isopentenyl diphos-
phate (IPP) and dimethylallyl diphosphate (DMAPP), 
which are largely produced via mevalonate/isopre-
noid (MVA) pathway in the cytoplasm. Then, IPP and 
DMAPP are catalyzed by farnesyl pyrophosphate syn-
thase (FPS) to generate FPP, which is further catalyzed 
into squalene in the present of squalene synthase (SQS) 
[3–6]. Finally, the precursor of steroids and saponins, 
lanosterol are produced under the effect of squalene 
2,3-epoxidase (SO) and lanosterol synthase (LS). 
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Similarly, the synthesis of diterpenes start from the IPP 
and DMAPP via 2-C-methyl-d-erythritol 4-phosphate 
(MEP) pathways in the plastid. Following, DMAPP 
and IPP are condensed to form the diterpenoid pre-
cursor (E,E,E)-geranylgeranyl diphosphate (GGPP) 
by GGPPS catalyzation. After that, a variety of diter-
penes is obtained through the further catalyzation by 
different enzymes [7–9]. Although diterpenes and trit-
erpenes are biosynthesized via different pathways, both 
synthetic pathways passed through the step of forming 
universal precursors IPP and DMAPP (Fig.  1). It is of 
great interest to investigate whether triterpenes can be 
obtained from the biosynthesis of diterpenes directly.

In traditional Chinese medicine, Ganoderma is the 
source of ganoderic acids (GAs), a class of highly oxygen-
ated lanostane-type triterpenoids [10], multi-function-
ality has been reported for GAs [2]. Nowadays, major 
method to obtain GAs is via the artificial cultivation of 
the Ganoderma mushroom primordium and fruiting 
bodies. However, the Ganoderma takes a long time to 
grow and the content of the GAs is low. Furthermore, 
the extraction procedures of GAs are complicated, which 
highly hamper the clinical applications of GAs [11–13]. 
Biotransformation is an important technical means for 
discovery of new active ingredients. A microbial meta-
bolic process can modify the product-specific structure 

Fig. 1 Subcellular compartmentalization of the MVA and MEP pathway. G3P, glyceraldehyde-3-phosphate; DXS, 1-deoxy-d-xylulose 5-phosphate 
synthase; DXR, 1-deoxy- d-xylulose 5-phosphate reductoisomerase; MCT, 4-diphosphocytidyl-2-C-methyl d-erythritol synthase; CMK, CDP-ME2P 
kinase; MDS, 2-C-methyl- d-erythritol 2, 4-cyclodiphosphate synthase; HDS, HMBPP synthase; HDR, HMBPP reductase; IPI, isopentenyl 
pyrophosphate isomerase; GGPPS, GGPP synthase; CPP, copalyl diphosphate; CPS, CPP synthases; KSL, kaurene synthase-like diterpene synthases; 
ACCT, acetoacetyl-CoA thiolase; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGS, HMG-CoA synthase; HMGR, HMG-CoA reductase; MK, 
mevalonate kinase; MVAP, mevalonate phosphate; PMK, phosphomevalonate kinase; MVAPP, mevalonate pyrophosphate; MDC, pyrophosphate 
decarboxylase; FPP, farnesyl pyrophosphate; SE, squalene epoxidase



Page 3 of 15Wang et al. Microbial Cell Factories          (2023) 22:139  

by producing enzymes, posing the advantages of mild 
conditions, simplicity and high efficiency [14, 15]. If bio-
transformation technique can be applied for GAs pro-
duction, it can largely reduce the time and cost.

Tanshinones, the main ingredient in Chinese herbal 
medicine Salvia miltiorrhiza Bunge, has been shown to 
undergo various transformations [16, 17]. For examples, 
tanshinone IIA was converted into tanshisorbicin via 
a [4+2] cycloaddition reaction by the fungus Hypocrea 
sp. [18]. In another study, the use of Cunninghamella 
elegans led to the identification of two novel glycosylated 
derivatives resulting from the biotransformation of tan-
shinone IIA [19]. These findings suggested that tanshi-
nones possess significant reactivity for biotransformation 
processes, making them potential candidates of inter-
est. Consequently, tanshinones were chosen as the sub-
strates for biotransformation screening experiments and 
15,16-dihydrotanshinone I (DHT), an abietane diter-
penes [20], was selected for further biotransformation 
study.

In this work, a rapid and inexpensive method to pro-
duce GAs was discovered by adding the substrate DHT 
into the liquid cultured Ganoderma sessile mycelium 
for biotransformation. Studying the molecular mecha-
nism behind the biotransformation of DHT into GAs 
from the molecular level was conducted using transcrip-
tome and proteome technologies. Up to now, there is 
only few reports focusing on the structural transforma-
tion between diterpene and triterpenoid compounds. 
Through the comprehensive analysis of the transcrip-
tome and proteome of mycelium before and after bio-
transformation, our data presented here provide insight 
into omics resources and genes involved in diterpene to 
triterpene biotransformation in G. sessile mycelium.

Results
Identification of biotransformation
The transformation of DHT was observed through 
changes in color, as it was red and adsorbed on the myce-
lium. After a 30-day transformation period, the color 
of the mycelium returned to normal (Fig.  2A). The bio-
transformation process of DHT in G. sessile mycelium 
medium was monitored and confirmed by using ultra 
performance liquid chromatography (UPLC). Chroma-
tograms of culture medium and mycelium extract of E 
group were shown in Fig.  2B. During biotransforma-
tion, the peak of substrate DHT (6.8  min) decreased 
gradually, and two new peaks (8.2 min and 9.4 min) were 
detected in the extract of G. sessile mycelium. These 
two peaks were not found in the C group mycelium and 
culture medium (Additional file  1: Figure S1). To con-
firm whether compound 1 and 2 were formed through 
the biotransformation of DHT, G. sessile mycelium was 

subjected to high-temperature inactivation, followed by 
the addition of DHT to the medium for a 30-day cul-
ture period. UPLC analysis detected the continued pres-
ence of the DHT substrate in the sample, while the two 
biotransformation products were not detected in either 
the mycelia or the supernatant (Fig.  3), indicating the 
biotransformation is highly related to the activity of the 
mycelium.

After biotransformation, the intracellular enzymes 
of G. sessile can transform DHT to produce GA LTHA 
and GA LTCA. However, the DHT was not altered after 
72 h of incubation in enzyme extracts of G. sessile pure 
cultures (Additional file 1: Figure S2). Addition of DHT 
enabled mycelium to obtain the activity of biotransfor-
mation to produce GA LTHA and GA LTCA, which was 
completed by intracellular enzymes.

Isolation and identification of biotransformation products
These two compounds were separated by column chro-
matography and characterized by using HR-ESI-MS 
spectrometer and NMR spectrometer (Fig.  4 and Addi-
tional file  1: Figure S3). The identification data are as 
follows:

Compound 1 (8.4 min): white solids; HR-ESI-MS m/z 
calcd. for [M+H]+: 569.34802 (Anal. Calcd. for  C34H50O7: 
569.34838). Additional file  1: Table  S1 shows the 1H-
NMR and 13C-NMR data  (CDCl3, 600 MHz). Compound 
1 was identified as lanosta-7,9(11),24-trien-15α,22,β-
diacetoxy-3β-hydroxy-26-oic acid (GA LTHA) [21].

Compound 2 (9.5 min): white solids; HR-ESI-MS m/z 
calcd. for [M+H]+: 567.33234 (Anal. Calcd. for  C34H48O7: 
567.33273). Additional file  1: Table  S1 shows 1H-NMR 
and 13C-NMR data  (CDCl3, 600 MHz). Compound 2 was 
identified as lanosta-7,9(11),24-trien-15α,22,β-diacetoxy-
3β-carbonyl-26-oic acid (GA LTCA) [22].

Transcriptome analysis and functional classification
The resulting G. sessile transcriptome contained 67,230 
transcripts and 14,298 unigenes (Additional file  1: 
Table  S2). Differentially expressed genes (DEGs) in the 
transcriptome were compared and identified. Under the 
threshold value of |log2 FC (fold change) |> 1 and p < 0.05. 
Among these unigenes, 492 were identified as DEGs, of 
which 213 upregulated and 279 downregulated (Fig. 5A), 
and Fig.  5C shows the heat map of cluster analysis for 
DEGs.

After GO enrichment analysis, DEGs were arranged 
into three categories: biological process (BP), cellu-
lar component (CC), and molecular function (MF). In 
the BP category, the first three subcategories appeared: 
antibiotic catabolic process, acetate metabolic process 
and formate metabolic process; while in the CC cat-
egory, extracellular region, synaptonemal complex, 
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synaptonemal structure were the top three subcat-
egories. For the MF category, the formate dehydro-
genase  (NAD+) active, oxidoreductase activity, and 
acid-ammonia (or amide) ligase activity were the 
top three subcategories (Fig.  5B). In KEGG pathway 

analysis of DEGs, 27 of the top 30 most significantly 
enriched pathways belonged to metabolism, among 
which methane metabolism, glyoxylate and dicarbo-
xylate metabolism, propanoate metabolism signal-
ing pathways were the most significantly enriched 
(Fig. 5D).

Fig. 2 A Growth state of G. sessile mycelium medium; B UPLC chromatogram of biotransformation process in experimental group. S1–S7: 1, 5, 10, 
15, 20, 25 and 30 days of biotransformation, respectively
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Quantitative analysis and functional classification 
of proteome
In total, 16,457 unique peptides, 2606 proteins and 
2588 quantified proteins were determined via prot-
eomic analysis. Comparative analysis to identify the dif-
ferentially expressed proteins (DEPs) between E group 
and C group under the threshold value of |FC|> 1.2 and 
p < 0.05. Among these 2606 proteins, 94 were identified 
as DEPs, including 52 upregulated and 42 downregulated 
(Fig. 6A), and Fig. 6C shows the heat map of cluster anal-
ysis for DEPs.

From GO analysis, BP category showed that most 
DEPs, which were involved in acetate metabolic process, 
antibiotic catabolic process and drug catabolic process. 
The highest proportions of DEPs in the CC category 
were involved in extracellular region, peroxisome and 
microbody, and the oxidoreductase activity while for-
mate dehydrogenase  (NAD+) activity, showed the highest 
portions of DEPs in the MF category (Fig. 6B). Similar to 

the transcriptome, KEGG pathway analysis revealed that 
many DEPs were enriched in metabolism, and the three 
most enriched pathways were carbon fixation in pho-
tosynthetic organisms, carbon metabolism and MAPK 
signaling pathways (Fig.  6D). Moreover, the subcellular 
localization analysis and annotation of DEPs were per-
formed by analyzing the CC of the GO database (Fig. 6E). 
The DEPs were mainly distributed in cytoplasm (40.66%), 
membrane (17.58%), mitochondrion (12.09%) and endo-
plasmic reticulum (8.79%), which is theoretically the 
main location of GAs biosynthesis.

Analysis of correlations between transcriptome 
and proteome data, RT‑qPCR validation
A Venn diagram was produced for the biotransformation 
and control group candidate DEGs and DEPs, and there 
were 20 differentially expressed genes (Fig.  7A). Cluster 
analysis of the DEGs/DEPs shared by the E group and the 
C group in the transcriptome and proteome determined 

Fig. 3 A UPLC chromatogram of G. sessile culture; B UPLC chromatogram of inactivated G. sessile culture
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that there were 15 upregulated and 5 downregulated 
genes between the mRNA and protein, the DEGs were 
positively correlated with the expression levels of their 
translated DEPs, as show in Table 1. Based on Pearson’s 
correlation coefficient analysis, a relatively higher corre-
lation (R = 0.87) was detected between the transcriptome 
and proteome (Fig. 7C).

Furthermore, Real-time quantitative PCR (RT-qPCR) 
detection showed that the expression levels of 11 DEGs 
in E and C groups were significantly different (p < 0.05), 
of which 9 were upregulated DEGs while 2 were down-
regulated DEGs (Fig. 7D). The expression trend of DEGs 
in RT-qPCR was consistent with the results of transcrip-
tome analysis, and the gene-specific primers are shown 
in Additional file 1: Table S4.

Discussion
Currently, GA LTHA and GA LTCA were mainly isolated 
from Ganoderma lucidum and Ganoderma orbiforme, 
respectively [21, 22]. However, there are no reports in 
the literature regarding the isolation of GA LTHA and 
GA LTCA from G. sessile. In order to validate the cred-
ibility of our findings, we conducted thorough investi-
gations. Our analysis confirmed that GA LTHA and GA 
LTCA were absent during the mycelium growth process. 

Furthermore, the inactivated G. sessile failed to catalyze 
DHT to generate GAs. Additionally, enzymes extracted 
from the biotransformed mycelium demonstrated the 
ability to catalyze DHT and produce GA LTHA and GA 
LTCA.

Since the substrate DHT is a diterterpene structure, 
GA LTHA and GA LTCA may not be biosynthesized by 
the MVA pathway, and the transcriptome and proteome 
of G. sessile showed that there was no significant differ-
ence in the expression of key enzymes of MVA pathway at 
mRNA and protein levels, which further confirmed that 
triterpenoid GAs could be biotransformation from exog-
enous diterpenoid DHT. The GO analysis results showed 
that both DEGs and DEPs were enriched in FDH activ-
ity and oxidoreductase activity, suggesting that the bio-
transformation from DHT to GA may be related to the 
ROS in the mycelium increase. ROS was reported to play 
an important role in the growth of G. lucidum mycelium 
and GAs biosynthesis [23]. For examples, water stress 
[24], heat stress [25] and copper stress [26] can increase 
the ROS level in G. lucidum and positively regulate the 
biosynthesis of GA. In the differential protein KEGG 
pathway, the most significant cellular process enriched is 
the peroxisome, which is a special type of diverse micro-
bodies, mainly containing oxidases, CAT and peroxidases 

Fig. 4 A UPLC chromatogram of compound 1; B High-resolution mass spectrum of compound 1; C UPLC chromatogram of compound 2; D 
High-resolution mass spectrum of compound 2
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to metabolize  H2O2, thus regulating the ROS level [27]. 
Therefore, it is deduced that adding DHT may promote 
the ROS level in G. sessile, which boosts the mycelium to 
produce GAs due to the changing growth environment.

In addition, some proteins such as CYP450 (Gr-
DN3779), FDH (Gr-DN9297, Gr-DN640) and CAT 
(Gr-DN3060) were upregulated at transcriptional 
and translational levels. As a monooxygenase, various 

chemical reactions can be catalyzed by CYP450 (eg, 
hydroxylation, demethylation, epoxidation), and some 
CYPs can modify different sites of one substrate [28]. 
For example, during the conversion of lanosterol to GA 
HLDOA, CYP5150L8 oxidizes the methyl group at C-26 
of lanosterol to a hydroxyl, then the hydroxyl is oxidized 
to formyl and finally to carboxyl [10]. Besides, transfer-
ring electrons from NAD(P)H is usually required by 

Fig. 5 A Volcano plot of DEGs; B GO analysis of the DEGs (Top 30); C Heat map of DEGs; D KEGG analysis of the DEGs (Top 30)
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CYP450 to facilitate the catalyzation of reaction [29]. If 
the transfer of electron is insufficient, more byproducts 
will be produced in the CYP catalyzed reaction, resulting 
in leakage of reducing equivalents and ultimately affect 
the activity of CYP [30].

The transcriptional and protein levels of FDH (Gr-
DN9297 and Gr-DN640) were up-regulated by 4.95/1.74 
and 2.36/1.68 times, respectively, and the catalytic effi-
ciency of CYP (Gr-DN3779) was guaranteed by provid-
ing electrons. In addition, the upregulated expression 

Fig. 6 A Volcano plot of DEPs; B GO analysis of the DEPs (Top 30); C Heat map of DEPs; D KEGG analysis of the DEPs (Top 30); E Subcellular 
localization analysis of cellular components of DEPs
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Fig. 7 A Venn diagram of DEGs/DEPs comparisons between transcriptome and proteome; B Heat map of DEGs/DEPs; C Correlation analysis 
of DEGs and DEPs; D RT-qPCR validation of transcriptome data. **p < 0.01, ***p < 0.001, ****p < 0.0001; Transcriptome fold changes were calculated 
using z-score normalization
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of coenzymes, transporters and unrecognized proteins 
at the RNA and protein levels may play an important 
role in biotransformation of DHT to GAs. In Fig.  8, 
a biotransformation mechanism of GAs from DHT 
was proposed [31, 32]. Gene or protein expressions of 
enzymes that are implicated in the biosynthesis of GAs 
from lanosterol, especially CYP450, were significantly 
upregulated. It can be confirmed that lanosterol is the 
precursor in the biotransformation of GAs and DHT. In 
one possible route (Pathway A), more carbon atoms can 
be induced to the skeletal structure of DHT under the 
effect of IPP and DMAPP and lanosterol can be formed 
through rearrangement reaction. In another possible 
route (Pathway B), ring-opening reaction should be 
involved so that DHT can be first transformed into its 
biosynthetic precursor copalyl diphosphate and gera-
nylgeranyl diphosphate. And the carbon chain is elon-
gated by the IPP and DMAPP to form squalene and 
yield the lanosterol sequentially. Recently, a new enzy-
matic mechanism for triterpene biosynthesis has been 
reported through a non-squalene-dependent triterpene 
biosynthesis pathway (NsTS pathway) [33]. In our case, 
the biotransformation is less likely to occur through the 
latest reported pathway. At present, the relationship of 
structural changes between diterpene structures and 

triterpene structures has been rarely studied, so the 
underlying mechanisms need to be further elucidated.

In the market, the commercial cost of natural GAs is 
high because the GAs can generally only be found in the 
fruiting bodies and spores of Ganoderma [34–36]. It is 
of great potential to apply the biotransformation tech-
nology for industrial production [37]. Liquid fermenta-
tion is suitable for industrial production, and the yield of 
GAs can also be optimized by controlling fermentation 
conditions and exogenous elicitors. As compared to the 
biotransformation technology in laboratory, liquid fer-
mentation may provide convenient to the application of 
GAs by shortening the incubation time for biotransfor-
mation and reducing the production cost.

Conclusion
To conclude, two rare GAs, GA LTHA and GA LTCA, 
were obtained through biotransformation by adding the 
diterpenoid substrate DHT to the liquid culture of G. 
sessile mycelium. During 30  days of culture on a con-
stant temperature shaker, the amount of DHT decreased 
while the content of GA LTHA and GA LTCA gradu-
ally increased. Transcriptomic and proteomic were 
employed to explore the biotransformation mechanism 
of GAs from exogenous diterpene DHT in the cultures 

Table 1 DEGs shared by transcriptome and proteome

a Transcriptome fold change
b Proteome fold change

Gene ID Abbreviation Description mRNAa Proteinb

DN548 HPs1 Hypothetical protein GSI_03660 11.7786 1.2301

DN1857 PSD Phosphatidylserine decarboxylase-domain-containing protein 9.0980 2.6276

DN4127 Protease Protease 7.6715 1.2167

DN9297 FDH NAD-dependent formate dehydrogenase 4.9531 1.7392

DN3060 CAT Catalase 3.9901 1.6108

DN3658 Lipase Lipase 3.9232 1.3476

DN5234 GH79 Glycoside hydrolase family 79 protein 3.4940 1.2591

DN1355 Agmatinase Agmatinase 2.9359 1.4422

DN3779 CYP450 Cytochrome P450 2.9209 1.3040

DN1775 OPT Oligopeptide transporter like protein 2.7056 1.2076

DN640 FDH2 NAD-dependent formate dehydrogenase 2.3633 1.6835

DN2099 AST Aspartate aminotransferase 2.3265 1.4151

DN733 HPs2 Hypothetical protein GSI_02054 (NAD(P) binding site) 2.3225 1.2628

DN13806 NTR Nitroreductase 2.1282 1.2310

DN3099 GLB Globin-like protein 2.0911 1.5061

DN646 ACS Acetyl-coenzyme a synthetase 0.4822 0.7068

DN3490 ABHD Alpha/Beta hydrolase protein 0.4778 0.6374

DN1019 HPs3 Hypothetical protein GSI_08980 (ATP binding site) 0.4424 0.7799

DN891 TP Transport protein (ATP binding site) 0.2011 0.6314

DN850 ACP Acid proteinase 0.1664 0.4746
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of G. sessile mycelium. The data revealed that the num-
ber of DEGs and DEPs identified were 492 (213 upregu-
lated and 279 downregulated) and 94 (52 upregulated 
and 42 downregulated), respectively. Results showed 
that transcription were positively correlated with the 
levels of protein expression. The addition of DHT 
expressively upregulated the bioactivities of formate 
dehydrogenase  (NAD+) and oxidoreductase. And the 
expression enzymes including CYP450, FDH and CAT 
were also increased significantly, which may be involved 

in the structural transformation of DHT to GA LTHA 
and GA LTCA. This study confirmed that G. sessile myce-
lium in liquid culture can convert the diterpene DHT to 
the triterpene GAs. However, the underlying mechanism 
of biotransformation from diterpenes to triterpenes is 
seldomly reported, which is worth further investigation. 
The structure and biosynthetic pathway of triterpenes are 
usually complicated, and the extraction cost is high. Our 
findings provide new insights into the biotransformation 
of natural products by fungus, which will contribute to 

Fig. 8 Proposed biosynthetic pathway of GAs from DHT in G. sessile mycelium. T and P represent fold changes in transcriptome and proteome, 
respectively; HexPPS, hexaprenyl diphosphate synthase; TvTS, talaromyces verruculosus talaropentaene synthase; MpMS, macrophomina phaseolina 
macrophomene synthase; CgCS, colletotrichum gloeosporioides colleterpenol synthase
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develop more efficient and economical ways to obtain the 
rare triterpenes in a convenient way.

Materials and method
Materials
Ganoderma sessile was obtained from Zhuhai Campus 
of Zunyi Medical University. Mold liquid medium and 
modified Martin agar were purchased from Guangdong 
Huankai Microbial Sci. & Tech. Co., Ltd (Guangdong, 
China). DHT was purchased from Chengdu Alfa Biotech-
nology Co., Ltd (Chengdu, China). Ethyl acetate, Petro-
leum ether, Sodium lauryl sulfate (SDS), Dithiothreitol 
(DTT), Urea, Trifluoroacetic acid (TFA), Indole-3-acetic 
acid (IAA), Tris–HCl, Methanol, Formic acid, Acetoni-
trile and Phosphate buffered saline (PBS) were purchased 
from Merck (Darmstadt, Germany).

Methods of experimentation
Biotransformation and structural characterization
G. sessile was maintained in modified Martin agar at 4 °C 
before use. For activation, appropriate amount of myce-
lium was transferred to 200 mL of mold liquid medium, 
followed by breaking with a DREMEL Tissue-Tearor 
(Stuttgart, Germany) at 15,000  rpm. Mycelium was 
then cultured at 28  °C for 7 days at 200 rpm with shak-
ing. For biotransformation, DHT was dissolved in anhy-
drous ethanol (1  mg/mL), then the solution was added 
to mycelium culture to achieve a DHT concentration 
of 40  mg/L. For control group, the medium was mixed 
with 8  mL of anhydrous ethanol without DHT. Then, 
the mycelium was then cultured in a shaker for 30 days 
at 200  rpm and 28  °C. For every 5  days, 10  mL culture 
medium was collected for centrifugation and separation. 
Mycelium was added to methanol for ultrasonic treat-
ment. Mycelium and upper solution were evaporated and 
dried, respectively, and methanol was redissolved. After 
that, the composition and content changes in mycelium 
and supernatant were detected by UPLC (Waters, MA, 
USA) using a BEH Shield RP18 (2.1 × 100  mm, 1.7  μm, 
Waters) with an injection volume of 2 μL and detec-
tion wavelengths at 260 nm with column temperature at 
40  °C. Gradients of solvent A (acetonitrile) and solvent 
B (0.1% formic acid in water) were prepared as follows 
(V/V): (I) 0–2  min (A: B, 3/7), (II) 2–7  min (A: B, 5/5), 
(III) 7–10 min (A: B, 7/3), (IV) 10–11 min (A: B, 10/0), 
(V) 11–12  min (A: B, 3/7) with a flow rate of 0.3  mL/
min. In order to further verify the specificity of DHT bio-
transformation by G. sessile, the mycelium and enzymes 
in the culture medium were inactivated by boiling water 
bath at 100 °C for 20 min. Substrate DHT (40 mg/L) was 
added into the deactivated medium, cultured in a shaker 
according to the experimental method described above. 

And the components in the samples were detected by 
UPLC.

The intracellular and extracellular enzyme activities of 
G. sessile before and after biotransformation were com-
pared. Extracellular enzyme was the supernatant col-
lected by vacuum filtration from the culture medium. 
According to previous reports, intracellular enzymes 
were extracted from mycelium [38]. In short, the same 
volume of PBS (20 mL) was added to the mycelium col-
lected from the culture medium. Mycelium was breaking 
with a DREMEL Tissue-Tearor for 1 min and rested for 
1  min, repeated three times, after which it was treated 
with an ultrasound device for 3  min. The above steps 
were performed in an ice water bath. The crude extract 
was centrifuged at 5000 rpm for 10 min at 4 °C, and the 
upper layer was taken as the extracellular enzyme. Then 
45 μL DHT solution (1  mg/mL) was added to 1.5  mL 
extract of intracellular and extracellular enzymes, respec-
tively. The mixture was incubated at 250 rpm and 28 °C 
for 72 h, and the changes in composition were detected 
by UPLC.

Isolation and identification of biotransformation products
To separate the biotransformation products, contents in 
mycelium were extracted using 80% methanol, dichlo-
romethane and water with ultrasonic. The solvent was 
evaporated at vacuum to yield the crude extract, and then 
dissolved in methanol. Each component in the crude 
extract was separated by silica gel column chromatogra-
phy using ethyl acetate/petroleum ether as eluent. Next, 
the structures of extracted compounds were character-
ized by using high-resolution electrospray ionization 
mass spectrometry (HR-ESI–MS, Q-Exactive, Thermo 
Fisher, MA, USA), NMR spectrometer (Bruker Avance 
III, Bruker Corporation, Germany).

RNA isolation, library construction, and sequencing
Samples of G. sessile mycelium is ground into a powder 
in liquid nitrogen, and the total RNA was extracted from 
mycelium using MPFast RNA Red Kit (MP Biomedicals, 
CA, USA). cDNA library construction and transcriptome 
sequencing were conducted by Bioprofile Technology 
Co., Ltd. (Shanghai, China, http:// www. biopr ofile. cn).

Protein digestion and TMT labeling of peptides
Protein extraction, digestion and peptide TMT labeling 
of G. sessile according to previous report [39], and then 
the TMT labeled sample are analysis by LC–MS/MS.

LC–MS/MS detection and database search analysis
Samples were purified using an Easy-nLC 1200 sys-
tem (Thermo Fisher, MA, USA) with a trap col-
umn (100  µm × 20  mm, 5  µm, C18, Thermo Fisher), 

http://www.bioprofile.cn
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and then passed through an EASY analysis column 
(75  µm × 150  mm, 3  µm, C18, Thermo Fisher) for sepa-
ration. 0.1% formic acid in water and 0.1% formic acid 
in acetonitrile were used as mobile phase. The flow rate 
was 300 nL/min with column temperature of 40℃. Mass 
spectrometry analysis was performed with a Q-Exactive 
HF-X mass spectrometer (Thermo Fisher) with precur-
sor ion scanning range from 350 to 1800 m/z. The result-
ing LC–MS/MS raw files were imported into Proteome 
Discoverer 2.4 software (Thermo Fisher) for analysis and 
the database used for protein identification was derived 
from the transcriptome sequencing results of G. sessile 
mycelium, the Additional file 1: Table S3 shows the main 
search parameters. TMT reporter ion intensity was used 
for quantification.

Bioinformatics analysis
Analyses of bioinformatics data were carried out with 
Perseus software [40], Microsoft Excel and R statistical 
computing software. Comparative transcriptome analy-
sis and proteome analysis were carried out with the cut-
off of a ratio |log2 FC| of > 1 or |FC| of > 1.2 with p < 0.05, 
respectively. Information was extracted from Uni-
ProtKB/Swiss-Prot [41], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [42], and Gene Ontology (GO) to 
annotate sequences. In addition, subcellular localization 
of DEPs is annotated and counted by GO database [43, 
44].

Gene expression analysis by RT‑qPCR
RNA was extracted from G. sessile mycelium of experi-
mental (E) and control (C) groups and used for RT-qPCR. 
Fungal 18S rRNA was used as an internal reference gene 
[45, 46], and Gene-specific primers for RT-qPCR are 
shown in Additional file  1: Table  S4. Three technical 
repeats were performed. The reaction consisted of the 
following two steps: RT-PCR (reverse transcription PCR) 
was performed using the All-in-one RT SuperMix Perfect 
for qPCR (Vazyme, Jiangsu, China), and the qPCR was 
performed using the ChamQ Universal SYBR qPCR Mas-
ter Mix (Vazyme), RT-PCR and qPCR procedures fol-
lowed the kit steps respectively. The RT-qPCR data were 
analyzed by the comparative delta-delta Ct method  (2−
ΔΔCt) for a relative quantification of the amplicons [47].
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