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Abstract 

Background Metal oxide nanoparticles (NPs) are becoming valuable due to their novel applications. The green syn‑
thesis of  TiO2 NPs is more popular as a flexible and eco‑friendly method compared to traditional chemical synthesis 
methods.  TiO2 NPs are the most commonly used semiconductor in dye‑sensitized solar cells (DSSCs).

Results The biogenic  TiO2 NPs were produced extracellularly by the marine halophilic bacterium Halomonas sp. 
RAM2. Response surface methodology (RSM) was used to optimize the biosynthesis process, resulting in a starting 
 TiO2 concentration of 0.031 M and a pH of 5 for 92 min (⁓15 nm).  TiO2 NPs were well‑characterized after the calcina‑
tion process at different temperatures of 500, 600, 700 and 800 °C. Anatase  TiO2 NPs (calcined at 500 °C) with a smaller 
surface area and a wider bandgap were nominated for use in natural dye‑sensitized solar cells (NDSSCs). The natural 
dye used as a photosensitizer is a mixture of three carotenoids extracted from the marine bacterium Kocuria sp. 
RAM1. NDSSCs were evaluated under standard illumination. After optimization of the counter electrode,  NDSSCBio(10) 
(10 layers) demonstrated the highest photoelectric conversion efficiency (η) of 0.44%, which was almost as good as 
 NDSSCP25 (0.55%).

Conclusion The obtained results confirmed the successful green synthesis of  TiO2 NPs and suggested a novel use 
in combination with bacterial carotenoids in DSSC fabrication, which represents an initial step for further efficiency 
enhancement studies.

Keywords TiO2 nanoparticles, Carotenoids, Dye‑sensitized solar cells, Halomonas, Kocuria, Bacterioruberins, 
Spirilloxanthin

Background
Nanotechnology has profoundly transformed science 
and plays a worthy role in several innovative aspects 
of the new millennium. Particularly in comparison to 
bulk materials, NPs have distinct physical, chemical, 
and biological properties. It is widely assumed that the 
basic properties of nanostructured materials are medi-
ated by their sizes and shapes. As a consequence, hard 
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investigations have been made to control the appropriate 
morphologies of these nanostructure materials [1].

Metal oxide nanoparticles constitute one of the most 
multi-functional and ubiquitously used types, with appli-
cations in electronics, chemistry, catalysts, and medi-
cal and pharmaceutical disciplines [2]. Among them 
are titanium dioxide nanoparticles  (TiO2 NPs), which 
have become a great addition to nanotechnology due to 
their tremendous applications as photocatalysts and UV 
absorbers [3, 4].

Chemical, physical, and biological processes can all 
be used to construct crystalline  TiO2 nanoparticles with 
distinct morphologies [5]. Regrettably, toxic chemicals 
and time-consuming procedures in traditional synthesis 
techniques frequently endanger humans and the environ-
ment. Biosynthesized nanoparticles are eco-friendly and 
safe, and have been incorporated into various successful 
and efficient applications as reported in many studies. 
The biosynthesis of  TiO2 NPs using microorganisms is an 
alternative green route to overcome these disadvantages 
while maintaining their excellent properties [6]. During 
the biological synthesis of NPs, microbial metabolites 
including enzymes, terpenoids, and phenolics act as sta-
bilizers and capping agents [7]. A major field of interest 
is the advantage of flexibility in monitoring the experi-
mental conditions of nanoparticle microbial synthesis, 
such as pH and temperature, which influence the phys-
icochemical characteristics such as morphology, stability, 
and properties of the biosynthesized nanoparticles [8].

Although green synthesis of nanoparticles is a part of 
bioinspired protocols, several challenges should be con-
sidered. Material availability, selection, collection, reac-
tion conditions, quality management and application face 
challenges for large-scale applications in industry [9]. 
Both the size and shape of NPs are highly influenced by 
the prepared biological extracts. As a result, it is critical 
to find the ideal conditions and components  in order to 
implement and optimize the synthesis protocol for the 
purpose of getting NPs with the required size, shape, 
and surface charges [10]. Green and nontoxic reducing 
agents were an important question in the green synthesis 
of NPs, as they are weak to form high-quality NPs. Thus, 
researchers seek to find stronger green reducing agents 
or optimum reaction conditions that support the forma-
tion of the desired high-quality NPs; this continues to 
be a tricky and critical challenge [11]. NPs face charac-
terization challenges, which have a major impact on the 
accuracy of the detailed characterization, as deciding on 
an appropriate characterization technique is thus critical 
[12].

Analytical techniques such as transmission electron 
microscopy (TEM), selected area electron diffraction 
(SAED), energy dispersive X-ray (EDX), X-ray diffraction 

(XRD), UV–visible spectroscopy, and Brunauer-Emmett 
and Teller (BET) surface area can be used to explore 
important characters such as the size, phase, surface area 
and band gap of the synthesized  TiO2 NPs [13].

Recently, researchers concluded that marine bacteria, 
particularly the halophilic ones, are valuable and unique 
sources of bioactive compounds and have enzymatic 
activities with properties distinct from those of conven-
tional enzymes [14]. So, in this study, the green  TiO2 NPs 
synthesis was selected by using the marine halophilic 
bacteria Halomonas sp. RAM2 via the extracellular route.

Solar energy offers an environmentally friendly alterna-
tive to meet the world’s growing energy demand. Hence, 
photovoltaic devices that help in the conversion of solar 
energy into electricity have gained a great deal of atten-
tion recently [15]. DSSCs have sparked impressive atten-
tion for their structure simplicity, relatively low cost, and 
encouraging efficiency in transforming solar energy into 
electricity [16]. O’Regan and Grätzel pioneered this tech-
nology in 1991 [17].

TiO2 is an important photocatalytic material in DSSCs 
that exists in two main phases: anatase and rutile [18]. 
Although rutile seems to be the most thermodynamically 
stable phase, anatase is chosen due to its larger band gap 
for DSSCs [19].  TiO2 is commonly used as a semicon-
ducting layer due to its non-toxicity, low cost, and wide 
availability [20]. Improving functionalities in solar cells 
are influenced by the size of nanocrystals during a solid–
solid phase transition. So, phase control is a critical step 
[21].

In general, DSSCs are assembled from the photoanode 
(working electrode), which is mainly a conductive trans-
parent substrate (fluorine-doped tin oxide (FTO) glass), 
with the use of an overlying semiconductor film such as 
 TiO2 that adsorbs the photosensitizer dye, providing the 
photoelectrons [22]. The working electrode is coupled 
with the counter electrode that serves as a reduction cat-
alyst. In between, an electrolyte that functions as a redox 
couple is injected [20, 23].

Photosensitizers are among the most key parts of DSSC 
and have been extensively studied in the last 20  years, 
with thousands of dyes suggested and evaluated for this 
type of application [24]. Till now, DSSCs have been based 
on a single sensitizer such as ruthenium or porphyrin 
dyes, which have some limitations such as rareness, puri-
fication difficulties and environmental hazards [25]. So, 
renewable, eco-friendly, and non-carcinogenic natural 
dyes have attracted attention as photosensitizers [26].

One of the natural pigments is carotenoids, which come 
in various colors, ranging from yellow to orange and 
red. Over 750 carotenoids have been observed in plants, 
fungi, and microorganisms with a  wide range of sig-
nificant biological functions,  including light-harvesting, 
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photoprotection and antioxidants [27, 28]. They are clas-
sified as  C30,  C40,  C42 or  C50 based on the number of car-
bons in their carotene backbones [29]. As an example of 
the uncommon carotenoids used in the present study, 
those that were extracted from the marine bacterium 
Kocuria sp. RAM1. Kocuria sp. RAM1 dye is a mixture of 
three carotenoid compounds, namely bisanhydrobacteri-
oruberin, trisanhydrobacterioruberin  (C50-carotenoids) 
and 3,4,3’,4’-tetrahydrospirilloxanthin  (C42-carotenoids) 
[30].

The counter electrode plays a role in collecting and trans-
ferring electrons from the external circuit and regenerates 
the dye by catalyzing electrolyte reduction. Pt-coated FTO is 
widely used as a counter electrode, but there is an interest in 
replacing it due to its high cost [31]. One alternative to the Pt 
counter electrode is the  Cu2S counter electrode, which has 
good performance for polysulfide electrolytes at a low cost. 
In addition,  Cu2S counter electrodes can be simply prepared 
by the successive ionic layer adsorption and reaction (SILAR) 
technique, which controls the film microtopography through 
changing deposition times [32].

The basic component in DSSCs is the electrolyte, which 
is critical for the inner charge carrier transport between 
the two electrodes and regenerates the dye and itself con-
tinuously, thus significantly impacting the efficiency and 
stability of the systems [32, 33]. Several studies reported 
the use of various redox couples of electrolytes other than 
 I−/I3− to enhance the durability of DSSCs, such as the 
redox couple of polysulfide electrolytes  (S2−/Sx

2−) [34].
As green nanoparticle synthesis remains a challenge, 

the present study investigated the synthesis and optimi-
zation of  TiO2 NPs by newly isolated marine halophilic 
bacterium Halomonas sp. RAM2 and its application 
in fabricating a novel DSSC using a photosensitizer of 
carotenoids extracted from the marine bacteria Kocuria 
sp. RAM1.  Cu2S counter electrode was prepared by the 
SILAR technique and optimized trying to enhance the 
efficiency, but further study is required to improve the 
overall conversion efficiency.

Results
Isolation, screening and molecular identification
A salt-tolerant colony was isolated from the sea urchin 
(Echinometra mathaei), collected from Safaga, Red Sea, 
Egypt. The desirable bacterial isolate was purified and 
grown on a nutrient agar medium (2% NaCl). Colonies 
were round, smooth, raised, convex, opaque, and off-
white-colored. Microscopic examination revealed that 
the cells were Gram-negative, non-spore-forming rods. 
The isolate was referred to as Halomonas sp. RAM2 as 
an outcome of molecular analysis, and the sequence was 
submitted to GenBank (at the NCBI Nucleotide Database 
with accession number OM276856) (Fig. 1).

Halomonas sp. RAM2 growth
The physiological characterization of Halomonas sp. 
RAM2 was performed by analyzing salinity tolerance, pH 
and temperature (Fig. 2). The maximum growth of Halo-
monas sp. RAM2 was observed at 5% NaCl (O.D = 1.3) 
and it tolerated high salinity up to 15% after 33  h. No 
growth was observed in the absence of NaCl (Fig.  2A). 
Medium adjusted to pH 8 supported maximum growth 
(O.D = 1.4), whereas pH of 4, 5 and 10 recorded signifi-
cant low growth (Fig. 2B). Bacterial growth was observed 
in a range of temperatures (20–37  °C), with maximum 
growth at 30 °C, while growth inhibition was observed at 
40 °C (Fig. 2C).

Biosynthesis and optimization conditions of  TiO2 NPs
The current study deals with extracellular  TiO2 NPs syn-
thesis using cell-free filtrate of Halomonas sp. RAM2. 
The milky-colored suspension confirmed  TiO2 NPs for-
mation, followed by calcination at 500, 600, 700, and 
800 °C for further characterization.

TiO2 concentration (A), pH (B) and reaction time (C) 
were considered for optimization using response sur-
face methodology (RSM) across 20 runs (Table  1). It 
was observed that the average size of  TiO2 NPs ranged 
from 15.45 to 19.48  nm. As per the analysis of vari-
ance (ANOVA), the model was statistically significant 
(p-value = 0.0129). Moreover, there was no significant 
lack of fit for the model, thus suggesting that this model 
adequately fit the data. Additionally, the determination 
coefficient  (R2 = 0.844) indicated that the model can 
explain 84.40% of the variation in the response, indicat-
ing the reliability of the model. The predicted  R2 (0.7029) 
agreed reasonably well with the adjusted  R2 (0.7036). The 
actual and predicted size averages of  TiO2 NPs are shown 
in Fig.  3. The final practical model in terms of a coded 
factor (A =  TiO2 concentration, B = pH, C = time) could 
be expressed as follows:

The interaction effect of the three factors on 
 TiO2 NPs size is demonstrated in Fig.  4. The size of 
 TiO2 NPs decreased as pH and  TiO2 concentration 
decreased (Fig. 4A). The smaller size of NPs was also led 
by the longer duration and lower  TiO2 concentration 
(Fig.  4B). Thus, the optimal reaction conditions for the 
smaller  TiO2 NPs size were in the pH range of 5.8–6 with 
a  TiO2 starting concentration of 0.03 M for 80–102 min.

(1)

TiO2NPs size (nm) = 17.17− 0.0535 A + 0.8059 B

− 0.5174 C + 0.0831 AB

+ 0.0672 AC − 0.2767 BC

+ 0.4757 A
2
− 0.0847 B

2
+ 0.2962 C

2
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For reaction optimization investigation, the desir-
ability function (DF) was employed. The response value 
 (TiO2 NP size) was set to a minimum. pH was set to 5, 
and concentration and time were set within the range for 
maximum desirability. The starting  TiO2 concentration 
was 0.031 M, at pH = 5 for 92 min. The highest obtained 
desirability (0.975) was achieved with 15.5 nm  TiO2 NPs. 
The reaction was validated to confirm the model’s ade-
quacy under these predicted optimum conditions, yield-
ing an experimental value of 15.9  nm, which was close 
to the predicted size (15.5  nm). The comparison that 
has been made between the predictive and experimental 
results at the optimum levels indicates that the model has 
high validity.

Characterization of biogenic  TiO2 NPs
Transmission Electron Microscopy (TEM) Micrographs 
clearly illustrate the well-defined cubic structure and the 
variation in size of the biosynthesized  TiO2 NPs after cal-
cination. The size range of samples calcined at 500, 600, 
700 and 800  °C was 11–22, 19–26, 29–38 and > 80  nm, 

respectively (Fig. 5A). It is observed that the uncalcined 
 TiO2 NPs coagulate while the calcined ones are dispersed 
uniformly.

The selected area electron diffraction (SAED) Pat-
terns are displayed in Fig.  5B, which shows the crystal-
line nature of  TiO2 NPs. The intense diffraction rings are 
indexed as the (101), (004), (200), (211) and (204) planes 
of the anatase  TiO2, and the (101), (110) and (211) planes 
of the rutile  TiO2.

X-ray diffraction (XRD) is a powerful technique 
for analyzing NPs crystallinity. A significant shift in 
the biosynthesized  TiO2 NPs structure was observed 
after calcination (Fig.  6). Only the anatase  TiO2 phase 
characteristic peaks (JCPDS 01-089-4921) were well-
defined when the sample was calcined at 500  °C, indi-
cating good crystallinity. The peaks indexed to the 
reflection from (101), (004), (200), (105), (211), (204), 
(116), (220) and (215) planes at 2θ values of 25.42°, 
37.97°, 48.18°, 54.19°, 55.19°, 62.84°, 69.01°, 70.40° 
and 75.24° correspond to the anatase phase of  TiO2, 
respectively. After calcination at 600  °C, new peaks 

Fig. 1 A phylogenetic tree of Halomonas sp. RAM2. The isolate is denoted by a bold style font. GenBank sequence accession numbers are shown in 
parenthesis after naming the strains
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corresponding to the rutile phase started to appear in 
a minor proportion. According to JCPDS 01-089-4920, 
the peaks at 27.68°, 36.32°, and 41.48° correspond to the 
(110), (101), and (111) of the rutile phase, respectively. 
At 700 °C, additional rutile phase peaks (310) and (301) 
appeared at 2θ of 64.32° and 69.24°, respectively.  TiO2 
NPs were completely transformed into the rutile phase 
with strong peaks at 800  °C, which were clearly repre-
sented in (110), (101), (200), (111), (210), (211), (220), 
(002), (310), (301) and (112) planes.

In terms of size, the temperature affected the size of 
 TiO2 NPs. NPs calcined at 500 °C were found in the range 
of 10.16–19.08 nm. And as the temperature was raised to 
600 °C, the size of the anatase phase increased from 13.65 
up to 27.28 nm, while the new rutile crystal size ranged 

Fig. 2 Growth of Halomonas sp. RAM2 in nutrient broth medium at 
A different NaCl concentrations at 30 °C and pH = 7; B different pH 
at 30 °C and 5% NaCl; and C different temperatures at pH = 8 and 5% 
NaCl

Table 1 Experiment design of RSM for 3 operating independent 
variables affecting  TiO2 NPs size

Run Reaction conditions Response

A B C TiO2 Size (nm)

Conc. (M) pH Time (min) Observed Predicted

1 0.028 7 90 16.73 17.17

2 0.028 7 90 18.31 17.17

3 0.014 8.2 72 19.48 19.49

4 0.028 7 90 17.88 17.17

5 0.028 7 90 16.87 17.17

6 0.014 8.2 108 17.64 17.77

7 0.028 9 90 18.39 18.28

8 0.028 5 90 15.45 15.57

9 0.005 7 90 18.66 18.60

10 0.041 5.8 108 16.75 16.74

11 0.028 7 120 17.00 17.13

12 0.028 7 60 19.00 18.87

13 0.041 8.2 72 19.22 19.42

14 0.041 8.2 108 18.11 17.96

15 0.041 5.8 72 17.22 17.08

16 0.028 7 90 17.00 17.17

17 0.050 7 90 18.36 18.42

18 0.014 5.8 72 17.35 17.49

19 0.028 7 90 16.20 17.17

20 0.014 5.8 108 17.07 16.88

Fig. 3 Actual and predicted plot of  TiO2 NPs size (nm)
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from 25 to 28.1 nm. At the anatase–rutile mixed phase of 
700 °C, the rutile crystal average size was 30.29 nm, while 
some of the anatase crystal sizes started to reduce and 
a larger rutile crystal size was observed at 800 °C. As an 
outcome, increasing the temperature caused an anatase-
to-rutile phase transition, which was characterized by an 
increase in  TiO2 NPs crystal size.

The optical properties of  TiO2 NPs were investigated 
in aqueous suspensions (Fig.  7A). Samples calcined at 
500 and 600 °C showed almost similar absorption at 300 
and 290 nm, respectively, indicating the beginning of the 
rutile phase with a small proportion. A higher absorp-
tion value of 390  nm was obtained at 700  °C, while the 
absorption of the rutile sample was observed at 250 nm.

The semiconductor band gaps of  TiO2 NPs as deter-
mined via the Tauc plots are shown in Fig. 7B. The data 
were fitted to the indirect band gap for  TiO2 NPs calcined 
at 500, 600, and 700 °C and were found to be 3.2, 2.6, and 
1.6 eV, respectively. The decrease in the band gap energy 
with increasing calcination temperature indicates anatase 
to rutile phase transition, as proven by XRD analysis. 
 TiO2 NPs calcined at 800  °C had a direct band gap of 
3.8 eV, indicating a complete rutile phase.

The BET surface area of samples calcined at 500, 600, 
and 700 °C was 47.96, 37.99, and 26.82  m2/g, respectively 
(Fig. 8A), while the surface area of the rutile  TiO2 NPs was 
reduced significantly (9.99  m2/g), indicating the increase 
in NPs size with temperature. The nitrogen adsorption–
desorption isotherm is shown in Fig.  8B.  TiO2 NPs cal-
cined at 500, 600, and 700  °C exhibited a characteristic 
type IV BET isotherm, indicating their porous nature, 
while the rutile  TiO2 NPs exhibited a characteristic type 
III BET isotherm, which explains the lower surface area. 
The plot of dV (r) vs. pore radius (Fig. 8C) showed a dis-
tribution in pore size of 1–25  nm for all samples, with 

the high values around 1.6–2.2  nm. The concentrations 
display a decreasing trend with an increase in pore size 
in all samples. A sample calcined at 500  °C showed a 
higher number of pores with diameters of less than 3 nm 
compared to the other samples calcined at 600, 700, and 
800  °C. The pore volumes were determined via the BJH 
model (Fig.  8D). Samples calcined at 500 and 600  °C 
exhibited the highest pore volume with slightly similar 
values (0.18 and 0.17  cc/g, respectively) and an average 
pore size of 2.28 and 1.68 nm, respectively. A sample cal-
cined at 700 °C exhibited a pore volume of 0.12 cc/g and 
an average pore size of 1.68 nm, while the rutile  TiO2 NPs 
exhibited a pore volume of 0.02 cc/g and an average pore 
size of 1.68 nm.

Energy dispersive X-ray (EDX) of  TiO2 NPs before and 
after calcination is shown in Fig. 9. The uncalcined  TiO2 
sample’s major constituents were oxygen (O; 37.75%) and 
titanium (Ti; 48.15%), in addition to weaker peaks of car-
bon (C; 5.98%) and nitrogen (N; 7.19%) (Fig.  9A), while 
the calcined sample showed only oxygen (49.93%) and 
titanium (50.07%) (Fig. 9B).

NDSSCs performance
The optimum number of SILAR cycles employed in 
the  Cu2S counter electrode design in  NDSSCBio was 10 
cycles  [NDSSCBio(10)], with an efficiency (η) of 0.44%, an 
open-circuit voltage  (VOC) of 213 mV, and a short-circuit 
current density (Isc) of 1.24E-03  mA/cm2, compared to 
an efficiency (η) of 0.55% resulting from  NDSSCP25(10) 
(Fig.  10). NDSSCs photovoltaic performance is summa-
rized in Table 2.

EIS was recorded at frequencies ranging from 1 Hz to 
10  kHz. It aims to analyze and characterize the major 
internal charge transfer resistances that limit the perfor-
mance of the cells, which were recorded in the Nyquist 

Fig. 4 The 3D surface plots of the interaction effects on  TiO2 NPs size between A concentration and pH, B concentration and time, and C pH and 
time
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Fig. 5 TEM micrographs of biosynthesized  TiO2 NPs calcined at 500, 600, 700 and 800 °C A and the corresponding SAED patterns B. A = anatase, 
R = Rutile
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(Fig.  11A) and Bode plots (Fig.  11B) of the optimized 
NDSSCs. Well-marked semicircles attributed to the 
charge transfer resistance between the  Cu2S counter elec-
trode and electrolyte were shown in the high-frequency 
regions. In the EIS analysis, a smaller diameter of Nyquist 
plots for the  NDSSCP25(10) indicated smaller charge trans-
fer resistance  (Rct) than that of the  NDSSCBio(10), which 
explained its higher efficiency.

Discussion
Some microorganisms can grow in conditions that most 
other organisms cannot. Halophiles are one of the most 
important microbial communities that can tolerate high 
salt concentrations and are highly sought after by a vari-
ety of industries for their unique enzymes and products 
with broader potential applications [35]. Members of 
the Halomonadaceae family can survive in moderate 
and Antarctic saline lakes, saline soils, and marine envi-
ronments regardless of their geographical location. Our 
work led us to conclude that the starter culture of the 
Halomonas sp. RAM2 strain for  TiO2 NPs synthesis was 
most preferably performed in a nutrient broth medium 
supplemented with 5% NaCl, pH = 8, grown at a temper-
ature of 30 °C.

Many microorganisms are capable of producing nano-
particles via either intracellular or extracellular path-
ways. The current study deals with extracellular  TiO2 NPs 
synthesis. In terms of application, this has a significant 
advantage over an intracellular synthesis process because 
it avoids additional processing steps needed to liber-
ate the nanoparticles from the bacterial cell, either by 
sonication or by reaction with a suitable detergent [36]. 
Some studies have shown that  TiO2 NPs with varying 
crystal sizes were synthesized extracellularly by bacteria 
such as Aeromonas hydrophila (40.5  nm) [37], Bacillus 
amyloliquefaciens (15.23–87.6 nm) [38], Bacillus licheni-
formis (16.3  nm) [39], Bacillus subtilis (66–77  nm) [40] 
and Lactobacillus sp. (24.63  nm) [41]. Microorganisms 
can modify the composition of the solution through the 
production of extracellular proteins, enzymes, organic 
polymers and secondary metabolites in the culture 

Fig. 6 XRD patterns of biosynthesized  TiO2 NPs calcined at 500, 600, 
700 and 800 °C

Fig. 7 UV–Vis absorption A and the corresponding Tauc plots B of Halomonas sp. RAM2  TiO2 NPs calcined at 500, 600, 700 and 800 °C. An Indirect 
band gap was obtained for  TiO2 NPs calcined at 500, 600 and 700 °C, while a direct band gap was obtained for  TiO2 NPs calcined at 800 °C
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Fig. 8 BET plots A, adsorption–desorption isotherms B, BJH pore size distribution C and cumulative pore volume D of Halomonas sp. RAM2  TiO2 
NPs calcined at 500, 600, 700 and 800 °C

Fig. 9 EDX spectra of uncalcined A and calcined B samples of biosynthesized  TiO2 NPs
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supernatant, which can influence formation by promot-
ing or hindering the stabilization of the first mineral 
seeds. So, the metal ions are reduced to nanoparticles 
[37, 38, 42, 43, 69]. This explains the presence of C and N 

in EDX analysis even after several washing steps before 
calcination at 500 °C.

Controlling particle size is critical in nanoparticle syn-
thesis. In the current study, optimization of reaction 

Fig. 10 Photocurrent–voltage characteristics for  NDSSCBio with different counter electrode cycles in comparison to  NDSSCP25(10). A J-V 
characterization. B P–V curve

Table 2 Photovoltaic parameters of the NDSSCs

The bold-style efficiency values represent the optimized NDSSCs

DSSC VOC (V) Jsc (mA/cm2) Pmax FF η (%)

NDSSCBio(5) 1.06E‑01 ± 0.0017 2.72E‑04 ± 2.2E‑06 2.88E‑05 ± 7.8E‑07 0.39 ± 0.045 0.048 ± 0.0036

NDSSCBio(10) 2.13E‑01 ± 0.0085 1.24E‑03 ± 2.2E‑05 2.64E‑04 ± 1.1E‑05 0.47 ± 0.022 0.44 ± 0.0171

NDSSCBio(15) 5.95E‑02 ± 0.0088 8.92E‑05 ± 2.1E‑07 5.31E‑06 ± 7.8E‑08 0.27 ± 0.034 0.0088 ± 0.0002

NDSSCP25(10) 1.84E‑01 ± 0.0116 1.78E‑03 ± 1.3E‑04 3.27E‑04 ± 2.3E‑05 0.28 ± 0.099 0.55 ± 0.0236

Fig. 11 EIS of the optimized NDSSCs. Nyquist A and Bode B plots



Page 11 of 17Metwally et al. Microbial Cell Factories           (2023) 22:78  

conditions for  TiO2 NPs synthesis has been studied 
through RSM. One of the most important synthesis 
parameters was that of the filtrate pH. Some studies 
proved that pH variation affected the average particle size 
of  TiO2 NPs, as the lower the pH, the smaller the particle 
size [44], which indicates that the pH is clearly related to 
 TiO2 NPs stability. Because each type of NP is stable near 
the isoelectric point, a change in pH can affect the dou-
ble-layer properties, boosting the probability of floccula-
tion or coagulation [45, 46]. Previous studies proved that 
a smaller average size of  TiO2 NPs (14 nm) was obtained 
at pH = 1 in comparison to 19 and 20 nm at pH 7 and 10, 
respectively [47]. In another study, the average crystal-
lite size varied from 9.92 nm (pH 6.8) to 21.02 nm (pH 5), 
with the crystallite size decreasing to 7.77 nm in a highly 
acidic medium (pH 3.2) [48].

From the obtained TEM micrographs and XRD pat-
terns, the conversion of biogenic  TiO2 NPs from anatase 
to rutile phase began at 700  °C and ended at 800  °C, 
revealing the formation of a high-temperature stable 
anatase phase via the green method. This is attributed to 
the reconstructive action that  involves the breaking and 
reforming of bonds [18]. Heat treatment distorts  TiO6 
octahedra during the phase transition. At 700 °C, lattice 
distortion and breaking of Ti–O bonds affect the removal 
of oxygen ions, defects, and new Ti–O bond formation. 
The oxygen vacancies may act as nucleation sites, facili-
tating the rutile phase formation. The Ti–O bonds are 
perfectly reconstructed at 800  °C, transition,  TiO2 NPs 
crystal size increased, leading to a lower surface area [49, 
50]. These findings point out that increasing the calci-
nation temperature increases the crystallinity, size, and 
phase transformation of  TiO2 NPs [51].

By studying the optical properties of the calcined  TiO2 
NPs, the band gap was determined. The indirect band 
gap of  TiO2  decreases with increase of the calcination 
temperature from 500  °C to 700  °C which is in consist-
ent with previous studies [52]. This might be due to the 
increase of the particle size and presence of a mixture of 
the two transition phases of anatase and rutile. The opti-
cal band gap of  TiO2 NPs (3.2 eV) calcined at 500 °C was 
promoted as the most appropriate sample for working 
electrode fabrication of NDSSCs, as anatase  TiO2 NPs 
have better photocatalytic activity than rutile  TiO2 NPs 
in pure phases [53]. The complete conversion to the rutile 
phase at 800 °C resulted in a direct wider band gap which 
is attributed to crystal defects formed in the particles.

Our NDSSCs consisted of  TiO2 NPs film, carotenoids, 
redox polysulfide electrolyte, and a  Cu2S counter elec-
trode. Each component contributes to electron transport 
and diffusion.  TiO2 acts as a scaffold for dye molecules 
that have been adsorbed and transports the electrons 
photogenerated by light absorption and dye regenera-
tion [54]. The interaction between the Kocuria sp. RAM1 
carotenoids and the  TiO2 NPs resulted from the de-pro-
tonation of (-OH) groups of the carotenoids (Fig.  12A), 
such as bisanhydrobacterioruberin and trisanhydrobacte-
rioruberin. Bacterioruberins are types of  C50-carotenoids 
with a broad absorption range in the visible region 
(Fig. 12B). They harvest the solar light, leading to being 
in an excited state, and then inject the photo-excited 
electrons into the conduction band (CB) of  TiO2 NPs. 
Because the CB of  TiO2 is at a lower energy level than 
the lowest occupied molecular orbital (LUMO) of carot-
enoids, injecting photoelectrons from carotenoids into 
 TiO2 is energetically advantageous. Through the external 
circuit, the electrons travel to the counter electrode. The 

Fig. 12 Kocuria sp. RAM1 carotenoids dye composition A and UV absorption B 
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oxidized carotenoids accept electrons from the electro-
lyte, regenerating the ground state [55]. Several studies 
have reported the utilization of natural dyes extracted 
specifically from plants in DSSC designs, such as those 
from pomegranate and berry fruits [56], henna (Lawso-
nia inermis) leaves, beetroot [57], and tropical fruits [58].

Because of its simplicity, low temperature, and uni-
form layer deposition, the SILAR technique outperforms 
other methods [59]. A cycle (one layer) of  Cu2S counter 
electrode film is deposited by the reaction at the sub-
strate surface after the alternative adsorption of  Cu2+ and 
 S2− ions. The observed optimum NDSSC efficiency was 
obtained after 10 cycles related to the uniformity, stoichi-
ometry and band gap of the formed  Cu2S film. As previ-
ously stated, there is a limited supply of  S2− ions from the 
anionic bath as the number of cycles increases [60].

To the best of our knowledge, this is a novel study 
that describes the use of  C50-carotenoids extracted from 
marine bacteria as a sensitizer in NDSSCs that involve 
photo-induced charge transfer into the working electrode 
of the biosynthesized  TiO2 NPs.

Conclusion
Our study highlighted the eco-friendly  TiO2 biosyn-
thesis by the newly isolated halophilic marine bacte-
ria Halomonas sp. RAM2 (OM276856). Also, the study 
was extended through the application of  TiO2 NPs in 
NDSSC fabrication using the carotenoids as a natural 
dye extracted from Kocuria sp. RAM1 (OL904955). From 
an environmental perspective, attempting to fabricate 
DSSCs using an alternative green method is worthwhile, 
but further study is required to improve the obtained 
overall conversion efficiency.

Methods
Isolation, culture medium and identification
Halophilic bacteria were isolated from Echinodermata 
invertebrates collected from Safaga, Red Sea, Egypt. The 
samples were cut aseptically in sterile seawater, homog-
enized, and then kept in sterile bottles.  One milliliter 
of each prepared sample was transferred into 100 ml of 
sterile nutrient broth made with distilled water and sup-
plemented with 2% NaCl (w/v) before being incubated at 
30 °C for 24 h under shaking conditions (120 rpm) before 
being isolated on agar plates for 72  h [61]. The pH was 
adjusted to 7 ± 0.2 before sterilization. Following incu-
bation, colonies were purified and preserved as stock 
cultures for subsequent studies. For molecular identi-
fication, 16S rDNA was amplified by polymerase chain 
reaction (PCR) [62]. The PCR products were sequenced 
[63], and the BLAST program was used to explore the 

similarity [64]. The phylogenetic tree was generated using 
the software MEGA (Version 11.0.10) [65, 66].

NaCl, pH and temperature effects on Halomonas sp. RAM2 
growth
Bacterial growth (inoculum = 1%) was measured at 
120 rpm at various NaCl concentrations (0–25% w/v), pH 
(5–10) and temperature (20–40  °C). The optical density 
at a wavelength of 600 nm for 48 h was used as a quanti-
tative indicator [67, 68].

Biosynthesis of  TiO2 NPs using Halomonas sp. RAM2
Halomonas sp. RAM2 seed culture was prepared under 
optimal conditions (NaCl = 5%, pH = 8, 30 °C) at 120 rpm 
for 48 h (Fig. 13). The culture supernatant was obtained 
after centrifugation of the broth at 6000 rpm for 15 min 
and filtrated. After that, the filtrate was challenged with 
20 ml of 0.025 M  TiO2, stirred at room temperature for 
1 h, and then heated at 60 °C for 30 min. The biosynthe-
sized  TiO2 NPs were recovered by centrifugation, washed 
with methanol and distilled water several times, and then 
dried. The dried sample was calcined  at 500, 600, 700, 
and 800 °C for 3 h for further studies [69].

Optimization of reaction conditions on  TiO2 NPs 
via response surface methodology (RSM)
The effect of reaction conditions on the  TiO2 NP size via 
response surface methodology (RSM) through central 
composite inscribed (CCI) design was investigated using 
the cell-free filtrate of the Halomonas sp. RAM2 opti-
mized growth [70]. Three independent variables using 
Design Expert (Version 11 Stat-Ease Inc., Minneapolis, 
MN, USA) were applied to investigate the effects of the 
starting  TiO2 concentration (A), pH (B) of the cell-free 
filtrate, and the reaction duration (C) on  TiO2 NPs size 
(Table  3). The following polynomial equation fits the 
experimental results:

where Y represents the response  (TiO2 NPs size (nm)), β0 
is constant, β1, β2, and β3 is linear coefficients, β12, β13, 
and β23 is cross product coefficients, β11, β22, and β33 is 
quadratic coefficients.

The average size of  TiO2 NPs was estimated using XRD 
analysis and the Scherrer’s formula. The model accuracy 
was determined by the coefficient of  R2. The P-value for 
the significant model terms was set at 95%.

(2)

Y =β0 + β1X1 + β2X2 + β3X3 + β12X1X2

+ β13X1X3 + β23X2X3 + β11X
2

11

+ β22X
2

22 + β33X
2

33
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Characterization of the biosynthesized  TiO2 NPs
The shape, size and crystallinity of the biogenic  TiO2 NPs 
were determined by TEM [71] (JEM-2100plus, JEOL, 
Japan), SAED pattern [72], EDX spectrophotometer 
[73] and XRD [3]. XRD analysis was performed using 
an X-ray diffractometer with Cu-Kα crystal radiation 
(λ = 1.54060 Å) and scanning rate of (5°/min−1) and the 
scanning range of (10°—80°). The Scherrer equation was 
used to calculate the mean diameter of the NPs from the 
XRD pattern as follows [74]:

where λ = 1.5405 Å is the wavelength of the Cu-Kα radia-
tion, and β is the full-width at half-maximum (FWHM) 
intensity in radians.

The  TiO2 NPs optical properties were investigated 
using a UV/VIS spectrophotometer (Thermo Scientific) 
in the 200–900  nm wavelength range and the energy 
band gap was calculated using the Tauc plot (Eq. 4) [75]:

(3)D = (0.9 �) / (β cosθ)

where α is the extinction coefficient, h is the Planck’s con-
stant (J.S), v is the light frequency  (s−1), A is the absorp-
tion constant,  Eg is the energy band gap (eV), and n is the 
value of the specific transition (n = 2 for indirect band 
gap and n = 1/2 for direct band gap).

The Brunauer -Emmett and Teller (BET) (Quan-
tachrome T ouchWin v1.2, USA) was used for determina-
tion of  TiO2 NPs surface area after degassing the samples 
at 200 °C for 3 h [76], and Barret–Joyner–Halender (BJH) 
was used for pore size distribution determination [77].

Fabrication of NDSSCs
Carotenoids as a photosensitizer were extracted from 
Kocuria sp. RAM1 as follows: One liter of a 48-h bacte-
rial culture grown at 30 °C under shaking conditions was 
centrifuged for 15  min to collect the pellets. 250  ml of 
methanol were added to the pellet, which was then incu-
bated in a water bath at 40  °C for 15  min until the dye 

(4)(ahv)(1/n) = A(hv − Eg )

Fig. 13 Schematic diagram of  TiO2 NPs biosynthesis using Halomonas sp. RAM2

Table 3 Experimental independent variables and their coded levels for the central composite design

Name Code Levels of coded variables

− α − 1 0  + 1  + α

TiO2 concentration (M) A 0.005 0.0141214 0.0275 0.0408786 0.05

pH B 5 5.8 7 8.2 9

Reaction duration (min) C 60 72 90 107 120
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recovered completely. The extract was purified, dissolved 
in petroleum ether, and stored in a refrigerator away from 
direct light [30].

A  TiO2 working electrode was used in the fabricated 
DSSCs (Fig. 14A). The FTO substrate (15 Ω, Sigma) was 
cleaned with a detergent solution and successively soni-
cated for 30 min in soap, then distilled water, then ace-
tone, and finally in isopropanol, respectively, followed 
by air drying. A  TiO2 paste was made from a mixture 
of 0.5 g  TiO2 NPs, 1.25 g α-terpineol, 0.25 g ethyl cellu-
lose and a few drops of ethanol. The  TiO2 homogeneous 
NPs paste was spread over the FTO substrate via a doc-
tor blade coating technique, heated at 450 °C for 30 min, 
before being immersed in a concentrated carotenoids dye 
for 24 h at room temperature [78]. A polysulfide electro-
lyte solution was prepared from a mixture of 0.5 M  Na2S, 
0.1 M S, and 0.05 M KCl in ethanol: water (4:1 vol%) [20].

A  Cu2S counter electrode films were fabricated on an 
FTO substrate using successive ionic layer adsorption 
and reaction (SILAR) technique [79]. The cationic pre-
cursor was a 0.5  M aqueous solution of copper acetate 
[Cu  (CH3COO)2], while the anionic precursor was 0.5 M 
of sodium sulfide  [Na2S]. A well-clean FTO-coated glass 
was immersed in copper acetate for 60 s. to promote ion 
adsorption on the surface of the substrate, before being 
immersed in double-distilled water for 20  s. to remove 
unadsorbed ions. The substrate was then immersed in 
sodium sulfide for 60  s before the last rinsing step in 
double-distilled water for 20 s. Thus, one deposition cycle 
was completed before being annealed in a furnace at 
300 °C for 5 min (Fig. 14B). For optimization, the samples 

named  NDSSCBio(5),  NDSSCBio(10) and  NDSSCBio(15) were 
prepared by repeating SILAR cycles 5, 10 and 15 times, 
and the most efficient system was compared to NDSSC 
equipped with  TiO2  P25  (NDSSCP25) under the same 
conditions.

The NDSSC was assembled using carotenoid-sensitized 
 TiO2 coated film that represents the working electrode, 
 Cu2S film as a counter electrode and the polysulfide elec-
trolyte solution was filled into the cells as illustrated in 
(Fig. 14C, D).

NDSSCs characterization
The photovoltaic performance [short circuit current 
(Jsc), open circuit voltage (Voc), fill factor (FF), and 
power conversion efficiency (η)] of the fabricated DSSCs 
were measured under one sun (AM1.5G, 100 mW/cm2) 
illumination using a solar simulator. Electrochemical 
impedance spectroscopy (EIS) was evaluated using a 
computer-controlled potentiostat (NOVA 2.0, Metrohm 
Autolab) under dark conditions [16].
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