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Abstract 

Background Expression systems for lactic acid bacteria have been developed for metabolic engineering applica-
tions as well as for food-grade recombinant protein production. But the industrial applications of lactic acid bacteria 
as cell factories have been limited due to low biomass formation resulted in low efficiency of biomanufacturing 
process. Limosilactobacillus reuteri KUB-AC5 is a safe probiotic lactic acid bacterium that has been proven as a gut 
health enhancer, which could be developed as a mucosal delivery vehicle for vaccines or therapeutic proteins, or as 
expression host for cell factory applications. Similar to many lactic acid bacteria, its oxygen sensitivity is a key factor 
that limits cell growth and causes low biomass production. The aim of this study is to overcome the oxidative stress in 
L. reuteri KUB-AC5. Several genes involved in oxidative and anti-oxidative stress were investigated, and strain improve-
ment for higher cell densities despite oxidative stress was performed using genetic engineering.

Results An in-silico study showed that L. reuteri KUB-AC5 genome possesses an incomplete respiratory chain lacking 
four menaquinone biosynthesis genes as well as a complete biosynthesis pathway for the production of the precur-
sor. The presence of an oxygen consuming enzyme, NADH oxidase (Nox), leads to high ROS formation in aerobic 
cultivation, resulting in strong growth reduction to approximately 25% compared to anaerobic cultivation. Recombi-
nant strains expressing the ROS scavenging enzymes Mn-catalase and Mn-superoxide dismutase were successfully 
constructed using the pSIP expression system. The Mn-catalase and Mn-SOD-expressing strains produced activities of 
873 U/ml and 1213 U/ml and could minimize the ROS formation in the cell, resulting in fourfold and sevenfold higher 
biomass formation, respectively.

Conclusions Expression of Mn-catalase and Mn-SOD in L. reuteri KUB-AC5 successfully reduced oxidative stress and 
enhanced growth. This finding could be applied for other lactic acid bacteria that are subject to oxidative stress and 
will be beneficial for applications of lactic acid bacteria for cell factory applications.
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Background
The application of lactic acid bacteria (LAB) for the 
production of functional food, drug and vaccine deliv-
ery and as cell factory for protein and industrial chemi-
cal production has received increased attention due to 
their efficiency and their GRAS (Generally Recognized 
As Safe) status [28, 42]. Many LAB produce antimicro-
bial agents such as organic acids, bacteriocins, reuterin 
etc. [48]. Food grade and non-food grade expression 
systems for LAB have been developed and showed high 
efficiency for homologous and heterologous recombinant 
protein expression [17, 24, 31, 38], which is applicable 
for industrial biotechnology. LAB have been reported 
to show high tolerance to environmental stress such as 
acid, osmotic and alcohol stress [42], which is beneficial 
for cell factory applications under harsh production con-
ditions such as high substrate or product concentration 
and high acidity.

LAB are facultative anaerobic bacteria and require low 
or no oxygen for growth (Panagiota, Efterpi, and Bonos 
2013). Many LAB are sensitive to oxidative stress and 
suppress cell growth in an aerobic environment, where 
oxidative stress has been reported as a critical factor for 
LAB viability and product quality [16]. NADH oxidase 
(Nox), pyruvate oxidase (Pox) and lactate oxidase (Lox) 
are oxygen consuming enzymes founded in LAB that 
decompose oxygen in the cell [16]. These activities result 
in the formation of reactive oxygen species (ROS) such 
as hydrogen peroxide  (H2O2), superoxide anion  (O2

−) 
and hydroxyl radicals  (OH•), which are highly toxic to 
the cell [43] and lead to protein inactivation and DNA 
damage. This oxygen-sensitive characteristic is detri-
mental for industrial applications especially in large scale 
bioreactors, where anaerobic conditions are difficult to 
control. Some LAB have mechanisms to overcome oxida-
tive stress such as Lactococcus lactis, which can switch to 

respiratory metabolism in aerobic condition in the pres-
ence of heme [13, 40]. But most lactic acid bacteria lack 
some components for respiration such as cytochrome 
oxidase or a complete menaquinone biosynthesis path-
way, which requires chorismate as precursor and eight 
biosynthetic enzymes (MenA-H) [49]. In aerobic bacteria 
the presence of ROS scavenging enzymes such as cata-
lase, peroxidase and superoxide dismutase minimizes the 
effect of free radicals [43] but these enzymes as well as 
the required heme cofactor are rarely found in LAB [13, 
16]. Alternatively, manganese-dependent antioxidant 
enzymes including Mn-pseudocatalase and Mn-SOD 
have been reported in several LAB species including Lac-
tiplantibacillus plantarum and Lentilactobacillus sakei 
[1, 2, 16].

Limosilactobacillus reuteri KUB-AC5 is a probiotic 
lactic acid bacterium isolated from broiler gut, which 
produces some health-related substances such as an anti-
microbial peptide and vitamins [12, 32, 34]. The strain 
could be developed as a cell factory for food-grade prod-
ucts, but its oxygen sensitive characteristic is a crucial 
limitation, as it is in many other LAB. This approach aims 
to analyze and understand the oxidative stress and the 
defense mechanism in L. reuteri KUB-AC5 through an 
in silico study. Strain improvement was then performed 
using genetic engineering to minimize oxidative stress 
and facilitate the formation of higher cell density.

Materials and methods
Bacterial strains, plasmids, primers and culture condition
The relevant features of expression plasmids, primers and 
bacterial strains used in this work are listed in Table  1 
and Table 2.

L. reuteri KUB-AC5 (1% inoculum) was grown under 
non-aerated (anaerobic) condition at 37℃ in MRS broth 
(Difco). E. coli MC1061 was used as an intermediate 

Table 1 Bacterial strains and plasmids used for this study

Strains and plasmids Relevant features Source

Strains

 Escherichia coli

  MC1061 Cloning host recA+ MoBiTec

Limosilactobacillus reuteri

 KUB-AC5 Probiotic lactic acid bacteria Lab stock

 pSIP411 + kat KUB-AC5 carrying catalase gene in pSIP411 expression plasmid This study

 pSIP411 + sod KUB-AC5 carrying superoxide dismutase gene in pSIP411 expression plasmid This study

Plasmids

 pSIP411gusA spp-based expression vector, PSIP401 derivative, gusA controlled by  PsppQ  (PorfX), sppKR expression 
driven by eryB read through, with SH71rep

[44, 45]

 pSIP411 + kat ery, pSIP401 derivative, Mn-catalase gene for L. reuteri, with SH71rep This study

 pSIP411 + sod ery, pSIP401 derivative, Mn-superoxide dismutase gene for L. reuteri, with SH71rep This study
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cloning host and was grown at 37 °C in LB medium with 
agitation at 200  rpm. Solid media contained 1.5% agar. 
Antibiotics were used at final concentrations of 10  μg/
ml erythromycin (ery) for L. reuteri strains carrying pSIP 
plasmids and 400 μg/ml for E. coli MC1061 carrying pSIP 
plasmids.

Growth profile and oxidative stress analysis of L. reuteri 
KUB‑AC5
Effect of aerobic growth of L. reuteri KUB-AC5 was 
determined. Overnight cultures (0.1%  v/v) were trans-
ferred into 50 ml MRS broth in 250 ml Erlenmeyer flasks 
and incubated without aeration (static culture) and with 
aeration using an orbital shaker at 150 rpm for 24 h. At 
three-hour intervals, samples were taken for  OD600 nm 
and pH measurement, and the growth profile of shaken 
and non-shaken samples were compared. The samples 
of cell cultures at early stationary phase (15 h) were col-
lected and analyzed for ROS (Cellular ROS assay kit, 
ab113851) as well as catalase (Sigma, Catalase assay kit) 
and SOD activity (Sigma, SOD assay kit). Moreover, the 
cellular ROS assay was performed by collecting cells in a 
conical tube with a final  OD600 of 0.5, then washing with 
PBS buffer and incubating with 20 μM 2’,7’- dichlorofluo-
rescin diacetate (DCFDA) solution at 37 °C for 30 min in 
the dark. After that, the cell pellets were washed and were 
resuspended in PBS buffer by maintaining the same cell 
concentration. Then, the cell suspension was transferred 
to a 96 well black/clear bottom microplate and immedi-
ately measured for fluorescence intensity using excita-
tion wavelength at 485  nm and emission wavelength at 
535  nm. The measured DCF fluorescence intensity was 
reported in RFU, which represents the ROS generation.

Genomic analysis for respiratory metabolism, oxidative 
stress and ROS scavenging genes
The relevant genes involved in respiration of lactic acid 
bacteria (dehydrogenases, cytochrome bd oxidase and 
menaquinone biosynthesis) were analyzed using the 
whole-genome sequence of L. reuteri KUB-AC5 [20]. The 
possibility for the construction of complete respiratory 

chain in L. reuteri KUB-AC5 was analyzed.̄ An in-sil-
ico study of the previously annotated genes of L. reu-
teri KUB-AC5 were blasted against Uniprot and KEGG 
database. The genes encoding oxidative stress-related 
enzymes were analyzed and the strategies for oxidative 
stress reduction or increasing of oxidative stress toler-
ance in L. reuteri KUB-AC5 were identified.

Construction of ROS scavenging enzyme expression strains
The nucleotide sequences of two selected genes encoding 
ROS scavenging enzymes (Mn-kat, Mn-sod) from Bacil-
lus subtilis subsp. subtilis 168 were codon optimized and 
synthesized (GenScript, USA) for expression in L. reuteri. 
The oligonucleotides of Mn-kat and Mn-sod genes were 
amplified by polymerase chain reaction (PCR) using the 
primer Kat F, Kat R and Sod F, Sod R. The PCR products 
were digested with NcoI (5´-end) and EcoRI (3´-end) and 
ligated into sakacin inducible expression vector pSIP411. 
Ligation mixtures were transformed into recA + interme-
diate cloning host E. coli MC1061 competent cells and 
verified by sequencing with specific primers (Table  2). 
The correct expression constructs were transformed into 
three different L. reuteri KUB-AC5 competent cells pre-
pared according to Watthanasakphuban et  al. [49] and 
van Pijkeren and Britton [39]. Restriction enzymes and 
ligases were purchased from New England Biolabs, MA.

ROS scavenging enzymes expression
The L. reuteri KUB-AC5 recombinant strains carrying 
expression plasmids with genes encoding ROS scaveng-
ing enzyme, kat and sod, were checked for the protein 
expression. Single colonies of the expression strains were 
inoculated into 25 ml MRS broth with erythromycin and 
were cultivated anaerobically at 37℃ until  OD600 = 0.4–
0.6, then induced with inducing peptide (IP-673). Non-
induced samples were used as control. After induction, 
the samples were incubated at 3 different temperatures at 
25, 30 and 37 ℃ for 18 h.  OD600 nm was measured and 
10  ml of cell pellets were collected using centrifugation 
at 4000xg for 15  min and washed twice with 100  mM 
sodium-phosphate buffer.

Cell disruption was done using glass beads with 
 BeadBug™ microtube homogenizer (Benchmark Sci-
entific, USA) for 5 passages using speed at 4000  rpm 
for 1  min. Cell lysates were harvested by centrifugation 
(25,000xg, 1 h, 4 °C). The collected cell lysates were meas-
ured for the protein concentration using Bradford assay 
[6] using bovine serum albumin as a standard protein. 
The size and protein expression of catalase and superox-
ide dismutase from recombinant strains were identified 
by sodium dodecyl sulphate–polyacrylamide gel elec-
trophoresis (SDS-PAGE) and confirmed by Western blot 
analysis using the Bio-Rad electrophoresis and blotting 

Table 2 Primer used in this study

Primer Sequence (5′‑3′) Target

pSIP F AAG CAT AAT GGT GTT ATA GCG PorfX

pSIP R AGC AAC ACG TGC TGT AAT MCS

Kat F ATA CCA TGG TTA AAC ATA CTA AGA TGT TAC AACAT Mn-catalase

Kat R GAG GAA TTC TTA ATG ATG ATG ATG ATG ATG ATA TTC 
AC

Mn-catalase

Sod F GGT ATG GGT CTC CGG CAT ACG AAC TTC CAG A Mn-SOD

Sod R GGT ATG GGT CTC CAT GAT GAT GAT GAT GAT GGT ACT Mn-SOD
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protocol with some modifications. The cell lysates (30 mg 
protein) were mixed with Laemmli buffer (1:1) and 
heated at 99 °C for 3 min before being loaded into Mini-
PROTEIN TGX Stain-free precast gel (10%) (Bio-Rad, 
USA). The protein bands were visualized using a stain-
free enable Bio-Rad UV-transilluminator (ChemiDoc 
XRS + , Bio-Rad, USA). The Western blot was performed 
by transferring the protein bands on SDS-gel to the mem-
brane using a Trans-blot turbo system (Bio-Rad, USA). 
After overnight blocking, the membrane was incubated 
with 9 ml of primary antibody (1.8 µl,  1:5000  dilution) 
solution (Bio-Rad, USA) follow by 9 ml of conjugated 
secondary antibody (4.5 µl,  1:2000  dilution) (Bio-Rad, 
USA). The result was visualized using ChemiDoc Imag-
ing System (Bio-Rad, USA).

Aerobic growth phenotype of recombinant L. reuteri strains
The growth phenotype of L. reuteri variant strains car-
rying an inducible plasmid was investigated under aero-
bic condition, activated cultures were transferred into 
50  mL MRS broth containing 10  µg/mL ery in 250  ml 
Erlenmeyer flasks, and incubated at 30 ℃, 150 rpm agi-
tation speed. 25  ng/mL of Sakacin P induction peptide 
(SppIP) was added to induced treatments at  OD600 = 0.2 
(~ 3–6  h), and sterile water was added to the non-
induced treatments (control). At three-hour intervals, 

one milliliter of culture samples was taken for the  OD600 
and pH measurement. The cell pellets at 24 h of cultiva-
tion were collected for catalase and superoxide dismutase 
activity analysis. Growth, pH, enzyme activity and ROS 
of induced and non-induced clones were compared.

Results
Growth phenotype of L. reuteri KUB‑AC5
The growth profile of L. reuteri KUB-AC5 was investi-
gated under aerobic and anaerobic conditions. In anaero-
bic condition (without shaking), the  OD600 of L. reuteri 
KUB-AC5 increased exponentially after 6  h cultivation 
and reached the stationary growth phase after 15 h cul-
tivation, with a maximum  OD600 of 2.3 (Fig. 1). Cultiva-
tion of L. reuteri KUB-AC5 in aerobic conditions with 
150  rpm shaking speed did not show a different cell 
growth  (OD600) in the early phase of growth (0–3 h). A 
growth limitation was detected from 6  h of cultivation 
and was clearly seen after 9 h with an  OD600 of 0.26 and 
0.64 in aerobic and anaerobic cultivation, respectively. 
 OD600 of aerated cultures continued to increase slowly 
after 12 h cultivation, to a value of 0.48 after 15 h and a 
maximum  OD600 after 24  h of 0.55, which was 4-times 
lower than under non-aerated conditions.

The pH profile of L. reuteri KUB-AC5 in anaerobic cul-
tivation shows a decline from the initial pH (pH 6.0) until 

Fig. 1 Growth (OD 600 nm) and pH profile of L. reuteri KUB-AC5 cultivated in aerated (150 rpm shaking) and non-aerated (non-shake) condition at 
30 ℃ for 24 h. All results are the mean of three independent experiments; the error bars indicate the standard deviation
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15 h of cultivation to pH 4.4, after which it remained sta-
ble. Under aerobic cultivation, the decline was slower and 
continued steadily to a final pH of 4.9 (Fig. 1).

Respiration metabolism, oxidative stress and antioxidant 
genes
Genes involved in respiratory metabolism
The complete genome sequence of L. reuteri KUB-
AC5, which was previously reported [20], was ana-
lyzed for the presence of genes encoding components 
required for respiratory metabolism and compared to 
the respective complete pathway of Lactococcus lac-
tis supsp. lactis MG1363 from KEGG database [21]. 

The entire respiratory pathway in lactic acid bacteria 
is shown in Fig.  2, including an electro donor (NADH 
dehydrogenase), electron carrier (menaquinones) and 
heme-dependent cytochrome bd oxidase as an electron 
acceptor [7–9, 49]. The orthologous genes of L. reuteri 
KUB-AC5 related to respiratory metabolism are summa-
rized in Table 3.

The in silico study revealed that the genome of L. reu-
teri KUB-AC5 contains three genes putatively encoding 
NADH dehydrogenase and five genes putatively encoding 
cytochrome bd oxidase (Table 3). Several genes encoding 
enzymes in the menaquinone biosynthesis pathway were 
found in the genome, namely O-succinylbenzoate-CoA 

Fig. 2 Essential components and mechanism for respiration metabolism in lactic acid bacteria. The LAB respiratory chain comprises an electron 
donor, an electron carrier (menaquinones) and a terminal electron acceptor (cytochrome bd-oxidase). Heme must be added exogenously to 
activate the cytochrome bd-oxidase

Table 3 Putative enyzmes of L. reuteri KUB-AC5 involved in respiratory metabolism and oxidative stress

Gene ID Protein function Role in respiration metabolism

Respiratory metabolism

 AC5u0009GL002057, AC5u0009GL000675, 
AC5u0009GL001904

NADH dehydrogenase Electron donor

 AC5u0009GL000677, AC5u0009GL000678, 
AC5u0009GL000679, AC5u0009GL000680, 
AC5u0009GL000676

Menaquinol oxidase Terminal electron acceptor

 AC5u0009GL001766 O-succinylbenzoate-CoA (menE) Menaquinone biosynthesis enzyme

 AC5u0009GL001767 Naphthoate synthase (menB) Menaquinone biosynthesis enzyme

 AC5u0009GL001768 Naphthoyl-CoA hydrolase (menI) Menaquinone biosynthesis enzyme

 AC5u0009GL002179 1,4-dihydroxy-2-naphthoate octaprenyltransferase 
(menA)

Menaquinone biosynthesis enzyme

 AC5u0009GL001463 Demthylmenaquinone methyltransferase (menG) Menaquinone biosynthesis enzyme

Oxidative stress

 AC5u0009GL000396 NADH oxidase (NOX1) H2O2 forming

 AC5u0009GL000396 NADH oxidase (NOX2) H2O forming

 AC5u0009GL000798, AC5u0009GL001474, 
AC5u0009GL000835, AC5u0009GL001080

Thioredoxin reductase (TrxR) Thioredoxin system

 AC5u0009GL001491, AC5u0009GL000913, 
AC5u0009GL001491, AC5u0009GL000913

L-methionine-R-sulfoxide reductase (MsrAB) Thioredoxin system
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synthetase (menE), naphthoate synthase (menB), naph-
thoyl-CoA hydrolase (menI), 1,4-dihydroxy-2-naphthoate 
octaprenyltransferase (menA), and dimethylmenaqui-
none methyltransferase (menG) (Table 3). Genes encod-
ing the enzymes for the first four steps of menaquinone 
biosynthesis (menF, menD, menH and menC) are miss-
ing. Moreover, genes encoding the pathway for the 
formation of chorismate (the essential precursor for 
menaquinone synthesis) are missing.

A reconstitution of menaquinone biosynthesis by 
transferring the four missing genes (from a suitable 
source) to facilitate respiratory metabolism in L. reuteri 
KUB-AC5 was considered not feasible in the absence of 
the precursor chorismate. A strategy using respiratory 
metabolism to reduce oxidative stress and enhance bio-
mass formation was thus not pursued further.

Genes involved in oxidative stress
The genome of L. reuteri KUB-AC5 contains genes 
encoding NADH oxidase (Nox1, Nox2) and eight possible 
genes involved in the thioredoxin system (Table 3). Genes 
encoding ROS scavenging enzyme (kat, sod) are not pre-
sent in the genome of L. reuteri KUB-AC5.

Construction of strains expressing genes for ROS 
scavenging enzymes
The two ROS scavenging enzymes (catalase, superoxide 
dismutase) were successfully inserted into pSI411 expres-
sion plasmids, resulting in two expression plasmids 
(pSIP411 + kat and pSIP411 + sod). All constructs were 
transformed into an E. coli intermediate host with the 
correct gene integration into the vector.

The expression plasmids pSIP411 + kat and 
pSIP411 + sod were transformed into L. reuteri KUB-AC5 

competent cells with a transformation efficiency of 
2.2 ×  10–2 transformants/μg DNA and 5.26 transfor-
mants/μg DNA, respectively. The presence of the inserted 
genes was verified by colony PCR, and colonies contain-
ing inserts of the expected size of kat (843  bp) and sod 
(630 bp) respectively were selected and designated L. reu-
teri pSIP411 + kat and L. reuteri pSIP411 + sod.

Expression of ROS scavenging enzymes
The L. reuteri pSIP411 + kat and L. reuteri pSIP411 + sod 
were studied for catalase and superoxide dismutase 
expression at three different temperature. SDS-PAGE 
analysis revealed that the induction of L. reuteri 
pSIP411 + kat strains at 25 ℃ and 30 ℃ resulted in a more 
intense protein band at 31  kDa, which corresponds to 
the predicted size of Mn-catalase (Fig.  3A). In contrast, 
induction at 37 ℃ results in a faint protein band at the 
corresponding position (Fig. 3A) and Western blot anal-
ysis confirmed a higher catalase enzyme expression at 
25 ℃ and 30 ℃ (Fig. 3B). No band corresponding to cata-
lase was detected in non-induced sample on SDS-PAGE 
but a faint protein band at the expected position was vis-
ible on Western blots.

A similar result was obtained for L. reuteri 
pSIP411 + sod expression. A band of the expected size 
of Mn-SOD (24  kDa) was detected on SDS-PAGE in 
all induced samples. The most favorable temperatures 
for SOD expression in this strain were 25 ℃ and 30 ℃, 
whereas at 37 ℃ the band is barely visible (Fig. 3). A very 
low target protein concentration was detected at 37 ℃ 
Western blots (Fig. 3B).

Both strains showed high catalase or SOD expression 
upon induction at 25 ℃ and 30 ℃. Since cultivation and 
induction at 25  ℃ results in lower biomass formation 

Fig. 3 SDS-PAGE A and Western blot B analysis of recombinant L. reuteri pSIP411 + kat (lane 1–4) and L. reuteri pSIP411 + sod (lane 5–8), Lane 1, 5: 
non-induced at 30 ℃; Lane 2, 6: expressed at 25 ℃; Lane 3, 7: expressed at 30 ℃; Lane 4, 8: expressed at 37 ℃; Lane M: protein marker
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compared to 30 ℃ and 37 ℃ (Additional file 1), a temper-
ature of 30 ℃ showing both high expression and biomass 
formation was chosen for further study.

Aerobic growth phenotype of L. reuteri variants strains
L. reuteri pSIP411 + kat and L. reuteri pSIP411 + sod 
recombinant strains were cultivated under aerated (aero-
bic) and non-aerated (anaerobic) conditions. The growth 
of L. reuteri pSIP411 + kat in aerobic cultivation was four 
times higher (Fig.  4A) than the wild-type strain (Fig.  1) 
resulted in the maximum biomass concentration at the 
optical density at 600  nm of 2.0. The same high bio-
mass concentration was also observed in the absence of 
inducer.

The cultivation of L. reuteri pSIP411 + sod showed a 
very high biomass formation at the maximum  OD600 of 
3.5 at 24 h (Fig. 4B). Growth and biomass formation were 
slightly increased in the absence of inducer.

The pH profile in both recombinant strains was simi-
lar with gradually decreasing pH from 6.5 to about 4.5 
(Fig. 4).

Reactive oxygen species and antioxidant enzyme activity 
measurement in L. reuteri KUB‑AC5 and its variant strains.
Formation of ROS in L. reuteri cells was investigated 
in the wild-type and the recombinant strains under 
aerobic and anaerobic conditions. The wild-type strain 
showed a high fluorescence intensity of 839,339 RFU, 
indicating an increased formation of ROS in aero-
bic cultivation compared to static cultivation, where 
711,843 RFU were measured (Table 4). In both recom-
binant strains, low formation of ROS was detected 
by the reduction of DFC fluorescence intensity in all 
induced sample. Reduced formation of ROS was also 
observed in non-induced L. reuteri pSIP411 + kat, 
which showed a catalase activity of 432 U/ml without 
induction and 873 U/ml with induction (Table 4). The 
lowest ROS formation was detected in the L. reuteri 
pSIP411 + sod strain with high SOD activity of 1,213 U/
ml, but a reduction was also observed in the absence 
of inducer, where a SOD activity of 855 U/ml was 
measured.

Fig. 4 Aerobic growth phenotype (OD 600 nm, pH) of L. reuteri pSIP411 + kat A and L. reuteri pSIP411 + sod B recombinant strains during cultivation 
at 30 ℃ for 24 h. All results are the mean of three independent experiments; the error bars indicate the standard deviation

Table 4 ROS measurement and catalase and SOD activity in L. reuteri cells during aerobic and anaerobic condition

Strains and condition ROS measurement (RFU) Catalase activity (U/ml) SOD activity (U/ml)

KUB-AC5 (static)  712 ± 25,0 0 0

KUB-AC5 (150 rpm)  840 ± 7,42 12.9 ± 0.08 1.73 ± 0.02

pSIP411 + kat non-induced (150 rpm)  764 ± 7,86 432.6 ± 13.1 7.68 ± 0.55

pSIP411 + kat induced (150 rpm)  745,4 ± 4,08 873.4 ± 6.71 9.35 ± 0.51

pSIP411 + sod non-induced (150 rpm)  833,6 ± 4,13 34.2 ± 0.11 854.6 ± 12.53

pSIP411 + sod induced (150 rpm)  701,8 ± 4,89 47.6 ± 0.41 1,213 ± 31.2
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Discussion
LAB are facultative anaerobic bacteria and are sensitive 
to oxidative stress to varying degrees. The ability for aer-
obic growth varies significantly, is highly species-depend-
ent and relies on various mechanisms. The growth profile 
of L. reuteri KUB-AC5 exhibited a strong growth limi-
tation under aerobic cultivation conditions, similar to 
heterofermentative lactic acid bacteria such as Limosi-
lactobacillus fermentum DSM20052 and Limosilactoba-
cillus reuteri LMG92113 [50]. We demonstrate here the 
growth limitation of L. reuteri KUB-AC5 under aerobic 
conditions is caused by higher formation of Reactive oxy-
gen species (ROS). L. reuteri KUB-AC5 contains a gene 
encoding NADH oxidase (nox). This enzyme is respon-
sible in many LAB for the removal of oxygen in aerobic 
conditions to maintain the intracellular redox balance 
[46], but leads to formation of ROS that are toxic to the 
cell (Maresca, Zotta, and Mauriello 2018; [5, 14, 16]. To 
overcome this ROS toxicity, some LAB synthesize Mn-
SOD, a ROS scavenging enzyme to detoxify the  O2

− mol-
ecule [3, 4, 10]. Enzymes capable of scavenging  H2O2 
such as catalase are rare in LAB [16]. In L. reuteri KUB-
AC5, neither Mn-SOD nor catalase-encoding genes are 
present in the genome, resulting in the strong growth 
limitation under aerobic conditions.

Some LAB possess a complete respiratory chain includ-
ing the biosynthesis of menaquinone as electron shuttle 
and can switch to respiratory metabolism in the presence 
of heme, which always needs to be supplemented as there 
is no heme biosynthesis in LAB [15, 25, 49]. Genomic 
analysis of L. reuteri KUB-AC5 revealed that both NADH 
dehydrogenase and cytochrome-bd oxidase are present, 
but the menaquinone biosynthesis pathway is incom-
plete and lacks four genes [8, 9]. Respiratory metabolism 
should therefore be functional with supplementation of 
both heme and menaquinone. A reconstitution of the 
complete pathway as shown for Lactiplantibacillus plan-
tarum, which also lacks four genes [49] appears feasible 
in principle, but would still require supplementation with 
chorismate, as the biosynthesis pathway for this precur-
sor is not present. This approach was thus not pursued.

This work therefore focused on a strategy for oxidative 
stress reduction based on the expression of genes encod-
ing ROS scavenging enzymes, Mn-SOD and Mn-catalase. 
Two plasmids for inducible expression in Lactobacilli, 
pSIP409 (data not shown) and pSIP411 were used as 
backbone, but only pSIP411 could be efficiently trans-
formed into L. reuteri KUB-AC5. Both plasmids are the 
inducible plasmid-system based on the regulatory genes 
and promoters involved in class II non-lantibiotic bacte-
riocin production from L. sakei sakacin P (spp gene clus-
ter) [11, 19]. The three-component system regulates the 
bacteriocin production, consisting of a secreted peptide 

pheromone (IP-673), which interacts with a cognate 
membraneembedded histidine protein kinase (HPK) 
and transduces the inducer signal from outside of the 
cell into the cytoplasm. The response regulator (RR) is 
then activated by transferring a phosphate group from 
a conserved histidine residue of HPK to an aspartate 
residue of RR [18], leading to the induction of pSIP409 
and pSIP411 promoters [11]. The set of HPK and RR is a 
two-component regulatory system [18] consisting of two 
operons, one for target gene expression and another one 
for the two-component regulatory system controlled by 
a different promoter [30]. The pSIP409 vector carries the 
256rep origin of replication from L. plantarum and has 
been reported as a narrow-host-range replicon [22, 44, 
45], which is limited to several LAB hosts including L. 
sakei, Lentilactobacillus curvatus and L. plantarum [44, 
45]. The unsuccessful transformation of pSIP409 in L. 
reuteri KUB-AC5 suggest that this strain lacks a replica-
tion initiation factor for p256 [44, 45]. In contrast, high 
transformation efficiency was seen with the constructs 
based on pSIP411, which harbors an SH71rep origin of 
replication. In contrast to 256rep, SH71rep is a high copy 
number replicon from L. lactis [35] that is reported as 
a broad-host-range replicon and is also functional in L. 
reuteri DSM20016 and L. reuteri ATCC PTA 6475 [22] as 
well as L. reuteri KUB-AC5.

Expression of both Mn-catalase and Mn-SOD showed 
high activities when cultivation and induction were per-
formed at 25 ℃ and 30 ℃, but not at 37 ℃. This result is in 
contrast to previously reported results of β-galactosidase 
expression in L. plantarum using the pSIP system, where 
higher protein expression was observed at 37  ℃ and 
was attributed to a higher growth rate at 37 ℃ [33]. In 
L. reuteri KUB-AC5, lower cell density was reached at 
25 ℃, but at 30 ℃ and 37 ℃ the cell density after 24  h 
cultivation was similar. The higher protein expression at 
low temperature (25 ℃ and 30 ℃) could be due to higher 
solubility of the heterologous protein [47]. Lowering the 
induction temperature slows down cell proliferation pro-
cesses including the rate of transcription and translation, 
which results in lower proportions of mis-folded protein 
and minimizes protein aggregation [41]. A higher protein 
expression at 30 ℃ was also reported for L. reuteri DSM 
20016 with a pTRKH3-ermGFP expression plasmid [35].

Catalase activity and ROS reduction were measured in 
both induced and non-induced L. reuteri pSIP411 + kat 
cultures (Table  4) and confirmed by Western blot, sug-
gesting a leaky promoter driving a certain level of tran-
scription in the absence of inducer. The leakage of 
the Sakacin-inducible promoter has been previously 
reported [23, 33]. Non-induced cultures also showed an 
only mildly slower growth behavior compared to induced 
cultures, and both non-induced and induced cultures 
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grew to cell densities as observed for non-aerated condi-
tions. L. reuteri KUB-AC5 possesses a Thioredoxin sys-
tem, which is a crucial protective system against  H2O2 
using disulfide reductase activity regulating protein dith-
iol/disulfide balance [26, 27, 37]. The results presented 
here suggest that, together with the Thioredoxin system, 
the catalase activity resulting from the leaky promoter 
is largely sufficient for the reduction of oxidative stress 
caused by hydrogen peroxide. It is also noteworthy that 
the reduction in total ROS activity in catalase-expressing 
cells is not entirely proportional to the increased bio-
mass formation: biomass formation is restored to the 
levels observed in non-aerated cultures, even though 
the total ROS activity remains slightly elevated. L. reu-
teri pSIP411 + sod cultures showed a significantly higher 
biomass formation, beyond the levels of non-aerated cul-
tures, and strong reduction of ROS activity to levels com-
parable with anaerobic conditions. This suggests that the 
impact on growth limitation caused by superoxide anion 
radicals is more pronounced than that of hydrogen per-
oxide (or other forms of ROS). SOD activity decomposes 
superoxide anions to  H2O2, which is still toxic to the 
cells. Our results suggest that elimination of the superox-
ide anion radicals is a major factor in counteracting detri-
mental effects of ROS, and that the resulting formation of 
hydrogen peroxide can be handled by the native Thiore-
doxin system. Whether a co-expression of both Mn-SOD 
and Mn-catalase can further reduce total ROS activity 
(to levels even below those of non-aerated cultures), and 
whether this has additional impact on biomass formation 
will be the subject of further studies.
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