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Abstract 

Background Orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid, OA) and its structural analog o-Orsellinaldehyde, 
have become widely used intermediates in clinical drugs synthesis. Although the research on the biosynthesis of 
such compounds has made significant progress, due to the lack of suitable hosts, there is still far from the industrial 
production of such compounds based on synthetic biology.

Results With the help of genome mining, we found a polyketide synthase (PKS, HerA) in the genome of the Heri-
cium erinaceus, which shares 60% amino acid sequence homology with ArmB from Armillaria mellea, an identified 
PKS capable of synthesizing OA. To characterize the function of HerA, we cloned herA and heterologously expressed 
it in Aspergillus oryzae, and successfully detected the production of OA. Subsequently, the introduction of an incom-
plete PKS (Pks5) from Ustilago maydis containing only three domains (AMP-ACP-R), which was into herA-containing A. 
oryzae, the resulted in the production of o-Orsellinaldehyde. Considering the economic value of OA and o-Orsellinal-
dehyde, we then optimized the yield of these compounds in A. oryzae. The screening showed that when maltose was 
used as carbon source, the yields of OA and o-Orsellinaldehyde were 57.68 mg/L and 15.71 mg/L respectively, while 
the yields were 340.41 mg/Kg and 84.79 mg/Kg respectively in rice medium for 10 days.

Conclusions Herein, we successfully expressed the genes of basidiomycetes using A. oryzae heterologous host. As 
a fungus of ascomycetes, which not only correctly splices genes of basidiomycetes containing multiple introns, but 
also efficiently produces their metabolites. This study highlights that A. oryzae is an excellent host for the heterologous 
production of fungal natural products, and has the potential to become an efficient chassis for the production of 
basidiomycete secondary metabolites in synthetic biology.
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Graphical Abstract

Background
Orsellinic acid (OA) is a dihydroxybenzoic acid deriva-
tive with an extra methyl group, and its structural ana-
logue o-Orsellinaldehyde is a benzene carbaldehydes 
compound. Their natural derivatives are typically con-
tained isopentenyl units. More than 200 OA deriva-
tives compounds have been isolated and identified in 
plants, lichens, fungi, and bacteria [1], which exhibit 
essential biological activities. For example, Dauri-
chromenic acid (DCA), isolated from the leaves of the 
plant Rhododendron dauricum, has potent anti-HIV 
activity [2]. Mycophenolic acid (MPA), derived from 
the filamentous fungi Penicillium brevicompactum, has 
been a first-line immunosuppressive drug for organ 
transplantations and autoimmune diseases [3]. Asco-
furanone (AF) and ascochlorin (AC) are produced by 
Acremonium egyptiacum, of which AF is a promising 
drug candidate against African trypanosomiasis and a 
potential anticancer lead compound [4]. Aspernidine 
A and B two phthalaldehydes, containing an O-farnesyl 
moiety, metabolites of Aspergillus nidulans, exhibited 
moderate antiproliferative activities [5]. Llicicolin B 
(LL-Z1272β), a prenylated aryl aldehyde produced by 
various fungi, such as Stachybotrys bisbyi, it not only 
inhibits pathogenic microorganisms and African trypa-
nosomes, but is also less harmful to human cells [6, 7]. 
Antroquinonol, from the basidiomycete fungus Antro-
dia camphorata, has non-small cell cancer inhibitory 
activity and is currently a Phase II clinical lead drug [8]. 
Hericenone A, C, D, and E, isolated from the basidi-
omycete H. erinaceus, they were the first compounds 
discovered to have Nerve Growth Factor promoting 
activity and were pioneering drugs against Alzheimer’s 
disease [9–11] (Fig. 1).

OA is a structurally simple aromatic polyketide 
formed by the stepwise condensation of acetyl coen-
zyme A with three malonyl coenzymes A. In fungi 

and bacteria, OA is mediated by repetitive type I PKS 
enzymes [12–14], while it is produced in plants by 
type III PKS [15]. In 2012, Ishiuchi et  al. identified a 
PKS (CC1G_05377) from the model basidiomycete 
Coprinopsis cinerea, whose heterologous expression 
this gene in Saccharomyces cerevisiae produced OA 
[16]. In 2013, Lackner et  al. identified armB in Armil-
laria mellea through genome mining. In vitro catalytic 
realization indicated that ArmB catalyzed acetyl-CoA 
and malonyl-CoA to produce OA [17]. PKS1 and 2 
were identified from Stereum sp. when expressed in A. 
niger the OA was detected [18]. PKS63787 from A. cin-
namomea and the metabolites of Δpks63787 transfor-
mants were deficient in several aromatic compounds, 
including OA [19]. Although OA is the structural back-
bone of numerous secondary metabolites, only a few 
of the OA synthases described above have been char-
acterized from basidiomycetes.o-Orsellinaldehyde is a 
natural product of reducing the C1-position carboxyl 
group of OA to an aldehyde group. There are two forms 
of enzymatic reactions that catalyze the conversion of 
OA to o-Orsellinaldehyde, one is the catalytic reac-
tion responsible for the Non-ribosomal peptide syn-
thase-like (NRPS-like) enzymes, such as StbB, AscB, 
ATEG_03630 [4, 7, 20], and the other is the catalytic 
reaction responsible for the R domain of PKS, such 
as PkfA, TropA [21, 22] (Additional file  1: Fig. S1). In 
2019, Reyes-Fernández et  al. identified Pks5 from the 
U. maydis genome, and based on gene knockout exper-
iments, proved that the function of the enzyme is to 
convert OA into o-Orsellinaldehyde [23].

Currently, most OA derivatives are of plant origin [24], 
but they are present in relatively small amounts and diffi-
cult to isolate and extract. In recent years, the emergence 
of synthetic biology has promoted the development of 
related technologies. Through the concept and technol-
ogy of synthetic biology, the construction of microbial 
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cell factories not only dramatically reduces the produc-
tion cost, but also provides a new way to protect rare 
plant resources and drugs development. E. coli and sev-
eral streptomyces species are frequently utilized for bac-
terial genes. The most popular plant heterologous host 
for plant genes is the tobacco “Nicotiana benthamiana”, 
and the microbial chassis for these organisms is Saccha-
romyces cerevisiae. For fungal genes, there are several 

strains available, including S. cerevisiae and well-charac-
terized Aspergillus sp. [25]. To achieves efficient bioprep-
aration of OA and its derivatives, the filamentous fungus 
A. oryzae was selected as the heterologous expression 
host, which can synthesize polyketides, terpenoids, non-
ribosomal peptides, and their post-modification products 
[26–28].

Fig. 1 Representative natural products containing the OA scaffold
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Through sequence similarity networks (SNNs) analysis, 
we found a gene herA in the genome of the basidiomycete 
H. erinaceus, that prediction involved in the synthesis of 
OA. Using A. oryzae as host, construction of herA heter-
ologous expression strain (AO-herA), we not only verified 
the function of HerA, but also obtained an engineer-
ing strain of A. oryzae with high OA production. Next, 
transformed pks5 from U. maydis into AO-herA trans-
formants, and successfully obtained a strain-producing 
o-Orsellinaldehyde. Through the optimization of carbon 
sources and the comparison of fermentation methods, 
we finally determined the best production conditions 
for high-yielding OA and o-Orsellinaldehyde. This study 
provides a new strategy for the construction and optimi-
zation of the biosynthetic pathway of OA derivatives. In 
addition, our study also provides an effective method for 
the efficient expression of genes in basidiomycetes.

Results and discussion
Genome mining polyketide synthase in H. erinaceus
OA is biosynthesized by non-reducing polyketide syn-
thase (NR-PKS) [29]. ArmB, an orsellinic acid synthase 
(OAS) from A. mellea, has the canonical nonreduc-
ing architecture (SAT–KS–AT–PT–ACP–TE) [17]. The 
OAS gene from the basidiomycetes fungi has rarely been 
studied or identified. To obtain insights into the OAS 
homolog in the basidiomycetes fungi, a BLAST search 
of the fungi genomic database using ArmB as the tar-
get gene. For better visualization and classification, the 
SSNs were built for the 1000 curated NR-PKS using the 
Enzyme Function Initiative-Enzyme Similarity Tool [30]. 
The results showed that most OAS are derived from 
ascomycetes, and only a minority originates from basidi-
omycetes (Fig.  2). The reason for is that the number of 
ascomycetes in the reported genome database is much 
higher than that of basidiomycetes. Based on the data 
analyzed, all the reported genomes of basidiomycetes 
contain sequences with high homology for OAS, and this 
result indicates that it is ubiquitous in basidiomycetes. 
Therefore, identifying the functions of OAS in basidio-
mycetes, for the biosynthetic study of OA derivatives was 
essential.

Hericium erinaceus, also known as lion’s mane mush-
room, is a widely distributed edible and medicinal fun-
gus in Asian countries. The H. erinaceus mushroom 
contains a class of compounds “hericenones”, that pro-
mote the synthesis of Nerve Growth Factors [31]. This 
class of compounds is based on the OA backbone, the 
biosynthetic of hericenones processes remain unknown. 
Elucidation of the function of OAS in H. erinaceus 
will provide an insight into the biosynthesis of heri-
cenones. Through SSNs analysis, we found an NR-PKS 
in the basidiomycete H. erinaceus and named it HerA. 

Through further analysis, HerA contained 2147 amino 
acid sequence, which was distributed in the same classic 
as the previously reported ArmB [17], CC1G-05377 [16], 
PKS1, 2 [18], and PKS63787 [19] from basidiomycetes, 
while Osp1 and TerA of ascomycete origin were in a dif-
ferent classic. According to bioinformatic analysis, except 
for PKS CC1G-05377, these enzymes share the structural 
SAT, KS, AT, PT, ACP, and TE domains for OA biosyn-
thesis (Additional file  1: Table  S1). Noteworthy, HerA 
contains two ACP domains. We speculated that it can 
synthesize OA.

Heterologous expression of herA in A. oryzae to form OA
To investigate the function of HerA, the herA gene was 
amplified from the H. erinaceus CS4 genomic DNA 
(gDNA) and cloned into the pUARA2 plasmid. The 
pUARA2 containing herA was subsequently transformed 
into A. oryzae NSAR1 to obtain AO-herA transformants. 
HPLC analysis of the AO-herA mycelial extract showed a 
new peak with maximum UV absorption of 207, 262, and 
300  nm (Additional file  1: Fig. S2), while this peak was 
not found in the control of the wild-type strain (Fig. 3A). 
To determine the structure of this compound, the AO-
herA transformants were cultured on rice medium on 
a large scale. The crude ethyl acetate extract of the fer-
ment was isolated by silica gel column chromatography 
and HPLC purification to obtain the pure monomeric 
compound. High-resolution electrospray mass spectrom-
etry (HR-ESI–MS) analysis determined the molecular 
weight [M +  H]+ 169.0466 of the compound with the 
presumed molecular formula of  C8H8O4 (calculated as 
[M +  H]+169.0495) (Fig. 3B). Further NMR examination 
characterized the structure, and its NMR data (Addi-
tional file  1: Figs. S3, S4, and Table  S2) were consistent 
with the reported NMR data of OA [32].

The heterologous expression of herA in A. oryzae, that 
indicates HerA is an OAS from the H. erinaceus and is 
responsible for OA production. The ability of A. oryzae to 
correctly recognize the seven introns of herA (Additional 
file 1: Table S3), as a filamentous fungus, it can efficiently 
express the gDNA gene of basidiomycetes.

Functional analysis of Pks5
Ustilago maydis is a typical plant pathogenic fungus, 
and there are five PKS genes in its genome sequence. A 
recent study showed that pks5 is a polyketide synthase-
encoding gene from U. maydis associated with the bio-
synthesis of melanin. Inactivation of pks5 results in the 
loss of o-Orsellinaldehyde, and the accumulation of OA 
in U. maydis. This result suggests that the function of 
Pks5 is responsible for the conversion of OA to o-Orsell-
inaldehyde [23]. Bioinformatics analysis revealed that 
Pks5 contains two introns, and three structural domains, 
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AMP, ACP, and R (Additional file 1: Table S1), with 30% 
identity to the NRPS-like enzyme ATEG_03630. To con-
struct a cell factory to produce o-Orsellinaldehyde, we 
cloned the pks5 gene from U. maydis and transferred 
it into the AO-herA strain to obtain an AO-herA-pks5 
transformant. HPLC analysis revealed a new peak in the 
metabolites of the AO-herA-pks5 transformants rela-
tive to the AO-herA strain, whose retention time was 
consistent with that of the standard o-Orsellinaldehyde 
(Fig. 3A). To further confirm the function of pks5, an A. 
oryzae transformant containing pks5 was constructed. 

AO-pks5 was fed with OA as substrate, and HPLC analy-
sis showed that the AO-pks5 strain could convert OA 
into a new compound with a retention time consistent 
with that of o-Orsellinaldehyde (Fig.  3A). HR-ESI–MS 
analysis showed that the compound had a [M +  H]+ of 
153.0516, with the presumed molecular formula  C8H7O3 
(calculated as [M +  H]+153.0546) (Fig.  3C). The 1H and 
13C NMR data of this compound (Additional file 1: Figs. 
S5, S6, and Table S2) agree with the known o-Orsellinal-
dehyde data [30]. Our results indicated that A. oryzae 
can correctly splice the two introns of pks5 and that the 

Fig. 2 The SSNs network analysis based on ArmB and its homologous sequences. All homologous sequences were from Uniport and other 
databases. The purple group is from Basidiomycetes. The green group is from ascomycetes. The blue group is from other fungi. The orange dots 
represent identified OAS. The yellow dots represent HerA
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incomplete structural domain with Pks5 has the function 
of converting carboxyl groups to aldehyde groups.

Optimization of OA and o‑Orsellinaldehyde yields
Since both OA and o-Orsellinaldehyde are impor-
tant pharmaceutical intermediates and chemical raw 

materials, we proceeded to optimize the yields of the 
two compound-producing. Carbon sources provide the 
energy for microbial growth, and the carbon skeleton for 
metabolites. Considering the cost of large-scale produc-
tion, we needed to screen for carbon sources that were 
less expensive and high yields of metabolites. The six 

Fig. 3 Heterologous expression and characterization of metabolites. A HPLC profiles of OA and o-Orsellinaldehyde produced by the transformants. 
(i) A. oryzae NSAR1, (ii) AO-herA, (iii) AO-herA-pks5, (iv) Bioconversion of OA by A. oryzae NSAR1, (v) Bioconversion of OA by AO-pks5, (vi) Standard of 
Orsellinic acid and o-Orsellinaldehyde. B MS spectrum of OA. C MS spectrum of o-Orsellinaldehyde
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different carbon sources (glucose, sucrose, lactose, dex-
trin, maltose, and starch) were selected for carbon source 
screening to compare the effects on the production of OA 
and o-Orsellinaldehyde. The results showed that the addi-
tion of different carbon sources had different effects on 
OA and o-Orsellinaldehyde production, where the high-
est OA and o-Orsellinaldehyde yields of 57.68 mg/L and 
15.71  mg/L, respectively, were obtained when maltose 
was used as the carbon source (Fig. 4). In addition, OA 
and o-Orsellinaldehyde production was higher than that 
of glucose, sucrose, and lactose when starch and dextrin 
were used as carbon sources. In the present experiment, 
the α-amylase promoter was used for the expression of 
exogenous genes, and maltose was able to induce the 
expression of amylases, including α-amylase in A. oryzae 
[33]. Therefore, the yield of OA and o-Orsellinaldehyde 
was highest when maltose was used as the carbon source.

Compared to liquid cultures, solid cultures with rice 
medium showed a 5.90- and 5.40-fold increase in OA and 
o-Orsellinaldehyde production, with yields of 340.41 mg/
kg and 84.79 mg/kg, respectively (Fig. 4). Tagami K et al. 
reconstructed the biosynthesis of the indole diterpenoid 
in A. oryzae, when using maltose as a carbon source for 
liquid fermentation, the yield of paxilline was 35  mg/L 

[34], however the yield of aflatrem was 54 mg/Kg when 
rice was used as a solid medium [35]. This suggests that 
during solid culture, A. oryzae has support attached to 
it during growth. It can form a differentiation between 
trophic and aerial mycelium, this form facilitates the 
production of a large number of enzymes, that able to 
increase the efficiency of heterologous expression of pro-
teins, thus increasing the yield of metabolites. In con-
trast, under liquid culture conditions, which are relatively 
unstable, A. oryzae tends to form balls of varying sizes, 
which may have affected the production of metabolites. 
Furthermore, in the later stages of liquid culture, the pH 
of the medium tends to be acidic. Aldehyde groups are 
unstable under acid conditions. This may be one of the 
reasons why o-Orsellinaldehyde is more productive in 
solid medium. So far, A. oryzae is suitable for heterolo-
gous expression of basidiomycetes PKS products.

Here, we have demonstrated the successful expres-
sion of PKS genes herA and pks5 from basidiomycetes in 
A. oryzae, resulting in the construction of a cell factory 
capable of producing OA and o-Orsellinaldehyde. Our 
findings highlight the potential of A. oryzae as a prom-
ising platform to produce mushroom polyketide com-
pounds, which offering several advantages such as low 

Fig. 4 Effects of different carbon sources and fermentation conditions on the yield of Orsellinic acid and o-Orsellinaldehyde
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cost, high efficiency, environmental friendliness, and 
sustainability. These results not only provide valuable 
insights into the biosynthesis of important pharmaceuti-
cal intermediates, but also offer an important contribu-
tion to the elucidation of gene function.

Conclusion
In this work, we identified the functions of HerA and 
Pks5 by heterologous expression in A. oryzae as hosts, 
and simultaneously obtained OA and o-Orsellinalde-
hyde producer strains. Carbon source optimization and 
screening of fermentation methods pointed to the opti-
mal production of OA and o-Orsellinaldehyde. This 
result lays the foundation for the possible future indus-
trial production of both compounds.

It is well known that basidiomycetes are a demanding 
species with different growth cycles. In some cases, the 
correct cDNA sequence cannot be obtained. This lim-
its the research on the biosynthesis of basidiomycetes 
natural products. A. oryzae is an excellent host for het-
erologous expression. It is competent to directly express 
intron-containing genes, with the ability to correctly 
splice mRNA and translate. This strategy saves time in 
basidiomycetes cultivation and provides a new approach 
to the biosynthesis of basidiomycetes natural products. 
We believe that A. oryzae heterologous expression tools 
will have more widespread applications.

Material and methods
General experimental procedures
All reagents commercially supplied were used as 
received. HPLC analysis was performed using an Agilent 
1260 Series with a DAD detector (California, CA, USA). 
1H- and 13C-NMR spectra were recorded on Bruker 
AVAN CEIII HD 500. Chemical shifts were reported 
as δ scale in ppm as an internal reference  (CD3OD; 1H 
NMR = 3.31  ppm, 13C NMR = 49.0  ppm). Mass spectra 
were obtained with an AB SCEIX Triple TOF 6600. Col-
umn chromatography was carried out on C18 silica gel 
(Agilent Technologies. USA). Oligonucleotides for poly-
merase chain reaction (PCR) were purchased from RuiBi-
otech Biotechnology Co., Ltd.

Strains and culture conditions
H. erinaceus CS-4 (CCTCC AF 2018025) [36] was culti-
vated at 25  °C, 170 rpm in potato dextrose broth (PDB) 
liquid medium for one week and used as a source for the 
cloning of herA gene. The U. maydis (CGMCC 5.208) 
was grown at 28  °C, 200  rpm in YEPS (yeast extract-
pep-tone-sucrose: 1% yeast extract, 2% peptone, 2% 
sucrose, 100 mL) for one week and used as a source for 

the cloning of Pks5 gene. Standard DNA engineering was 
performed with Escherichia coli DH5α and culture at 37 
℃ for grown. A. oryzae NSAR1 (niaD-, sC-, ΔargB, adeA-
) was used as the fungal heterologous expression host in 
this study, and growth at 30 °C, 200 rpm in DPY (dextrin-
polypeptone-yeast extract: 2% dextrin, 1% polypeptone, 
0.5% yeast extract, 100 mL) medium supplemented with 
appropriate nutrients.

Extraction of the genomes and construction of plasmids
Extraction of the genomes of H. erinaceus and U. may-
dis was carried out according to the literature proce-
dure [34]. The herA was divided into two fragments for 
amplification from the genome of H. erinaceus with the 
primers described in Additional file 1: Table S4, and then 
introduced into pUARA2 vector using ClonExpress Mul-
tiS One Step Cloning Kit (Vazymebiotech Laboratories) 
to construct expression plasmids, pUARA2-herA (Addi-
tional file 1: Table S5). The pks5 was amplified from the 
genome of U. maydis with the primers described in Addi-
tional file  1: Table  S4 and then introduced into pUSA2 
vector, using a ClonExpress Ultra One Step Cloning Kit 
(Vazyme Biotech Co., Ltd) to construct expression plas-
mids, pUSA2-pks5 (Additional file 1: Table S5).

Transformation of Aspergillus oryzae
Transformation of A. oryzae NSAR1 [37] was carried out 
by the previously reported protoplast–polyethylene gly-
col method [38]. The plasmid pUARA2-herA was used 
for the first transformation to construct AO-herA. This 
transformant was further transformed with pUSA2-pks5 
to construct AO-herA-pks5. pUSA2-pks5 was used for 
the transformation to construct AO-pks5.

Biotransformation of OA using AO‑pks5
Mycelia of the transformant with pks5 were inoculated 
into MPY (maltose-peptone-yeast extract: 3% maltose, 
1% polypeptone, 0.5% yeast extract) medium (2  mL) 
containing appropriate nutrients in 10 mL test tube. OA 
(20 μg, methanol solution) was then administered to the 
culture medium. After an additional 3 days of incubation 
at 30 °C, 200 rpm. The mycelium was removed by filtra-
tion, and the broth was extracted with ethyl acetate, then 
the organic layers were concentrated in vacuo. The crude 
extracts were directly analyzed by HPLC and LC–MS.

Extraction and analysis of metabolites
Mycelia of AO-herA and AO-herA-pks5 transformants 
were inoculated into a solid medium containing polished 
rice (1  g) and appropriate adenine at 30  °C for 10  days. 
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After extraction with ethyl acetate, the extract was con-
centrated in vacuo to afford crude extracts. The crude 
extracts were analyzed by HPLC equipped with an Agilent 
TC-C18 (250  mm × 4.6  mm) at the following conditions: 
0–5  min, 10% B; 5–20  min, a linear gradient 10–100% 
B; 20–30  min, 100% B (A:  H2O + 0.1% of formic acid, B: 
 CH3OH + 0.1% of formic acid) at a flow rate of 1 mL/min. 
Samples were analyzed using a TripleTOF 6600 mass spec-
trometer (AB/SCIEX, Milford, MA) and an HPLC system 
(AB/SCIEX). Chromato- graphic separation was achieved 
using a 150 mm × 4.6 mm, 2.6 μm Kinetex C18 100A col-
umn (Phenomenex) at the following conditions: 0-10 min, 
5–100% B;10–15  min, 100% B (A:  H2O + 0.1% of formic 
acid, B:  CH3CN + 0.1% of formic acid) at a flow rate of 
0.6 mL/min.

Effect of different carbon sources on the production of OA 
and o‑Orsellinaldehyde
The spore suspension (1 ×  108 Cell/mL) of AO-herA-
pks5 transformant was inoculated into 100 mL of PY (1% 
polypeptone, 0.5% yeast extract) liquid medium supple-
mented with 2% with different carbon sources (glucose, 
sucrose, lactose, dextrin, starch, and maltose) in 500 mL 
Erlenmeyer flasks. After 3 days of incubation at 30 ℃ and 
200  rpm. The mycelium was removed by filtration, and 
the broth was extracted with ethyl acetate three times. 
Then, the organic layers were concentrated in vacuo. The 
crude extracts were obtained and analyzed by the above 
method. All experiments were replicated three times.

Isolation and purification of each metabolite
Mycelia of AO-herA-pks5 transformants were inoculated 
into a solid medium containing polished rice (1 kg) and 
appropriate adenine at 30  °C for 10  days. The mycelia 
were extracted with ethyl acetate at room temperature 
overnight. The ethyl acetate layer was washed with brine 
and concentrated in vacuo. The crude extracts were iso-
lated using silica gel column chromatography (Petroleum 
ether: ethyl acetate, 6:1 to 2:1). The isolated compounds 
were further purified by semi-preparative HPLC.
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