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Abstract 

Gene expression data of cell cultures is commonly measured in biological and medical studies to understand cellular 
decision-making in various conditions. Metabolism, affected but not solely determined by the expression, is much 
more difficult to measure experimentally. Finding a reliable method to predict cell metabolism for expression data will 
greatly benefit metabolic engineering. We have developed a novel pipeline, OVERLAY, that can explore cellular flux-
omics from expression data using only a high-quality genome-scale metabolic model. This is done through two main 
steps: first, construct a protein-constrained metabolic model (PC-model) by integrating protein and enzyme informa-
tion into the metabolic model (M-model). Secondly, overlay the expression data onto the PC-model using a novel 
two-step nonconvex and convex optimization formulation, resulting in a context-specific PC-model with optionally 
calibrated rate constants. The resulting model computes proteomes and intracellular flux states that are consistent 
with the measured transcriptomes. Therefore, it provides detailed cellular insights that are difficult to glean individu-
ally from the omic data or M-model alone. We apply the OVERLAY to interpret triacylglycerol (TAG) overproduction 
by Chlamydomonas reinhardtii, using time-course RNA-Seq data. We show that OVERLAY can compute C. reinhardtii 
metabolism under nitrogen deprivation and metabolic shifts after an acetate boost. OVERLAY can also suggest possi-
ble ‘bottleneck’ proteins that need to be overexpressed to increase the TAG accumulation rate, as well as discuss other 
TAG-overproduction strategies.
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Background
Microalgae have long been a promising class of organism 
as a synthetic biological chassis due to their high growth 
rate, efficient photosystem, and simplicity in cultiva-
tion. Because of its carbon fixation capability, it is also 
believed that algal products have less carbon dioxide 

emissions and are more sustainable in large-scale pro-
duction [1]. Within all microalgae, Chlamydomonas rein‑
hardtii is the best-studied organism in terms of genome 
annotation and molecular mechanisms, making it the 
reference organism for studying algal lipid metabolism 
[2]. Numerous molecular tools for C. reinhardtii, includ-
ing its chloroplast, have also been developed by the 
research community, making its production of recom-
binant proteins easier than any other algae [3, 4]. As a 
result, C. reinhardtii has been utilized to make a wide 
variety of chemicals in the lab and industry. On the high 
value-added end, non-native proteins are expressed and 
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produced in C. reinhardtii as pharmaceutics such as vac-
cines, antibiotics, and nutritional supplements [5]. This 
has been the more economically profitable and fruit-
ful direction, and some standard workflows and toolkits 
have been established [6]. On the other hand, efforts are 
made to produce biofuels such as biodiesel, biohydrogen, 
and bio-alcohol from algae, which are chemicals closely 
related to the primary metabolism [7]. Some remark-
able progress is made that increases C. reinhardtii lipid 
and starch contents by up to 2.5-fold by relatively sim-
ple modifications [1]. For example, Rengel et al. showed 
that overexpressing the acetyl-coenzyme-A (acetyl-CoA) 
synthetase gene can achieve up to 2.4-fold triacylglycerol 
(TAG) than the control group [8]. Some sophisticated 
studies have achieved an 8-fold hydrocarbon increment 
from the controlled C. reinhardtii, using gene knock-
out, heterologous expression, and triparental conjuga-
tion technique [9]. Specifically, Yunus et  al. boosted 
fatty acid conversion to fatty alkane and fatty alkene by 
introducing enzymes such as FAP and UndA/B [9]. They 
also increased system fatty acid levels by deleting gene 
aas, thus preventing fatty acid consumption for cellular 
acyl-ACP replenishment [9]. Moreover, the metabolic 
response of C. reinhardtii to various medium conditions, 
such as nitrogen deprivation, acetate concentration, or 
light intensity, is a practical topic to increase TAG pro-
duction further. Bogaert et  al. showed that all biomass 
components including fatty acids increase in concentra-
tion per cell in response to supplementation with high 
acetate concentration [10].

Despite these findings, algal starch derivatives, lipid 
derivatives, and hydrogen are not yet economically feasi-
ble substitutes for fossil fuels on the market. Most of the 
experimental studies focus on modifying a few genes or 
adding a few chemical species into the medium without 
dramatically changing the cell from the wild type. It is a 
missed opportunity, as optimizing these new strains or 
potentially applying them in conjunctions can achieve a 
much higher yield with minor added costs. The optimi-
zation usually requires quantitative measurements from 
the phenotype, such as RNA-sequencing, proteomic 
data, and extracellular metabolomics, which are avail-
able from many existing studies. Developing an in-silico 
workflow would greatly assist researchers in systemati-
cally understanding the cellular metabolism from pheno-
type measurements, which is critical to optimize current 
biofuel-producing strategies and suggesting novel gene 
targets.

Genome-scale modelling (GEM) is an in-silico tool to 
systematically simulate cellular expression and metab-
olism, which is now widely used in biotechnology and 
infectious disease research. GEM is a species-specific 

biological reaction network, usually reconstructed by 
researchers from an annotated genome of the organ-
ism. Genome-scale metabolic model (M-model), the 
most basic yet accessible GEM that focuses exclusively 
on predicting metabolic fluxes, is the metabolic sub-
network with equilibrium constraint applied. M-model 
is a mathematical linear optimization problem (LP) 
(Methods, Eqs.  (1)–(3)) and can usually be solved 
within 0.1 seconds using flux balance analysis (FBA) in 
COBRA Toolbox [11]. Noticeably, FBA is an algorithm 
that finds extreme flux values within the feasible met-
abolic range, and it is not explicitly designed for inte-
grating measured expression data, which is referred 
to as context-specific modelling. In principle, context-
specific modelling has better utilities in metabolic engi-
neering than generic M-model, due to the former being 
constrained directly by omic data to resemble in  vivo 
conditions. Existing algorithms for context-specific 
modelling are centred mainly around two approaches: 
limiting the flux of reactions with lowly expressed 
genes (i.e., GIMME), and defining and supporting a 
set of core reactions with highly expressed genes (i.e., 
mCADRE) [12–14]. Most of these existing methods 
require user-specified parameters such as expression 
thresholds, making them less objective and less acces-
sible to a wider community. More importantly, the 
qualitative ‘highly/lowly/not expressed’ criteria is likely 
too coarse for investigating TAG production, as the 
target flux is inherently low. Consequently, it is harder 
for researchers to study insights from the modelling by 
these algorithms, as well as suggesting metabolic engi-
neering strategies.

In this study, we develop a computational pipeline, 
OVERLAY to better address these challenges. We first 
formulated a protein-constrained metabolic model 
(PC-model) starting from the published C. reinhardtii 
M-model iCre1355 and chloroplast specific M-model 
iGR774 [15, 16]. On top of metabolism, PC-model has 
protein and enzyme concentrations as variables and 
can be solved using the FBA algorithm with additional 
benefits. We formulated protein constraint similar to 
Yurkovich et al., by adding protein concentrations and 
enzyme concentrations as variables into the M-model, 
which constrains respective metabolic fluxes [17]. 
Moreover, expression data from other studies were 
overlaid onto the PC-model for novel context-specific 
modelling, which can predict the respective metabolic 
state using FBA and flux variability analysis (FVA). 
The workflow of OVERLAY  is demonstrated by Fig. 1, 
which consists of multiple automated algorithms. This 
will be especially helpful for optimizing bulk mate-
rial productions from C. reinhardtii, and the TAG 
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accumulation case study is done using RNA-seq data 
from other studies to show the efficacy of OVERLAY.

Results
Refined PC‑FBA reveals optimal chloroplast metabolism, 
cellular metabolism, and transportation
We consider C. reinhardtii PC-model to be a superior ver-
sion of the basic M-model, as it can be used for simple 
analyses such as FBA with better accuracy and more utili-
ties. The total proteome budget has defaulted to a con-
stant of 150 mg per gram of dry cell weight (gDW) (see 
"Methods" for detailed explanations). A noticeable advan-
tage of PC-model is that exchange reaction boundaries do 
not need to be set manually. This allows accurate pheno-
type simulation without uptake flux measurements, thus 
further offering a convincing comparison of flux networks 
between different metabolic modes. For example, by 
assuming sufficient lighting, the photon exchange lower 
bound can be opened to −1000 mmol/gDW/h for any 
metabolic mode, and the exchange fluxes are solved by 
the respective optimization. Only the mixotrophic acetate 
uptake lower bound is manually constrained to −2 mmol/
gDW/h to mimic a limited substrate availability.

We used PC-model to simulate the optimal growth 
strategy in autotrophic, mixotrophic and heterotrophic 
conditions. We compute metabolic shifts between these 
conditions focusing on chloroplast metabolism and 
transportation and interactions with the mitochondria 
(Fig. 2a). FBA of PC-model (PC-FBA) enabled us to com-
pute the optimal flux-corresponding proteome alloca-
tion, of which proteome maps are generated under each 
growth condition (Fig.  2b–d) [18]. Photosynthesis-asso-
ciated proteins accounted for 43.2–80.2% of proteome 
mass in all three conditions (Fig. 2b–d). Correspondingly, 
photosynthesis largely drives shifts in overall flux states 
(Fig. 2a).

Our model qualitatively reproduced major and sub-
tle shifts determining the optimal electron flow through 
photosystems I and II in different conditions. C. rein‑
hardtii thylakoid can choose between circular electron 
flow (CEF) of photosystem I only and linear electron 
flow (LEF) through both photosystem II and photo-
system I, while LEF is the more energy-efficient option 
[19]. Consistent with this knowledge, the autotroph 
and heterotroph utilized LEF exclusively to maximize 
efficiency, as seen by zero flux from Fd to Cyt-b6f (the 

Fig. 1  Schematic of the OVERLAY computational pipeline. Boxed texts are files and data, where green rectangle, blue rectangle, and yellow 
diamond denote starting materials, intermediate steps, and results, respectively. Red italic texts refer to manual procedures, and purple italic texts 
refer to semi-manual steps with some script aids. In contrast, automatic procedures that are done by the only script are shown in green italic, and 
methods uniquely developed in OVERLAY are in bold green font
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circular step of CEF) (Fig.  2a). Meanwhile, the mixo-
troph utilizes CEF, diverting 6% (0.80 mmol/gDW/h 
out of 13.10 mmol/gDW/h) of electron flux away from 
NADH/NADPH production back into the CEF. This 
optimal flux state suggests that CEF can result in faster 
growth over pure LEF under certain conditions. The 
result may explain how CEF and LEF are used to bal-
ance ATP/reducing power ratio for carbon fixation, as 
reported by Chaux et al. [20].

Another observation is that, assuming optimal growth, 
the mixotroph has a higher photosystem activity than the 
other growth modes: 13.10 mmol/gDW/h electron flux 
from Cyt-b6f to PC for mixotroph compared to 11.89 
and 7.18 mmol/gDW/h for autotroph and heterotroph, 
respectively (Fig.  2a). These differences are explained 
by PC-FBA. The autotroph needs a large portion of the 
proteome budget to conduct other anabolism, such as 
carbon fixation and gluconeogenesis. These anabolic 
processes are highly proteome inefficient in compari-
son with directly consuming organic carbon substrate, 
rendering autotroph with limited proteome budget for 
photosystem complexes. For the heterotroph, it is more 
optimal to spend the proteome budget on consuming 
acetate, which serves as both an organic carbon source 
and an energy source. The mixotroph has limited ace-
tate that might be enough for organic carbon to not be 
forced to run the inefficient anabolism, but insufficient 
as an energy source, thus having the most potent pho-
tosystem to harvest energy. We note that these simula-
tions represent growth-optimized metabolic states. FBA 
and PC-FBA accurately predict metabolism of adaptively 
evolved phenotypes [21–23]; however, without additional 
data-driven constraints these simulations may not resem-
ble wild-type behavior. Indeed, chloroplast content is 
generally observed to be lower in mixotrophic than auto-
trophic conditions [24, 25]. Therefore, additional bio-
logical mechanisms that are outside the PC-FBA model 
scope, such as regulation and photoinhibition, may play a 
significant role in mixotrophic metabolism.

PC-FBA also offers insightful chloroplast metabolism 
and transport simulations, especially regarding carbon 
fixation and triose-phosphate transport. As verified by 
other studies, 9 moles of ATP and 6 moles of NADH are 
required to produce 1 mole of triose-phosphate from 

carbon dioxide through the Calvin cycle [26]. Due to this 
high energy consumption, carbon fixation appears to be a 
suboptimal growth strategy compared to acetate uptake 
and is only active when the acetate supply is insufficient.

Under heterotrophic growth, the chloroplast is a net 
consumer of organic carbon, which is transported as 
3-phosphoglycerate. Noticeably, the chloroplast in all 
phototrophic modes uptakes 3-phosphoglycerate while 
excreting other triose-phosphate (Fig.  2a). Being the 
energy supplier of the cell, autotrophic and mixotrophic 
chloroplast mainly excretes the energy-compact glycer-
aldehyde-3-phosphate, which has been a phenomenon 
reported by other studies [26]. The mixotroph has the 
most active chloroplast, exporting more ATP and reduc-
ing power in the form of glyceraldehyde-3-phosphate and 
oxaloacetate/malate exchange. In all conditions, the chlo-
roplast also consumes various amino acids while produc-
ing lipid precursors and six-carbon sugars, which are not 
shown in the figure in detail.

Our PC-model provides valid mitochondrion fluxomic 
and cellular exchange simulations for all growth modes. 
The mixotroph and heterotroph simulations used the gly-
oxylate shunt in the mitochondria (Fig.  2a), as reported 
previously by Johnson et al. [26]. This process generates 
excess oxaloacetate for heterotroph, which is converted 
to phosphoenolpyruvate and exported to the cytosol 
from the mitochondria. Additionally, the heterotroph 
excretes formate, which is only present when proteome 
constraints are applied (see Additional file  6: Table  S1). 
Thus, the proteome constraints are required to correctly 
predict respiro-fermentation, or overflow metabolism, as 
observed in multiple organisms including C. reinhardtii 
[27, 28]. In particular, the optimal heterotroph allocates 
43.2% of proteome mass to photosynthesis (Fig. 2d), com-
pared to 80.2% in the mixotroph (Fig.  2c). The reduced 
photosynthesis protein budget in the heterotroph is allo-
cated instead partially toward glycolysis and TCA cycle 
proteins (total 15.0%) (Fig. 2d).

Meanwhile, the autotroph shows several contrasting 
metabolic activities to the heterotroph. The autotrophic 
mitochondrion has very little activity, mostly powered by 
importing pyruvate from the cytosol. Instead, it generates 
phosphoenolpyruvate in the chloroplast, which is trans-
ported to the mitochondrion (Fig.  2a). The autotroph 

Fig. 2  PC-FBA simulation results of autotrophic, mixotrophic, and heterotrophic C. reinhardtii growth mode. The optimal metabolic fluxes are 
shown in a, where autotrophic, mixotrophic, and heterotrophic fluxes are denoted by green, blue, and red numbers, respectively. All fluxes are 
shown in mmol/gDW/h. A negative flux value means the flux is flowing in the opposite direction of the arrow. The dotted lines show the electron 
flux. All metabolites are shown in BiGG ID. Complex/enzyme abbreviations in thylakoid: PSII, photosystem II; PQ, plastoquinone/plastoquinol; 
Cyt b6f, cytochrome b6f complex; PC, plastocyanin; PSI, photosystem I; Fd, ferredoxin; FNR, ferredoxin NADP+ reductase; and ATPSh, CF0F1 ATP 
synthase. The optimal proteome of three growth modes is shown by proteome maps of b, c, and d. Each small polytope is a single protein, and its 
area denotes the relative abundance. Likely coloured polytope is classified under the same subsystem, which is written in white text. Only modelled 
proteins are drawn. *Some reactions of the TCA cycle are outside of mitochondria

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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does share some characteristics with the mixotroph, such 
as consuming carbon dioxide and producing oxygen. 
These PC-FBA simulations suggest that the mixotrophic 
flux network is more well-balanced and might be the 
ideal candidate for metabolic engineering.

Investigating lipid accumulation in nitrogen‑deprived C. 
reinhardtii by OVERLAY
Based on insights gained from PC-FBA simulations, we 
further investigated mixotrophic conditions for bulk 
metabolite overproduction. The accumulation of TAG, 
a useful and value-added industrial compound, has been 
studied extensively in C. reinhardtii by inducing nitrogen 
deprivation. In particular, Goodenough et al. investigated 
a sta6 (unable to form starch) strain of C. reinhardtii, 
which showed enhanced TAG accumulation under nitro-
gen deprivation with acetate boosting 48 h later [29]. The 
study collected time-course RNA-Seq over four days of 
culture and discovered highly complex gene expression 
dynamics: 425 genes up-regulated and over 850 genes 
down-regulated in response to acetate [29]. Here, we 
use our OVERLAY to decipher how these complex gene 
expression dynamics drive flux changes that ultimately 
lead to enhanced TAG production.

OVERLAY Constructs context‑specific models with calibrated 
rate constants
We first used convex QP only to fit each of the 16 time-
course samples onto the PC-model, resulting in 16 con-
text-specific PC-models. Noticeably, enzymatic rate 
constant ( Keff ) values are difficult to determine because 
most values are not experimentally available. We assume 
initially that Keff are centred around a basal value of 

K
avg
eff = 65s−1 , and they are proportionally scaled to the 

SASA [30, 31] (Methods, Nonconvex QP). Across all 
samples, the best-fitted proteome vectors are consistent 
with RNA-seq data, with R2 ranging between 0.950 and 
0.963, with a median R2∗ = 0.958 (see Additional file  1: 
Fig. S1a for the complete plot). For example, sample 4 
(time = 4 h) has R2∗ = 0.954 , with 56 outliers ( ≥ 3 times 
inconsistency) and 16 far outliers ( ≥ 10 times inconsist-
ency) out of 1495 proteins (Fig. 3a).

Our OVERLAY  optimally tuned r, or equivalently all 
Keff , to achieve the best fit of simulated proteomes to 
the RNA-Seq, subject to carefully formulated constraints 
(see "Methods"). We clustered 16 RNA-seq samples into 
four groups (Additional file 2: Fig. S2), which were used 
to estimate a single Keff vector representing all samples. 
This results in an improved best-fitted proteome from 
the original with a median R2∗ = 0.966 across 16 sam-
ples (Additional file 1: Fig. S1b). Fig. 3b has 48 outliers, 
15 far outliers, and a higher R2∗ than using convex QP 
only. Noticeably, the fitting improvement is achieved by 
varying Keff only slightly from K ori

eff  . According to Fig. 3c, 
the distributions of Keff before and after nonconvex 
QP adjustment are similar, although a few enzymes are 
assigned much higher Keff than before. Only 214 out of 
1222 enzymes have a Keff different from Kori

eff  due to extra 
constraints on OVERLAY (Methods, Eq. (19)), which are 
placed to reduce the number of total adjustments to Keff.

Additionally, OVERLAY  helps to quality control the 
metabolic reconstruction, especially regarding its gene-
reaction association. We identified a set of proteins whose 
abundances could not match measurements across all 
samples. Because we allowed for adjusted rate constants, 
we hypothesized that the reason for these inconsistencies 

Fig. 3  Consistency of simulated proteomes to transcriptomics, and estimated rate constants by OVERLAY. Best-fitted proteome versus measured 
transcriptomes at t = 4 h before (a) and after (b) the enzymatic rate constant adjustment by nonconvex QP. R2∗ is computed using log-transformed 
data for simulated proteomes and measured transcriptomes, whereas R2 is computed without log-transforming. Outliers are denoted in yellow 
( ≥ 3 times) and red ( ≥ 10 times). R2 values are computed using all points, including outliers. c Demonstrates Keff values before calibration using 
OVERLAY (pre-NCQP) and after calibration (post-NCQP). Here, Keff = r · K

avg
eff
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is due to mis-annotations in the original model recon-
struction. We manually inspected all 15 proteins that are 
far outliers in at least 8 out of 16 samples and compared 
them with their annotated functions in ChlamyCyc and 
ALGAEPATH (see Additional file 6: Table S2a for the full 
list and details) [32, 33]. Indeed, we found that 5/15 pro-
teins had incorrect gene–protein-reaction associations in 
the reconstruction (see Additional file  6: Table  S2a). Of 
the remaining ten inconsistent proteins, we found poten-
tial isozymes for four proteins. We found a total of eight 
potential isozymes (Additional file  6: Table  S2b), which 
are promising candidates for future studies.

Context‑specific PC‑models providing new metabolic insights
The main merit of the context-specific PC-model is con-
verting expression data to metabolic fluxes, which are 
insightful both independently and comparatively across 
samples. For example, the maximum TAG production 
rate is slightly reduced by ammonium-free medium and 
slightly promoted by the acetate boost (Fig.  4a), yet it 
does not translate to the ‘actual’ accumulation rate, as any 
point on the bar is possible for C. reinhardtii to operate 
on.

Using the final PC-model, including calibrated keff , we 
performed a systems-level analysis of dynamic shifts in 
the proteome and fluxome for mixotrophic TAG pro-
duction. Given the best-fit proteome for every RNA-Seq 
sample, we computed the corresponding fluxome using 
protein-constrained flux variability analysis (PC-FVA) 
with TAG production rate constrained to ≥ 0% , 50% , 90% , 
and 99% of the maximum (Fig. 4a). For each reaction, we 
computed the Spearman rank correlation ( ρ ) between 
the max flux from PC-FVA and the total abundance of all 
transcripts associated with the reaction. From this proce-
dure, among all 1876 enzymatic reactions, we classify 130 
reactions as expression-dependent ( ρ ≥ 0.8 ), 218 reac-
tions as expression-correlated ( 0.5 ≤ ρ < 0.8 ), and 1528 
reactions as expression-independent ( ρ < 0.5 ), while 
spontaneous reactions are always expression independ-
ent (Additional file 3: Fig. S3).

From these PC-FVA results, especially with high opti-
mum percentages (orange and red bars in Fig.  4a), we 
find that the key reactions for TAG production can be 
categorized into acetyl-CoA synthesis, ATP synthesis, 
De novo synthesis of free fatty acids, and TAG synthesis 
(Fig. 4a).

Acetyl‑CoA synthesis  The majority of acetyl-CoA was 
supplied from acetaldehyde dehydrogenase (ACALD), 
formate C-acetyltransferase (PFLACTm), and phospho-
transacetylase (PTArm). Of these reactions, ACALD is 
the only expression-dependent (Spearman rank ρ = 0.9 ) 
reaction (Fig.  4a). ACALD is associated solely with the 

gene Cre17.g746997 and shows high expression correla-
tion even for PC-FVA computations with TAG produc-
tion ≥ 99% of the maximum (Fig. 4 red bars). TAG pro-
duction is strongly dependent on ACALD flux, which 
in turn is strongly expression-dependent. Thus, Cre17.
g746997 is an overexpression candidate to increase acetyl-
CoA supply.

On the other hand, PFLACTm and PTArm fluxes 
are uncorrelated with gene expression (Spearman rank 
ρ < 0.5 ). PFLACTm, producing acetyl-CoA by convert-
ing pyruvate to formate, is likely dictated by the upstream 
pyruvate mass balance. PTArm catalyzes the highest 
flux of acetyl-CoA production and does not appear to 
be dictated by either its own (Cre09.g396650 or Cre17.
g699000) expression or acetate kinase (ACKrm) (Cre09.
g396700 or Cre17.g709850) expression. Acetyl-CoA syn-
thetase (ACS) produces acetyl-CoA using acetate like 
PTArm, and it also coincides with the expression. How-
ever, its flux is nearly 100-fold lower than PTArm. Fur-
thermore, maximum TAG dilution is achieved when ACS 
flux is low, and PTArm flux is high (Fig. 4a). This result 
suggests that ACS flux can be controlled through gene 
expression and that to maximize TAG production, its 
expression should be repressed.

ATP synthesis  ATP production is dominated by cytosolic 
pyruvate kinase (PYK) and mitochondrion ATP synthase 
(ATPSm), while the chloroplast ATP synthase (ATPSh) 
activity is relatively low across all samples. This mode of 
ATP synthesis observed for TAG production contrasts 
sharply with PC-FBA simulations of optimal growth that 
showed large proteome allocation toward photosystems I 
and II (Fig. 2a). The acetate boost starts from sample 10—
prior to the boost, ATPSh flux shows moderate variabil-
ity and low flux relative to mitochondrial ATPS. After the 
acetate boost, ATPSh flux variability is even narrower, and 
TAG production is maximized with lowered ATPSh flux. 
The good correlation of ATPSh flux with gene expression 
(Spearman rank ρ = 0.51 ) indicates that C. reinhardtii 
is programmed to reduce photosystem-based ATP syn-
thesis under mixotrophic growth with nitrogen limita-
tion. Indeed, the dynamic regulation of ATP production 
between mitochondria and chloroplast has been studied, 
but no transcription factor is found [34].

PYK produces ATP by converting phosphoenolpyru-
vate to pyruvate. PYK flux and protein allocation differ 
notably between the optimal mixotrophic and hetero-
trophic flux networks (2PG/PEP to PYR in the cytosol 
in Fig.  2A). During TAG production, PYK flux is not 
strongly correlated with gene expression, indicating 
that other constraints, such as mass balance, determine 
its flux. Specifically, enolase (ENO) produces phospho-
enolpyruvate, which is the primary substrate of PYK. 
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ENO is correlated with expression of Cre12.g513200 
(Spearman rank ρ = 0.62 ). In turn, PYK flux is highly 
correlated with ENO (Spearman rank ρ = 0.994 ); 
therefore, both PYK and ENO flux can be controlled by 
regulating the Cre12.g513200 gene.

De novo fatty acid and TAG synthesis  An intuitive way 
to maximize TAG production would be to overexpress 
its direct biosynthesis genes. This strategy has been 
applied for multiple algae species, including C. rein‑
hardtii [35]. TAG is synthesized from glycerol 3-phos-

Fig. 4  Various results of expression data interpretation through context-specific PC-model. a Is a selected collection of PC-FVA results across 
16 samples regarding acetyl-CoA synthesis, ATP synthesis, De novo fatty acid synthesis (FAS), and TAG synthesis pathway reactions. The bar plot 
shows the variability of each metabolic reaction and is coupled to the left y-axis in mmol/gDW/h. Green, yellow, orange, and red bars reflect the 
flux variability at 0% , 50% , 90% , and 99% of maximum TAG synthesis rate (i.e., EX_TAG flux), respectively. The black line plot shows the expression 
level of the reaction and is coupled to the right y-axis. In the case of isozymes presence, the black line plots the numerical sum of all isozyme 
levels. The calculated Spearman’s rank correlation ( ρ ) between the FVA result and expression is listed in the bracket. Vertical dashed lines divide 
time-series samples into pre-wash, N-free, and post-boost phases. b Demonstrates a simplified reaction network around FAS and the TAG synthesis 
pathway. Different fatty acid, their derivatives, and different TAG are not differentiated. c Shows the suggested overexpression level (folds) of the 
top 15 bottleneck proteins to maximize TAG production while minimizing deviation from the measured RNA-Seq (through the protein abundance 
constraints). Gene symbols and functional categories of each protein are shown to the left of each gene ID (row labels)
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phate by a sequence of five reactions: glycerol-3-phos-
phate (G3PAT), 1-hexadecanoyl-sn-glycerol 3-phosphate 
O-acyltransferase (AGPATCOA), phosphatidate phos-
phatase (PAPA), acyl-CoA diacylglycerol acyltransferase 
(ACOADAGAT), and phospholipid diacylglycerol acyl-
transferase (PLDAGAT). Three acyl groups are attached 
in the process, using acyltransferase reactions (G3PAT, 
AGPATCOA, ACOADAGAT, PLDAGAT). TAG accumu-
lation has been increased by overexpressing AGPATCOA 
in Cyanidioschyzon merolae [36], PLDAGAT in C. rein‑
hardtii [35] and Phaeodactylum tricornutum [37]. These 
strategies work by pulling carbon flux to TAG.

Our simulations are consistent with these observations 
in that maximum TAG accumulation requires elevated 
expression of the acyltransferase proteins. Namely, the 
minimum required flux of AGPATCOA was above ∼ 0.01 
to achieve max TAG flux (Fig.  4a—TAG synthesis). The 
two diacylglycerol acyltransferases (ACOADAGAT and 
PLDAGAT) are also required to maximize TAG flux, but 
because either reaction can be used, each flux has a mini-
mum requirement of zero.

Our simulations indicate that another, possibly more 
critical, strategy for TAG production is to provide ample 
acyl-CoA by overexpressing free fatty acid synthesis 
cycle reactions: Acetyl-CoA C-acyltransferase (ACACT), 
3-hydroxyacyl-CoA dehydrogenase (HACD), and enoyl-
CoA hydratase (ECOAH), and trans-2-enoyl-CoA reduc-
tase (ACOAR). These reactions showed time-course flux 
patterns that were nearly identical to the TAG dilution 
reaction (EX_TAG) (Fig.  4a). Three of these reactions 
(ACACT, HACD, and ECOAH) are highly correlated 
with gene expression (Spearman rank ρ = 0.8, 0.92, and 
0.91). Therefore, overexpression of these genes would 
directly increase flux. Indeed, a sharp overexpression of 
these genes coincides well with the acetate boost (Fig. 4a, 
De novo synthesis). Finally, the ACOAR reaction is uncor-
related with gene expression (Spearman rank ρ = −0.25 ); 
however, due to mass balance constraints, its flux is 
entirely determined by the flux of the preceding three 
reactions in the cycle.

Engineering strategies for enhancing TAG productivity
Next, we developed a tool to find optimal, system-level 
debottlenecking strategies for metabolic engineering. 
This tool is formulated as a linear program (Methods): 
TAG production is maximized subject to all context-
specific PC model constraints while also allowing for a 
user-defined total protein overexpression “budget” (E). 
The optimal solution to this problem provides the set 
of highest priority targets for protein overexpression. 
Using this tool, we identified protein overexpression 
strategies that were consistent with the transcriptome 
changes observed in the acetate-boosted experiment. For 

example, all three free fatty acid synthesis genes (ECH1, 
TER, ACAA1) that were highly correlated with reaction 
flux (ECOAH, HACD, ACACT) were identified as over-
expression targets (Fig. 4b). ECH1 requires an average of 
8.2-fold overexpression across 16 samples, the most out 
of all modelled genes.

Additionally, two of the acetyl-CoA synthesis genes 
(ackA and PAT1), corresponding to ACKrm and PTArm 
reactions, were identified as overexpression targets. 
Interestingly, the algorithm did not identify the gene for 
ACALD as an overexpression target, despite it being a 
key step in Acetyl-CoA synthesis. This result is consist-
ent with the high expression levels of ACALD-associ-
ated transcripts (Fig.  4a, ACALD); therefore, no further 
debottlenecking is required. In fact, this result suggests 
that the expression levels for PATrm and ACKrm-asso-
ciated genes may need to be increased further to achieve 
TAG production higher than that observed.

Finally, we identified additional overexpression can-
didates that may be candidates for future engineering. 
These proteins include six transporters, including those 
for sulphate (SLP1, SLP3), phosphate (PTA3), and amino 
acids (AOT7) (Fig.  4b). Other targets include proteins 
associated with amino acid biosynthesis (IGS1), glycoly-
sis (GAP4), redox balance (NNT), and glyoxylate metabo-
lism (HAO) (Fig. 4b).

Apart from debottlenecking TAG synthesis through 
overexpression, we can also block competing reactions 
by gene deletions to achieve the maximum potential. 
For example, multiple studies have shown that starchless 
mutants of C. reinhardtii exhibit significantly more TAG 
accumulation [38, 39]. Our flux simulations are consist-
ent with these results, showing reduced TAG produc-
tion capabilities when starch synthesis reaction is active 
(Additional file  4: Fig. S4, STARCH300S). Shin et  al. 
discovered that knocking out phospholipase A2 (Cre02.
g095000) would increase C. reinhardtii lipid produc-
tivity by up to 64% [40]. Our simulation also resembles 
that an active phospholipase A2 will always reduce TAG 
productivity by deviating diacylglycerol away from TAG 
synthesis (Additional file 4: Fig. S4, PLPSA2). Yunus et al. 
and Kato et  al. showed that deleting the fatty acyl-ACP 
synthase would better preserve the system free fatty acid 
level, and therefore boost hydrocarbon accumulation in 
cyanobacteria [9, 41]. In C. reinhardtii simulation, we 
observed a different but similar phenomenon, wherein 
the reaction fatty acid CoA ligase hinders TAG produc-
tion (Additional file 4: Fig. S4, FACOAL). Experimentally 
knocking out the three genes above forces their respec-
tive fluxes to zero, which are the flux values OVER-
LAY predicts to enable maximum TAG production.

Another possible TAG productivity-enhancing 
approach is to supplement the medium with additional 
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carbon sources. The measured transcriptomes indi-
cated the expression of transporters for alternative car-
bon substrate uptake, including l-glutamine, d-ribose, 
and d-lactate. By adding these carbon sources to the in 
silico growth media, we confirmed that the observed 
gene expression levels support the uptake of these car-
bon sources, albeit at slow rates (see Additional file 6: 
Table S3). However, our simulations indicate that sup-
plementing these carbon sources would not boost 
TAG production under the current transcriptome 
because the added carbon can not alleviate the main 
bottleneck, fatty acid biosynthesis.

Discussion
C. reinhardtii as a synthetic biology chassis
Microalgae C. reinhardtii has been studied for dec-
ades as a cell factory, producing both bulk metabolites 
and, more recently, expressing heterologous genes 
for non-native value-added products. Although many 
established methods are available for bulk metabo-
lite production, in some cases, they are still far from 
optimal productivity based on our simulation results. 
Indeed, the recent adaptive laboratory evolution of C. 
reinhardtii has increased both growth rate (by up to 
300%) and product yields (DHA production by 90%) 
[42]. Using genome-scale modelling, especially with 
the context-specific PC-model pipeline, C. reinhardtii 
may become an economically-efficient cell factory for 
bulk chemicals after multiple iterations of optimiza-
tion. On the other hand, the optimization for non-
native products is more complicated, yet it can be 
highly impactful for the (bio)chemicals industry due to 
the potential for sustainable production of high-value 
products, especially when non-biological synthesis 
routes are unavailable.

Besides C. reinhardtii and algae in general, Escher‑
ichia coli has also been extensively studies as a 
synthetic cell chassis. The main advantages of C. rein‑
hardtii over E. coli are its lower carbon emission and 
simplicity in cultivation, which are both more signifi-
cant in bulk chemical productions setup. Therefore, 
biofuel and potential food production has been the 
main interest in C. reinhardtii cell factories. On the 
other hand, E. coli is the best studies microorganism 
with even more established knowledge and synthetic 
biology tools available to researchers. The production 
of certain value-added chemicals by E. coli, including 
various vitamins and nutraceuticals, has reached com-
mercialization stage [43, 44]. We believe that OVER-
LAY, as a general computational tool, is also capable 
of helping to boost the productivity of E. coli cell 
factories.

Evaluation and application of OVERLAY
Our PC-model formulation and OVERLAY  pipeline 
provide several advantages over existing methods. First, 
our PC-model computes optimal fluxomes in response 
to changes in the allocation of the proteome. This pro-
teome, in turn, is highly consistent with measured 
transcriptomes through a sequence of convex and non-
convex quadratic optimization problems. Second, to 
perform context-specific simulations, we do not require 
choosing an arbitrary gene expression threshold for 
turning on/off reactions based on transcript abun-
dance—this has been a challenge in existing methods 
[12]. Third, our pipeline enables the identification of 
optimal overexpression targets. This method requires 
only one parameter to be adjusted: E (total protein 
overexpression budget), which can be determined 
using a simple procedure. Finally, our method enables 
using transcriptomics to quality-control genome-scale 
reconstructions and their annotations, which are found 
through persistent discrepancies between optimal pro-
tein and measured transcript abundances.

Given all the advantages offered, the application 
of OVERLAY  can be extended from metabolic engi-
neering to a broader scientific inquiries. Importantly, 
OVERLAYovercomes the shortcomings (optimality 
assumption and incomplete scope) of FBA and PC-
FBA by imposing constraints and calibrating rate con-
stants using transcriptomics measurements that are 
consistent with observed phenotypes. For example, 
mixotrophic regulations and metabolisms in algae are 
a research focus for scientists. A recent study by Vid-
otti et  al. measured time-course transcriptomic and 
proteome data for autotrophic, mixotrophic, and het-
erotrophic Chlorella vulgaris [45]. These measure-
ments can be easily incorporated onto the newest C. 
vulgaris metabolic reconstruction iCZ843 using OVER-
LAY  for deeper metabolic insights [46]. We anticipate 
OVERLAY  to consistently help to address scientific 
problems related to steady state and transition state 
metabolism. Additionally, because OVERLAY  can find 
errors in knowledge-based M-models (i.e., Additional 
file 6: Table S2), it may help researchers to update their 
understanding, such as discovering new metabolic 
pathways or enzymatic functions. These utilities are 
not offered by the original M-model or even PC-model 
solely, as shown previously in optimal autotrophic and 
mixotrophic photosystem activity predictions.

In general, PC-model and OVERLAY  is a simple yet 
effective tool for understanding and manipulating cel-
lular metabolism through gene expression, making it 
potentially valuable for various applications. The predic-
tion results can be used for practical decision-making in 
various research fields such as biotechnology, infectious 
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disease, and cancer. We believe OVERLAY  will ben-
efit the system biology and metabolic engineering 
community.

Prospect: incorporating other omics data
With more multi-omics data measurements in recent 
studies, we think it is worth mentioning the potential of 
OVERLAY  to uniquely incorporate more omics data to 
achieve higher modelling performance.

Kinetome
Kinetome refers to the collection of cellular enzymatic 
rate constants [47]. Due to the scarcity of measured 
enzyme kinetic, OVERLAY  is designed to be capable of 
conducting high-quality C. reinhardtii modelling without 
kinetome data. We believe OVERLAY  can incorporate 
available kinetome data by explicitly setting and fixing 
individual rate constants in the PC-model before non-
convex QP. Available kinetome data would likely increase 
the modelling performance.

Proteome
Proteome profiling data, if available, is a substitute of 
transcriptomic data for OVERLAY. In this study, OVER-
LAY  uses transcriptome data to approximate cellular 
proteome, which is potentially less accurate than using 
proteome data directly. However, RNAseq remains more 
accessible than proteome profiling, making it more prac-
tically useful in modelling for biotechnological appli-
cations. If proteome profiling is available but not for all 
proteins, it can still be useful in partially constraining 
metabolic flux or verifying its consistency with transcrip-
tomic data.

Metabolome
Metabolomic data refers to the presence or concentration 
of intracellular metabolites. Recently, the GEM commu-
nity has developed various protocols, such as MetaboT-
ools and matTFA toolbox, to incorporate metabolomics 
data into M-model [48, 49]. These protocols can be 
adopted in conjunction with OVERLAY  to improve 
model quality. These fall outside the scope of this study; 
however, they are promising directions for future work.

Conclusion
In this work, we developed a computational pipeline 
OVERLAY  for building a context-specific, protein-con-
strained genome-scale model (PC-model), starting from 
metabolic reconstruction and transcriptomics data. 
We showcase the utility of PC-model for deciphering 
how complex gene expression dynamics drive system-
level fluxome shifts in C. reinhardtii using published 
time-course transcriptomics data. Using PC-FBA, we 

recapitulate metabolic hallmarks of autotrophic, het-
erotrophic, and mixotrophic growth. Importantly, the 
protein constraints are required to accurately simu-
late respiro-fermentation (overflow) metabolism. We 
then use time-course RNA-Seq data to investigate the 
over-production of triacylglycerol (TAG) in response 
to acetate supplementation under nitrogen limitation 
[29]. Our pipeline generated context-specific models for 
each experimental time point (over four days of culture), 
with very high consistency between 1495 modelled pro-
teins and measured transcriptomes ( R2 between 0.95 to 
0.963, median R2 = 0.958 ). We then determined which 
metabolic fluxes were controlled by gene expression. By 
comparing simulated fluxes and measured transcrip-
tomes across the 16 time-course RNA-Seq samples, we 
could categorize all gene-associated reactions into 130 
expression-dependent (Spearman rank ρ ≥ 0.8 ), 218 
expression-related (Spearman rank 0.5 ≤ ρ < 0.8 , and 
1528 expression-independent (Spearman rank ρ < 0.5 ) 
reactions.

To enable researchers to systematically identify optimal 
overexpression targets, we developed a novel optimiza-
tion-based tool. Using the tool, we identified key gene 
expression bottlenecks for TAG overproduction. The tool 
recapitulated known bottlenecks (e.g., the acyltransferase 
steps in TAG biosynthesis). Furthermore, we identified 
several novel overexpression targets to improve TAG 
overproduction further, including genes encoding sul-
phate, phosphate, and amino acid transporters; glyoxy-
late metabolism, and redox balancing.

Material and methods
Merging iCre1355 and iGR774 metabolic model 
and curation
Instead of using C. reinhardtii M-model iCre1355 only, 
we decided to plug in a newer chloroplast M-model, 
which contains a more up-to-date understanding of 
chloroplast metabolism. We merged M-model iCre1355 
(cellular model) and iGR774 (chloroplast model) by first 
deleting all chloroplast metabolites and reactions in the 
cellular model. The chloroplast model was slightly modi-
fied (see Additional file 7: Table S4), and its transported 
reactions were matched to the dead-end transportations 
in the cellular model (see Additional file 7: Table S5–S7). 
The newly merged M-model has 1354 genes, 2641 reac-
tions, and 2240 metabolites. We curated the gene-reac-
tion rules (stored in the model as model.rules field) 
using complex data from ChlamyCyc 8.0 [32]. Only 
enzyme complexes with multiple subunits were curated, 
but not any protein-monomer enzymes (Additional file 7: 
Table S8). The starch metabolism pathway and appropri-
ate rules were also added to the merged model (Addi-
tional file 7: Table S4). We also opened the lower bound 
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of reaction GAPDHi and GAPDH_nadp to allow reverse 
reactions (Additional file 7: Table S4). The script written 
to merge and modify M-models is MergedModel.m, 
which calls functions in COBRA Toolbox on MATLAB 
to load and manipulate M-models [11, 50]. We used the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
BiGG Models as general references in M-model modifi-
cations [51, 52].

Obtaining and processing expression data for case study
Raw reads of RNA-seq data (E-GEOD-56505) for the 
TAG case study were downloaded as FASTQ files 
[29]. We downloaded the NCBI genome assembly 
GCF_000002595.2.gbff and parsed the GenBank 
file into a FASTA reference transcript [53]. Reads were 
aligned using Bowtie2 with default settings and quanti-
fied using Samtools and Salmon [54–56]. The complete 
quantified vector is denoted as tcp ∈ R

17713 , which is fur-
ther parsed a modelled transcript vector t ∈ R

1495.

Protein constraints implementation
Our PC-model formulation is shown below.

where v ∈ R
2641 , p ∈ R

1495 , x ∈ R
1000 , and 

efor, erev ∈ R
1876 denote metabolic flux, proteome con-

centration, complex concentration, and enzyme concen-
tration, respectively.

By adopting this formulation, we assumed the 
following: 

1.	 The total amount of metabolic proteome may not 
exceed a weight fraction of the dry weight, which 

(1)max
v,p,x,e

cT v

(2)s.t. Sv = 0

(3)vlb ≤ v ≤ vub

(4)Cx ≤ p

(5)efor + erev = B · diag(r) · x

(6)− K
avg
eff Ierev ≤ v ≤ K

avg
eff Iefor

(7)0 ≤ p ≤ pub

(8)pTd ≤ P,

is further referred to as the ‘proteome budget’ and 
denoted by a scalar (P) in mg/gDW.

2.	 Each annotated gene in the M-model is transcribed 
and translated to a unique protein whose molecular 
weight can be estimated by its protein sequence.

3.	 Rate constant of a certain enzyme is fixed regardless 
of reactions. This will greatly reduce the complexity 
of the problem, especially the nonconvex quadratic 
programming problem (nonconvex QP) in the later 
section.

4.	 Enzyme concentration upper bounds but not forces 
the respective reaction flux. Enzymes are currently 
not compartmentalized.

The protein constraints were implemented in the 
M-model by adding four sets of variables and four sets of 
constraints. Variables are defined as follows: 

1.	 Protein dilution: protein concentrations (or abun-
dances) in nmol/gDW. Proteins are uniquely defined 
for each gene in the M-model.

2.	 Complex formation: complex concentrations in 
nmol/gDW. We define ‘complex’ as a unique protein 
combination that can sufficiently catalyze any single 
reaction. The list of complexes is obtained by parsing 
rules in M-model (parseGeneRule.m).

3.	 Enzyme formation: enzyme concentrations in nmol/
gDW. We define ‘enzyme’ as a collection of indiffer-
ent complexes that can catalyze a certain reaction. A 
pair of forwarding and reverse enzymes are added for 
each enzymatic reaction, and no enzyme is added for 
spontaneous reactions.

4.	 Enzyme dilution: One dilution reaction for each for-
ward or reverse enzyme.

Extra constraints were added to the model as follows: 

1.	 Each complex may not exceed the abundance of 
available protein subunit, according to C (4). C is a 
matrix containing complex subunit information. 
Excess proteins are allowed.

2.	 The sum of forward and reverse enzyme equals 
the total complex, according to r and B (5). B is 
Boolean matrix mapping complexes and enzymes 
and further enzymatic reactions. Vector r denotes 
the ratio between the rate constant of each com-
plex and the average enzymatic rate constant, 
or Ki

eff = ri · K
avg
eff  . We first estimated r as below 

(estimateKeffFromMW.m): 

(9)rorii =

(

Xi

1
N

∑N
i=1 Xi

)3/4

, X = C−1d,
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 which is scaled according to the enzymatic surface 
area as other studies [30, 31].

3.	 Enzymatic reaction fluxes are restrained by respec-
tive forward and reverse enzyme levels through the 
average rate constant of 65s−1.

4.	 Protein concentrations are collectively constrained by 
the proteome budget P, according to protein molecu-
lar weight vector d in mg/nmol. We assumed P being 
a constant across all growth conditions, and the 
weight fraction of total proteome to be 600mg/gDW . 
Modelled proteome weight fraction within the total 
proteome ( %modelled ) can be estimated using the 
complete transcript tcp and modelled transcript t, as 
well as molecular mass vector for complete transcript 
dcp and for modelled transcript d. Thus, P is approxi-
mated as below. 

where NaN t denotes the collection of modelled 
transcripts of which are not present in tcp . This may 
happen either for genes in mitochondria and chlo-
roplast genome, or due to the presence of genes in 
the M-model whose identifiers do not map to any 
genes in the transcriptomics data. The estimated P 
are shown by Additional file 5: Fig. S5, and we chose 
P = 150 for this dataset.

We collected a complete protein sequence FASTA 
file using NCBI genome assembly Chlamydomonas 
reinhardtii v5.5 (GCF_000002595.2.gbff), Chla‑
mydomonas reinhardtii chloroplast reference genome 
(NC_005353.1), and Chlamydomonas reinhardtii mito-
chondrial reference genome (NC_001638.1) [53]. This 
FASTA was constructed by extracting all locus tags 
and respective protein sequences into a plain text file 
(fastaParsing.m). It was used to calculate the molec-
ular mass of modelled proteins (calcProteinMM.m). 
The PC-model construction processes above are also 
automated in a MATLAB file as pcModel.m. The solv-
ing time of PC-FBA is around 0.3 seconds on our device, 
which is six times more than its respective FBA.

Overlaying processed RNA‑Seq data onto PC‑model using 
convex QP
We proposed a methodology to interpret the underlying 
cellular metabolism for a given RNA-seq data using the 
PC-model (overlayMultiomicsData.m). Assuming 
the proteome vector is similar to the mRNA vector, we 
formulated a quadratic objective function, subject to con-
straints (2)–(8):

(10)

P ≈ 600 · %modelled

= 600 ·

(

tTd

tcpdcp
·

length(t)

length(t)− length(NaN t)

)

,

where t denotes the modelled transcript abundance vec-
tor, and w is a weighting vector for each transcript. This 
finds the proteome vector closest to the measured tran-
scriptome while maintaining underlying metabolic feasi-
bility. We defined

which increases the weighting of lowly transcribed and 
un-transcribed genes. This is essential to keep the unex-
pressed proteins absent from the context-specific model, 
although other weighting functions might be feasible too. 
The expression measurement was unavailable for some 
modelled proteins ( NaN tj ), in which case the weighting 
was assigned to zero. t was scaled to satisfy

which put t and p into the same magnitude. This guar-
anteed the possibility that objective function (11) might 
reach zero value from solving.

This is a convex QP problem and can be solved using 
commercial LP solvers such as Gurobi Optimizer or IBM 
ILOG CPLEX [57, 58]. The optimization took around five 
seconds for both solvers. Defining the best-fitting protein 
vector is solved to be p′ , and we replaced constraint (7) 
with constraint (14) for the base PC-model to make it 
sample-specific.

We added a slack term ( s = 0.02 ) into constraint (13) 
for two practical reasons: leaving the proteome budget 
for unmeasured transcripts in the unbiased analysis and 
making the de-bottlenecking algorithm easier to imple-
ment. We found that eliminating the slack also indirectly 
restricts unmeasured proteins due to proteome budget 
depletion, which would impact the downstream analy-
sis. In our practice, adjusting s within a reasonable range 
would not significantly affect the result.

Estimating system level enzymatic rate constants using 
nonconvex QP
Although it is impractical to experimentally measure all 
enzymatic rate constants, they can be systematically esti-
mated using this PC-model formulation. Given the Q set 
of samples of the same strain under different conditions, 

(11)min
v,p,x,e

(diag(w)(p− t))T (p− t),

(12)wj =

{

1
tj
, tj > 0

1, tj = 0
0, NaN tj ,

(13)tTd = P,

(14)pj

{

0 ≤ pj ≤ pubj , NaN tj
(1− s)p′j ≤ pj ≤ p′j , otherwise.
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we rewrote objective function (11) into (15). The intui-
tion was to find the single vector r that allows the best-
fitting result for all RNA-seq samples:

subject to constraints (2)–(8) for each of the Q samples. 
For example, constraint (2) effectively becomes

We also simplified the weighting by decorrelating w′ with 
relative abundance, greatly speeding up the computation:

Vector r was made a variable with the following 
constraints:

The constraints above formulate a nonconvex QP that 
is Q times the size of the convex QP. By constraint (19), 
we preserved the original ri with low subunit abundance, 
which prevented the solver from prematurely modify-
ing the rate constant. This is inferring that a more com-
prehensive rate constant estimation can be achieved 
by including data from various metabolic modes while 
stacking up data from similar metabolic modes will ben-
efit little; on the other hand, adding each set of data expo-
nentially increases the computational cost. Thus, we first 
performed hierarchical clustering by MATLAB Statistics 
and Machine Learning Toolbox to categorize 16 RNA-
seq samples into four groups (Additional file  2: Fig S2), 
which were then used group averages as ‘samples’ to esti-
mate r using nonconvex QP [59]. Procedures above can 
be done by overlayMultiomicsData.m with ‘keff-
Estimate’ option set to true.

The QP was solved by Gurobi Optimizer version 
9.1.2, a state-of-the-art LP solver that supports non-
convex bilinear optimizations [57]. The optimization 
took around 2000 seconds on a laptop with an Apple 
M1 chip and 16 GB of memory, although the compu-
tation time can vary widely for the same problem size 
with different data samples.

(15)min
vk ,pk ,xk ,ek ,r

Q
∑

k=1

(diag(w′)(pk − tk))T (pk − tk),

(16)







S1 · · · 0
...

. . .
...

0 · · · SQ













v1
...
vQ






= 0.

(17)w′
j =

{

0, NaN tj
1, otherwise.

(18)
1

N

N
∑

i=1

ri = 1,

(19)ri

{

0.1rorii ≤ ri ≤ 1.9rorii , ∃tkj ≥ tkavg, Cj,i > 0

ri = rorii , ∀tkj < tkavg, Cj,i > 0.

De‑bottlenecking and unbiased network analysis
Acknowledging errors and uncertainties in the data and 
workflow, we applied a de-bottlenecking optimization 
onto data-specific PC-models to mitigate the effect of a 
few bottlenecking proteins without shifting the landscape 
(proteinDebottleneck.m). This was done by adding 
a variable term to the constraint (14), which becomes

where ǫ is a variable vector with an assigned error budget 
E (also referred to as overexpression budget):

while other constraints are the same as the data-specific 
PC-model, optimized to the objective function (1) using 
the FBA algorithm, referred to as protein-constrained 
flux balance analysis or PC-FBA. We conducted this 
LP by varying error budget values and eventually chose 
E = 20 , where the curve of optimal objective values 
versus E reached a constant slope (see Additional file 7: 
Table  S9). This means no single protein is blocking the 
objective function, and therefore it was a suitable state 
for the downstream analysis. The result can also be inter-
preted as a suggested list of proteins to overexpress. The 
optimization took roughly 1.0 s using Gurobi Optimizer.

To further understand the metabolic capabilities under 
each expression data, we used PC-FVA for an unbiased 
analysis. For each data-specific model, FVA of all meta-
bolic reactions v was done to find vmin and vmax at the 
optimal percentages of 0%, 50%, 90%, and 99%.
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Additional file 1: Fig. S1. The complete record of consistency of simu-
lated proteomes to transcriptomics before and after nonconvex QP by 
OVERLAY. This is an extended version of Fig. 3ab.

Additional file 2: Fig. S2. Hierarchical clustering result of 16 time-course 
RNA-seq sample.

Additional file 3: Fig. S3. Histogram of Spearman’s ranking coefficient 
for all metabolic reactions. This supplements Fig. 4, where all Spearman’s 
coefficients are calculated.

Additional file 4: Fig. S4. PC-FVA prediction results for starch synthesis 
reaction, phospholipase A2 reaction, and fatty acid CoA ligase reaction. 
This figure can be interpreted using the caption of Fig. 4a.

Additional file 5: Fig. S5. Bar plot of proteome budget estimation using 
dataset.

Additional file 6: Tables S1 to S3 for results section.

Additional file 7: Tables S4 to S9 for methods section.

(20)pi

{

0 ≤ pi ≤ pubi , NaN ti
(1− s)p′i ≤ pi ≤ p′i + ǫi, otherwise,

(21)
∑

ǫ ≤ E,
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