
Wu et al. Microbial Cell Factories          (2022) 21:184  
https://doi.org/10.1186/s12934-022-01907-0

RESEARCH

Valorization of cheese whey to lactobionic 
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Abstract 

Background: Efficient upgrading of inferior agro-industrial resources and production of bio-based chemicals 
through a simple and environmentally friendly biotechnological approach is interesting Lactobionic acid is a versatile 
aldonic acid obtained from the oxidation of lactose. Several microorganisms have been used to produce lactobi-
onic acid from lactose and whey. However, the lactobionic acid production titer and productivity should be further 
improved to compete with other methods.

Results: In this study, a new strain, Pseudomonas fragi NL20W, was screened as an outstanding biocatalyst for effi-
cient utilization of waste whey to produce lactobionic acid. After systematic optimization of biocatalytic reactions, 
the lactobionic acid productivity from lactose increased from 3.01 g/L/h to 6.38 g/L/h in the flask. In batch fermenta-
tion using a 3 L bioreactor, the lactobionic acid productivity from whey powder containing 300 g/L lactose reached 
3.09 g/L/h with the yield of 100%. Based on whole genome sequencing, a novel glucose dehydrogenase (GDH1) 
was determined as a lactose-oxidizing enzyme. Heterologous expression the enzyme GDH1 into P. putida KT2440 
increased the lactobionic acid yield by 486.1%.

Conclusion: This study made significant progress both in improving lactobionic acid titer and productivity, and the 
lactobionic acid productivity from waste whey is superior to the ever reports. This study also revealed a new kind of 
aldose-oxidizing enzyme for lactose oxidation using P. fragi NL20W for the first time, which laid the foundation for 
further enhance lactobionic acid production by metabolic engineering.
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Background
Lactobionic acid (4-O-β-galactopyranosyl-D-gluconic 
acid) is a versatile aldonic acid obtained from the oxi-
dation of lactose, with a plethora of applications in the 
food, tissue engineering, cosmetic, pharmaceutical, 
and chemical industries, due to its excellent properties, 
like nontoxic, antioxidant, biocompatible, biodegrad-
able, metal-chelating, and moisturizing properties [1–3]. 
Lactobionic acid is approved by the U.S. Food and Drug 
Administration as a food additive, such as an acidulant 
with a sweet taste, a functional beverage additive and 
a meat water retention agents [4, 5]. Some studies sug-
gested that the annual intake of lactobionic acid be 
760  mg because it occurred in beverages and foods [6]. 
Commercially available lactobionic acid is primarily man-
ufactured via chemical synthesis. This process is energy-
intensive, with toxic, high-cost metals as catalysts, and 
generates undesirable by-products inevitably [7]. In con-
trast, biological synthesis has advantage of high selec-
tivity, mild reaction, and non-toxicity, which is a more 
ideal alternative method. In recent years, production of 
lactobionic acid using biotechnological routes has been 
the focus of researchers, who produce lactobionic acid 
through enzymatic catalysis and microbial bioconver-
sion [8–10]. For the enzymatic process, glucose/fructose 
dehydrogenase [11], cellobiose dehydrogenase [10], and 
carbohydrate oxidase [12] had been reported. However, 
the enzymes are complex to prepare, unstable in indus-
trial environments, and require cofactors to be activated 
[12]. Compared with enzymes as biocatalysts, microbial 

cells are more desirable because of its easy preparation, 
cost-effectiveness, and strong robustness [1].

Many bacteria and fungi show the ability to oxidize 
lactose into lactobionic acid. Microorganisms belonging 
to the genera of Pseudomonas [4], Burkholderia [13, 14], 
Acetobacter [8] and Zymomonas [15] have been used for 
lactobionic acid production. In most cases, the cell bio-
conversion had lower productivity than the enzymatic 
catalysis method. Among these bacteria, P. taetrolens 
showed the highest production level (titer of 200 g/L and 
productivity of 7.41  g/L/h from lactose) [16, 17]. How-
ever, to compete with other methods, the lactobionic 
acid production titer and productivity should be further 
improved.

An important feature in the production of bio-based 
chemicals is the utilization of cheap feedstocks as raw 
materials in bioprocesses. Therefore, during the last few 
years, there have been several reports to obtain lacto-
bionic acid through the biotechnological pathway with 
whey as low-cost feedstock [18–20]. In addition to a 
cheap resource, whey is also a potential pollutant gen-
erated in the dairy industry. It is difficult to be disposed 
of because of its high biochemical oxygen demand and 
chemical oxygen demand and high annual production. 
The European Union is the world’s largest producer of 
whey powder, with an annual production of about 1.9 
million tons, but only a small portion of whey is pro-
cessed into powder due to its low commercial value [21]. 
Apart from water, the main content in whey is lactose 
(up to 70% by dry weight), which can serve as an ideal 

Graphical Abstract

Lactobionic acid
A newly isolated P. fragi
NL20W strain containing a 
novel GDH

P. fragi
NL20W

Lactose: 300 g/L
Yield: 100%

Productivity: 3.09 g/L/h

Whey powder



Page 3 of 10Wu et al. Microbial Cell Factories          (2022) 21:184  

substrate to produce lactobionic acid and thus upgrading 
this inferior raw substrate.

In this study, we aimed to isolate a microorganism 
to convert lactose into lactobionic acid with high cat-
alytic performance. Various strategies were applied to 
improve the productivity of lactobionic acid biosyn-
thesis at high substrate concentrations from cheese 
whey. We also sequenced the entire genome of the iso-
lated strain (Pseudomonas fragi NL20W), and based on 

these informations, a novel pyrroloquinoline quinone-
dependent glucose dehydrogenase (PQQ-GDH) was 
determined as lactose-oxidizing enzyme. These findings 
expand the current understanding of P. fragi NL20W 
and GDH for aldonic acids biosynthesis and prove the 
potential industrial applicability of them for lactobionic 
acid production on a large-scale.

Results and discussion
Investigating the catalytic performance of P. fragi NL20W
In order to test the ability of P. fragi NL20W to oxi-
dize lactose, reactions were performed using resting 
cells of P. fragi NL20W with different cell concentra-
tion  (OD600nm 5 and 20, 1.63*1010  CFU corresponding 
to  OD600nm 1). As shown in Fig. 1, regardless of the cell 
dosage, all lactose was oxidized into lactobionic acid as 
the sole product (Additional file  1: Fig. S1). The cata-
lytic rate at  OD600nm 20 was significantly higher than 
that at  OD600nm 5, which consumed all lactose in 24 h 
and 60 h, respectively.

In previous studies, Mao et  al. found that P. fragi 
TCCC11892 had the ability to oxidize lactose into lac-
tobionic acid when investigating the ability of four 
species of Pseudomonas to produce aldonic acids [22]. 
Beyond that, no P. fragi strain was reported as lacto-
bionic acid producer. However, no further study of P. 
fragi TCCC11892 on lactobionic acid production was 
followed. This research on P. fragi NL20W is the first 
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detailed investigation on lactobionic acid production 
by P. fragi species.

Effect of carbon source on the catalytic performance of P. 
fragi NL20W
Although LB medium is rich in carbon and nitrogen 
resource, which make the strain grow well, we tried to 
replace it with a cheap medium due to its high price. In 
a co-fermentation system, Alonso et al. combined cheese 
whey and glucose or glycerol as co-substrates to investi-
gate their effects on lactobionic acid production patterns 
[23]. In this study, glucose or glycerol was used as a car-
bon source supplemented with a trace of yeast extract 
and mineral salts to determine which medium enabled 
the highest catalytic activity. P. fragi NL20W could grow 
fast in both glucose and glycerol media, comparable to 

that in LB medium, but the catalytic performances of 
cells collected from different media were obviously differ-
ent. The oxidation rate of cells grown in glycerol medium 
was significantly faster than that in glucose medium, and 
even faster than that in LB medium unexpectedly, regard-
less of using resting cells or growing cells as biocatalysts 
(Fig.  2). For resting cells, the yield of lactobionic acid 
obtained from glycerol-cultured cells reached 87.98% at 
48  h, which was 11.52% higher than that produced by 
glucose-cultured cells. For growing cells, the yields of 
lactobionic acid were 99.75%, 89.51% and 78.43% by glyc-
erol-cultured, LB-cultured, and glucose-cultured cells 
at 48 h, with lactobionic acid productivity of 0.95 g/L/h, 
0.92  g/L/h, and 0.77  g/L/h, respectively. The consump-
tion rate of lactose was faster than that in the resting cells 
catalytic system. Overall, the results for cell growth and 
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lactobionic acid production indicated that glycerol was 
a better carbon source, which was used in the following 
experiments.

Production of lactobionic acid from lactose by resting cell 
in the flask
The biocatalytic conditions including pH, tempera-
ture, and metal ions were commonly surveyed to deter-
mine their effects on lactobionic acid production [4, 20, 
24, 25]. In order to further increase the lactobionic acid 

productivity of P. fragi NL20W, these parameters were 
studied in detail. When the temperature was raised from 
25 °C to 35 °C, there were no obvious differences in lac-
tobionic acid yield and productivity. However, when the 
temperature was further increased to 40 °C, lactose oxi-
dation occurred only in the initial 12 h, with final lacto-
bionic acid yield of 29.62%. The concentration of lactose 
remained constant after 12  h, which indicated high 
temperature inhibiting the oxidative activity of P. fragi 
NL20W toward lactose (Fig. 3A, B). With the increase of 
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pH from 6.0–7.5, the lactose oxidation ability of P. fragi 
NL20W substantially decreased. In the first 12  h, pH 
had little effect on the catalytic performance of P. fragi 
NL20W. In contrast, from 12 to 36  h, it could be obvi-
ously found that the catalytic efficiency was much higher 
under pH 6.0 (Fig. 3C, D). At pH 6.0, lactose was almost 
exhausted after 36  h, with lactobionic acid productivity 
of 1.20 g/L/h, which suggested the lactose oxidative activ-
ity of P. fragi NL20W favored slightly acidic conditions.

Figure  4A showed the effect of metal ions on lactobi-
onic acid production. It was found that all examined 
metal ions, including  Ca2+,  Fe3+,  Mg2+, and  Cu2+ had 
positive effects on lactose oxidation. Among them,  Mg2+ 
played the most significant role, with lactobionic acid 
yield increased by 85% at 12 h compared to the control. 
Although other metal ions could also promote the pro-
duction of lactobionic acid, but their effects were not 
as positive as  Mg2+. Next, the optimal concentration of 
 Mg2+ ranging from 0.1 mM to 2.0 mM was further inves-
tigated. When the concentration of  Mg2+ varied from 
0.1 mM to 0.5 mM, the yields of lactobionic acid at 36 h 
increased from 87.93% to 93.54%, but the yields did not 
further increase at higher  Mg2+ concentration (Fig. 4B). 
Finally, the catalytic performance of P. fragi NL20W 
before and after optimization was evaluated and com-
pared under high lactose concentration. As shown in 
Fig.  5, lactose was basically converted until 84  h before 
optimization, while 250 g/L lactose could be completely 
converted at 40 h and 300 g/L lactose at 84 h after optimi-
zation. The productivities were increased from 3.01 g/L/h 
to 6.38  g/L/h at 250  g/L, and 3.56  g/L/h to 6.25  g/L/h 
at 300 g/L, indicating the effectiveness of the combined 
optimal reaction conditions.

Production of lactobionic acid from whey powder 
by growing cell in the bioreactor
To further investigate the performance of P. fragi NL20W 
and elevate the cost effectiveness, batch cultivation 
experiments were carried out in a 3 L bioreactor with 
whey powder as substrate under controlled conditions. 
Glycerol was still adopted as carbon source to facilitate 
cell growth and lactose conversion. Two different strate-
gies were undertaken to evaluate the effect of whey pow-
der adding time on lactobionic acid production. When 
whey powder was added simultaneously with cell inocu-
lation, a total of 200 g/L lactose could be completely con-
verted in 87 h with an average productivity of 1.62 g/L/h 
(Additional file  1: Fig. S2). Due to the turbidity of the 
whey components, the optical density of the strain could 
not be accurately measured. However, the unspecified 
components in whey or other harmful effects including 
high osmolality might influence the cell growth of P. fragi 
NL20W, and render the reaction rate sluggish. There-
fore, we also determined the lactobionic acid production 
profiles when whey powder was added at the middle and 
late logarithmic phase. In any case, the productivities of 
lactobionic acid could be enhanced to a large extent. In 
the case that the whey powder containing 200 g/L lactose 
was added at 8 h (late logarithmic phase), and the yield of 
lactobionic acid reached 100% at 78 h with average pro-
ductivity of 3.01 g/L/h (Fig. 6A), which was 85.80% higher 
than that of adding whey powder at 0 h. We also tried to 
increase the lactose concentration in whey to 300  g/L. 
In this case, the whey powder was added at 6 h (middle 
logarithmic phase), and all lactose could be quickly con-
verted into lactobionic acid in 102 h with a yield of 100% 
and average productivity of 3.09 g/L/h (Fig. 6B). Although 
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the lactobionic acid productivities using whey powder as 
substrate were lower than that using pure lactose, the 
results in this study outperformed the best reports with 
P. taetrolens as biocatalyst (Table 1). Compared with pre-
vious studies, this study made significant progress both 
in improving lactobionic acid titer and productivity. 
These results also demonstrated the new isolated P. fragi 
NL20W strain had great application potential in the val-
orization of waste cheese whey to lactobionic acid.

Identification of enzyme involved in lactose oxidation
After demonstrating that P. fragi NL20W was a good 
biocatalyst for conversion of lactose and cheese whey 
to lactobionic acid, we expected to better understand 
the enzyme involved in this oxidation reaction. Pres-
ently, many kinds of lactose-oxidizing enzymes had 
been identified from both fungal and bacteria. For bac-
teria, such lactose-oxidizing enzymes included PQQ-
dependent glucose dehydrogenase [26], glucose-fructose 

Table 1 Comparison of Research on Microbial Production of Lactobionic Acid

a Mutant strain
b Permeabilized cells
c Recombinant P. taetrolens strain with homologous expression of quinoprotein glucose dehydrogenase gene.
d Recombinant E. coli strain with homologous expression of malate quinone oxidoreductase

Microorganism Production mode Biocatalyst Substrate Substrate 
titer (g/L)

Productivity 
(g/L/h)

Yield (%) Reference

A. orientalis batch in flask resting cell lactose 49 0.54 98 [8]

B. cepacia no.24 fed-batch in flask growing cell lactose 400 1.67 100 [13]

B. cepacia no.24a fed-batch in flask resting cell lactose 150 5.55 100 [14]

K. medellinensis batch in flask resting cell lactose – – – [26]

Pseudomonas sp. LS131 fed-batch in bioreactor growing cell lactose 290 1.87 90 [27]

Zymomonas mobilisb batch in flask permeabilized cells lactose, fructose 182 7.60 78 [15]

P. taetrolens batch in bioreactor growing cell concentrate whey 78 1.63 100 [18]

P. taetrolens fed-batch in bioreactor growing cell concentrate whey 164 2.05 82 [24]

P. taetrolensc batch in bioreactor growing cell concentrate whey 200 2.11 100 [17]

P. taetrolensc batch in bioreactor growing cell lactose 200 8.70 100 [17]

E. colid batch in flask growing cell concentrate whey 200 0.62 100 [28]

P. fragi NL20W batch in flask resting cell lactose 300 6.25 100 This study

P. fragi NL20W batch in bioreactor growing cell whey powder 200 3.01 100 This study

P. fragi NL20W batch in bioreactor growing cell whey powder 300 3.09 100 This study
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oxidoreductase [29], and malate:quinone oxidoreductase 
[28]. In this research, based on genome annotation and 
sequence alignment, six candidate enzymes of P. fragi 
NL20W were selected, including four PQQ-dependent 
glucose dehydrogenases and two malate:quinone oxi-
doreductases (Additional file 1: Table S1). Their functions 
in lactose oxidation were assessed through heterologous 
overexpression in P. putida KT2440, which innately had 
poor ability to convert lactose into lactobionic acid.

The four GDH genes and two MQO genes were cloned 
into the expression vector pBBR1MCS2, resulting in 6 
different plasmids, which were individually transformed 
into P. putida KT2440 to examine their roles in the syn-
thesis of lactobionic acid. As shown in Fig. 7A, although 
wild-type P. putida KT2440 could convert lactose into 
lactobionic acid to some extent, the conversion rate was 
rather low, with yields of 13.57% and 26.69% after 12  h 
and 24  h, respectively. By contrast, the derivative strain 
overexpressing GDH1 showed significantly increased 
yields, at 79.54% and 100% after 12  h and 24  h, respec-
tively. The lactobionic acid yield increased by 486.1%. 
These results were almost as good as those obtained by 
P. fragi NL20W. However, the other 5 candidate genes 
gave detrimental effects on lactose conversion, presum-
ably due to the additional burden caused by exogenous 
plasmids. Furthermore, we performed homologous 
expression of GDH1 gene in P. fragi NL20W, and the 
lactobionic acid yields of 12  h slightly increased from 
89.07% to 93.54% (Fig. 7B). As wild-type P. fragi NL20W 
was outstanding enough, further strengthen of lacto-
bionic acid production might require more than just 
enzyme overexpression. Other strategies should also be 
considered, such as balanced coexpression of GDH and 
cofactor PQQ, sufficient oxygen supply, etc. Anyway, the 
GDH1 from P. fragi NL20W was identified as a novel lac-
tose-oxidizing enzyme of P. fragi.

We performed amino acid sequence analysis of GDH1 
from P. fragi NL20W, which was predicted to be a mem-
brane-bound PQQ glucose dehydrogenase (http:// harri er. 
nagah ama-i- bio. ac. jp/ sosui/ sosui_ submit. html). Glucose 
dehydrogenases harboring PQQ are widely distributed in 
Pseudomonas sp., which participate in glucose metabolism 
to oxidize glucose into gluconic acid. Among them, the 
PQQ-dependent glucose dehydrogenase from P. putida 
KT2440 is the most scientifically and industrially attrac-
tive [30]. Although it exhibits high catalytic efficiency 
upon glucose, its narrow substrate specificity limits the 
application in lactose oxidation. In addition to this, the 
PQQ-dependent glucose dehydrogenase from P. taetro-
lens had been reported to convert lactose into lactobionic 
acid [17]. In terms of substrate specificity, the GDH from 
P. taetrolens varied significantly with that of our research. 
For example, the GDH from P. taetrolens had no activity 

towards arabinose [17], but the GDH from P. fragi NL20W 
did (data not shown), which also indicated the GDH in this 
study is a new kind of aldose-oxidizing enzyme.

Conclusion
In conclusion, a new strain identified as P. fragi with 
high lactobionic acid production ability was isolated 
and its potential in the upgrading of cheese whey was 
fully exploited. An efficient approach was developed for 
improving lactobionic acid titer and yield even the sub-
strate up to 300 g/L. In addition, scale-up synthesis was 
realized in the bioreactor, which laid the foundation for 
large-scale industrial production processes. It is of inter-
est to uncover a novel membrane-bound GDH (GDH1) 
playing a pivotal role in lactose oxidation. Further study 
on the substrate spectrums of P. fragi NL20W and GDH1 
might reveal their advantages in the production of other 
aldonic acids.

Materials and methods
Isolation and genome sequencing of P. fragi NL20W
P. fragi NL20W was isolated from soil samples obtained 
from Purple Mountain (Nanjing, China). Based on the 
analysis of 16S ribosomal RNA and phylogenetic tree 
(Additional file 1: Fig. S3), strain NL20W was identified 
as P. fragi. Whole-genome sequencing of P. fragi NL20W 
was also performed and submitted to GenBank under 
accession No. CP064354.1.

Microorganism, medium, and growth condition
P. fragi, P. putida and Escherichia coli strains (Additional 
file  1: Table  S2) were grown and proliferated in Luria–
Bertani (LB) broth at 30 °C and 37 °C, respectively, with 
200 rpm shaking for 12 h. If required, 50 µg  mL−1 kana-
mycin was added to the medium to avoid loss of the plas-
mid. All used solid media contained 15 g  L−1 agar.

To replace LB medium with a cheap medium, glu-
cose mineral medium and glycerol mineral medium 
were used. The medium consisted of 5.0  g/L glucose 
or glycerol, 5.0  g/L yeast extract, 3.4  g/L  Na2HPO4, 
1.5 g/L  KH2PO4, 0.25 g/L NaCl, 0.5 g/L  NH4Cl, 0.52 g/L 
 MgSO4, and 2.5 mL/L A9 solution, with pH 7.0. A9 solu-
tion was composed of the following:  H3BO3 300  mg/L, 
 ZnCl2 50 mg/L,  MnCl2·4H2O 30 mg/L,  CoCl2 200 mg/L, 
 CuCl2·2H2O 10  mg/L,  NiCl2·6H2O, 20  mg/L, and 
 Na2MoO4·2H2O 30 mg/L.

Lactobionic acid production by resting cells in the flask
To examine the effect of carbon resource on lactose 
catalytic performance of P. fragi NL20W, overnight cul-
ture in LB medium was spun by centrifugation (12000 g, 
25 °C, 5 min), and transferred to fresh LB medium, glu-
cose mineral medium and glycerol mineral medium, 

http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html
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respectively, with a starting  OD600nm of 0.2. After incu-
bating at 30 °C and 200 rpm for 12 h, cells were harvested 
by centrifugation (8000  g for 10  min) and washed with 
200 mM phosphate buffer (pH 7.0) three times. Biotrans-
formation experiments were conducted in 250 mL flasks 
containing 10 mL of resting cells with optical density of 5 
at  OD600nm, 50 g/L lactose, and 7.3 g/L  CaCO3 in 200 mM 
phosphate buffer (pH 7.0) at 30 °C and 200 rpm.

To investigate the effect of temperature on lactobionic 
acid production, biotransformation experiments were 
carried out at 25 °C, 30 °C, 35 °C, and 40 °C, respectively, 
while other reaction conditions remained the same. To 
investigate the effect of pH on lactobionic acid produc-
tion, biotransformation experiments were carried out at 
pH 6.0, 6.5, 7.0, and 7.5, respectively, while other reac-
tion conditions remained the same. Effect of metal ions, 
including  Ca2+,  Mg2+,  Fe3+, and  Cu2+, on lactobionic 
acid production was tested at the final concentrations of 
1 mM, and the effect of  Mg2+ concentration was evalu-
ated from 0.1 mM to 2.0 mM. Other reaction conditions 
remained the same.

Lactobionic acid production by growing cells in the flask
Overnight culture in LB medium was spun by centrifuga-
tion (12000 g, 25 °C, 5 min), and transferred to fresh LB 
medium, glucose mineral medium and glycerol mineral 
medium, respectively, with a starting  OD600nm of 0.2. All 
media also contained 50 g/L lactose and 7.3 g/L  CaCO3. 
Cell growth and lactose bioconversion were accom-
plished 30 °C and 200 rpm.

Fermenter condition
Batch fermentation was carried out in a 3 L bioreac-
tor (BXBio, Shanghai, China) at a working volume of 1 
L. P. fragi NL20W was pre-cultured in glycerol mineral 
medium, spun by centrifugation and transferred to fresh 
glycerol mineral medium with a starting  OD600nm of 1. 
Whey powder was directly added to the medium, mak-
ing lactose with final concentration of 200 g/L or 300 g/L. 
Bioreactor experiments were conducted with an agitation 
rate of 350 rpm, and an aeration rate of 1.0 vvm. Exces-
sive foam formation was prevented by the addition of a 
drop of defoamer. During lactobionic acid production, 
pH was maintained at 6.0 via automatic addition of 25% 
NaOH.

Plasmid and strain constructions
To express GDH1 (QPC34881.1), GDH2 (QPC33644.1), 
GDH3 (QPC33554.1), GDH4 (QPC37981.1), MQO1 
(QPC37714.1), and MQO2 (QPC35030.1) encoding 
genes from P. fragi NL20W, pBBR1MCS2 was used as 
the expression vector. Oligonucleotide primers used 

were listed in Table S3. pBBR1MCS-GDH1, pBBR1MCS-
GDH2, pBBR1MCS-GDH3, pBBR1MCS-GDH4, 
pBBR1MCS-MQO1, and pBBR1MCS-MQO2 were con-
structed by replacing the lacZα fragment of pBBR1MCS2 
with GDH and MQO genes, respectively, using the 
 pEASY®-Basic Seamless Cloning and Assembly Kit 
(TransGen Biotech, Beijing, China). The resultant plas-
mids were individually transformed into P. fragi NL20W 
and P. putida KT2440 via electroporation at 2400 V, 200 
Ω, and 25 μF.

Analytical methods
Bacterial growth was measured using a spectrophotom-
eter at a wavelength of 600 nm  (OD600nm). Lactobionic 
acid and lactose contents of culture samples were meas-
ured by high-performance liquid chromatography (Agi-
lent 1100 series, USA) equipped with a Coregel ION 
300 column (Concise Separations, USA) and a refrac-
tive index detector (Shimadzu, Japan). The column was 
eluted with 0.5 mM  H2SO4 at a flow rate of 0.4 mL/min 
with the column temperature set at 75 °C.

The lactobionic acid yield was calculated as follows:
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