
Dai et al. Microb Cell Fact          (2021) 20:149  
https://doi.org/10.1186/s12934-021-01639-7

RESEARCH

Enforcing ATP hydrolysis enhanced 
anaerobic glycolysis and promoted solvent 
production in Clostridium acetobutylicum
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Abstract 

Background:  The intracellular ATP level is an indicator of cellular energy state and plays a critical role in regulating 
cellular metabolism. Depletion of intracellular ATP in (facultative) aerobes can enhance glycolysis, thereby promoting 
end product formation. In the present study, we examined this s trategy in anaerobic ABE (acetone-butanol-ethanol) 
fermentation using Clostridium acetobutylicum DSM 1731.

Results:  Following overexpression of atpAGD encoding the subunits of water-soluble, ATP-hydrolyzing F1-ATPase, the 
intracellular ATP level of 1731(pITF1) was significantly reduced compared to control 1731(pIMP1) over the entire batch 
fermentation. The glucose uptake was markedly enhanced, achieving a 78.8% increase of volumetric glucose utiliza-
tion rate during the first 18 h. In addition, an early onset of acid re-assimilation and solventogenesis in concomitant 
with the decreased intracellular ATP level was evident. Consequently, the total solvent production was significantly 
improved with remarkable increases in yield (14.5%), titer (9.9%) and productivity (5.3%). Further genome-scale 
metabolic modeling revealed that many metabolic fluxes in 1731(pITF1) were significantly elevated compared to 
1731(pIMP1) in acidogenic phase, including those from glycolysis, tricarboxylic cycle, and pyruvate metabolism; this 
indicates significant metabolic changes in response to intracellular ATP depletion.

Conclusions:  In C. acetobutylicum DSM 1731, depletion of intracellular ATP significantly increased glycolytic rate, 
enhanced solvent production, and resulted in a wide range of metabolic changes. Our findings provide a novel strat-
egy for engineering solvent-producing C. acetobutylicum, and many other anaerobic microbial cell factories.

Keywords:  Anaerobic fermentation, Clostridium acetobutylicum, ABE fermentation, ATP hydrolysis, F1-ATPase, 
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Background
The fluctuation of petrol fuel supply and associated 
environmental issues place critical challenges to global 
economy, thereby motivating alternative of microbial 
production of biofuels and chemicals from renewable 

feedstocks [1, 2]. Clostridium acetobutylicum is a model 
anaerobic bacterium and well-known for industrial pro-
duction of organic solvents including acetone, butanol and 
ethanol (i.e. ABE fermentation). ABE fermentation involves 
typically two physiological phases, acidogenesis and sol-
ventogenesis. During the acidogenic phase, the bacterial 
cells produce energy via glycolysis, acetate and butyrate 
generation and ATP synthase, whereas during the solven-
togenic phase, the cells use glycolysis and ATP synthase for 
solvent production and energy metabolism, meanwhile re-
assimilate the extracellular accumulated acids to generate 
solvents and survive acid stress [3]. Therefore, glycolysis is 
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a major source of energy and critical for ABE fermentation 
using C. acetobutylicum.

Glycolysis is a well-conserved metabolic pathway in 
nearly all types of organisms, and it is subject to regula-
tion of many factors [4]. Transcriptionally, catabolite con-
trol protein A (CcpA) positively regulates the expression 
of glycolysis genes in C. acetobutylicum [5]. At metabolite 
level, intracellular ATP is a key factor regulating the activi-
ties of many rate-limiting enzymes in glycolysis [6], such as 
hexose kinase, phosphofructokinase and pyruvate kinase. 
Bacterial F1Fo-ATP synthase uses the transmembrane 
proton potential to synthesize ATP from ADP and it is a 
major ATP producer in a cell [7, 8]. The F1Fo-ATP synthase 
consists of a membrane integrated proton channel Fo and 
a cytoplasmic ATP hydrolase (ATPase) F1. Increasing the 
proportion of free-form F1 by reducing the expression of 
Fo or enhancing the expression of F1 could promote ATP 
hydrolyzation, reduce the intracellular ATP level, and con-
sequently induce glycolysis. Previous studies demonstrated 
that in many aerobic cell factories decreasing intracellular 
ATP level forced the cells to maintain a higher substrate 
uptake rate, promoted glycolysis to regenerate NAD+, and 
therefore enhanced fluxes towards end products. Specially, 
deletion of the Fo-encoding genes atpFH disrupted oxida-
tive phosphorylation and led to a two-fold increase of gly-
colytic flux in Escherichia coli [9]. Overexpression of F1 α, 
β and γ subunits remarkably decreased intracellular ATP/
ADP ratio and resulted in 2.7, 3.0, and 1.2-fold increased 
glycolytic flux in E. coli, Lactococcus lactis and Lactobacil-
lus plantarum, respectively [10–12]. Increasing relative 
abundance of F1 unit also increased the glucose consump-
tion in Bacillus subtilis [13] and Corynebacterium glutami-
cum [14]. All these efforts were accomplished in aerobic or 
facultative aerobic microbes; however, whether this strat-
egy is applicable in obligate anaerobes remains unclear.

In the present study, we significantly decreased the intra-
cellular ATP level of C. acetobutylicum DSM 1731 via 
overexpression of native F1-ATPase genes. As a result, we 
observed a remarkably enhanced glucose utilization as well 
as a substantially improved solvent production. Genome-
scale metabolic modelling was employed to examine 
the metabolic changes at the network level. Overall, we 
have  demonstrated that the strategy of intracellular ATP 
depletion can be applied in anaerobic cell factories such as 
C. acetobutylicum, to enhance glycolysis and improve end 
product formation.

Results
Reduced intracellular ATP level and ATP/ADP ratio 
by overexpression of F1‑ATPase genes
F1-ATPase is the water-soluble component of the 
F1Fo-ATP synthase and catalyzes ATP hydrolysis. 
It consists of α3β3γδε subunits (atpAGDHC) in C. 

acetobutylicum DSM 1731. Previous studies reported 
that the combination of α, β and γ showed the strong-
est ATPase activity [10, 15]. To reduce the intracellu-
lar ATP level, the native F1-ATPase genes (atpAGD) 
were cloned and expressed in strain DSM 1731 with 
a constitutive thiolase promoter using plasmid pITF1 
(Additional file 1: Fig. S1). As expected, the overexpres-
sion strain 1731(pITF1) displayed a lower ATP level 
compared to its vector control 1731(pIMP1) during 
the entire batch fermentation. The ATP level in strain 
1731(pITF1) peaked (35 µmol gDW−1) at 14 h, and rap-
idly declined to undetectable level thereafter; whereas 
the ATP level in 1731(pIMP1) peaked (61 µmol gDW−1) 
at 20 h and slowly decreased to 40 μmol gDW−1 at 30 h 
(Fig.  1a). Additionally, a reduced ATP/ADP ratio was 
observed as well in strain 1731(pITF1) compared to 
vector control throughout the initial 30-h fermentation 
(Fig.  1b). Together, these results suggest that overex-
pression of atpAGD has potentially increased the intra-
cellular abundance of F1-ATPase and enhanced ATP 
hydrolysis, thereby causing ATP reduction and ADP 
accumulation.

Rapid glucose utilization and fast acidogenic growth 
in strain 1731(pITF1)
Overexpression of F1-ATPase genes resulted in rapid 
glucose consumption. Specifically, over the initial 18-h 
fermentation, 290  mM extracellular glucose was con-
sumed by overexpression strain 1731(pITF1); whereas 
only 162  mM glucose was utilized by vector control 
strain 1731(pIMP1) (Fig.  2a), representing a 78.8% 
increase of substrate consumption. A higher volumet-
ric glucose utilization rate (16.15  mmol L−1  h−1) was 
achieved by 1731(pITF1) compared to vector control 
(9.03 mmol L−1 h−1) in the first 18 h. Similarly, the spe-
cific glucose utilization rate at 0–12  h was higher in 
1731(pITF1) than that in 1731(pIMP1) (Fig.  2b, Addi-
tional file  2: Table  S1). From 18  h onwards, glucose 
consumption in 1731(pITF1) quickly declined to its 
minimum level, while control strain 1731(pIMP1) still 
remained a moderate glucose utilization rate  till 27  h 
(Fig. 2b).

Rapid consumption of glucose resulted in fast growth. 
Specifically, the maximum OD600 of 1731(pITF1) was 17.2 
at 18 h, which is 22.8% higher and 9-h earlier than that of 
1731(pIMP1) (14.0 at 27 h) (Fig. 2c). To the best of our 
knowledge, this is the highest optical density reported 
thus far for C. acetobutylicum in an ABE batch fermen-
tation [16–18]. Moreover, the specific growth rate of 
1731(pITF1) was substantially higher than that of con-
trol at the beginning of fermentation (0  h, 0.52  h−1 vs 
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Fig. 1  Decreased ATP level (a) and ATP/ADP ratio (b) in overexpression strain 1731(pITF1) compared to vector control 1731(pIMP1) at 0–30 h of 
anaerobic ABE fermentation. All data are represented as mean ± s.d. (standard deviation, samples were collected from 3 independent bioreactor 
runs). Student’s t test, *p < 0.01

Fig. 2  The residual glucose concentration (a), specific glucose consumption rate (b), optical density (OD600) and specific growth rate of 1731(pITF1) 
and 1731(pIMP1) in anaerobic ABE fermentation. The measured glucose concentration (a) and optical density (b) are shown as mean ± s.d. (samples 
were collected from 3 independent bioreactor runs)
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0.34 h−1) but remained similar from 6 h onwards (Fig. 2d, 
Additional file 2: Table S2).

Decreased acid accumulation and enhanced solvent 
production in strain 1731(pITF1)
ABE fermentation of C. acetobutylicum undergoes aci-
dogenesis, subsequent acid re-assimilation and sol-
ventogenesis [19]. Compared to the control strain 
1731(pIMP1), depletion of intracellular ATP resulted 
in 33.8% less accumulation of total acids and 9.9% more 
production of total solvents in 1731(pITF1) at 48 h of the 
batch fermentation (Additional file 1: Table S2). Specifi-
cally, along with the fermentation acetate and butyrate 
achieved the maximum concentrations of 11.4 and 
33.5 mM in 1731(pITF1) at 12 h, respectively, which were 
54.4% and 33.5% less than those in control (Fig 3a, b). At 
the end of fermentation, the concentrations of acetate 
and butyrate in 1731(pITF1) were 10.3 and 16.7  mM, 
respectively, whereas the corresponding concentrations 
were 17.0 and 23.0 mM in 1731(pIMP1). Notably, an ear-
lier re-assimilation of acetate and butyrate is evident in 
1731(pITF1) compared with 1731(pIMP1) (Fig. 3a).

As to solvent production, butanol, acetone and ethanol 
achieved their maximum titers of 194.9  mM, 83.6  mM 
and 51.4 mM, respectively in 1731(pITF1), representing 
3.3%, 22.5% and 33.6% increases compared to those in 
control (Fig. 3a, b, Additional file 1: Table S2). The total 
solvent yield and productivity were 31.8% and 0.43 g L−1 
h−1 in 1731(pITF1), 14.5% and 5.3% higher than those of 
1731(pIMP1), respectively (Additional file  1: Table  S2). 
With a mass balance analysis, we discovered that 8.6%, 
31.7%, 3.2%, 3.4%, 1.4% and 6.1% of glucose carbon 
flowed to acetone, butanol, ethanol, butyrate, acetate 
and biomass in 1731(pIMP1), respectively; whereas in 
1731(pITF1), the corresponding percentages are 11.0%, 

34.1%, 4.5%, 2.5%, 0.9% and 7.4%, suggesting an enhanced 
solvent production and biomass formation in overexpres-
sion strain (Additional file 2: Table S3).

Cellular metabolic changes induced by overexpression 
of F1‑ATPase genes
The intracellular ATP allosterically regulates the activ-
ity of many metabolic enzymes [6], and its depletion 
could result in significant metabolic flux changes at net-
work level. A genome-scale metabolic model (iCac20) 
was constructed for C. acetobutylicum DSM 1731 using 
genome annotation and literature. The model contained 
766 genes, 775 metabolites and 1003 reactions, and it 
was used to compute the metabolic fluxes in strains 
1731(pITF1) and 1731(pIMP1) during ABE fermentation 
from 0 to 30 h (Fig. 4, Additional file 2: Table S4).

Compared to 1731(pIMP1), the glycolytic fluxes of 
1731(pITF1) were enhanced in acidogenic phase, and 
then substantially declined to low levels from 12  h 
onwards (Fig.  4a). In glycolysis, phosphofructokinase 
(PFK) and pyruvate kinase (PYK) are the key enzymes 
allosterically inhibited by ATP [6]. The decreased intra-
cellular ATP level in 1731(pITF1) might result in an 
alleviation of allosteric inhibition of PFK and PYK, 
thereby enhancing the activities of these two enzymes 
and increasing the overall glycolytic activity in acido-
genic phase. Simulation results using model iCac20 
indicate that 1731(pITF1) might have an increased flux 
through pyruvate ferredoxin oxidoreductase (POR) 
and an enhanced hydrogen production via hydrogenase 
(FDXNH) in acidogenic phase (Fig. 4a) compared to vec-
tor control. Hydrogen formation requires NADH; the 
enhanced glycolysis in 1731(pITF1) produced abundant 
NADH, which then likely increased hydrogen formation. 
Furthermore, the tricarboxylic acid cycle (TCA) fluxes 

Fig. 3  Acid (a) and solvent (b) profiles in pH-controlled anaerobic ABE fermentations using 1731(pIMP1) (hollow markers) and 1731(pITF1) (solid 
markers). Triangle, butyrate; hexagon, acetate; rectangle, butanol; circle, acetone; diamond, ethanol; asterisk, total solvents. All data are represented 
as mean ± s.d. (samples were collected from 3 independent bioreactor runs)
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including those through citrate synthase (CS), aconitase 
(ACONT), isocitrate dehydrogenase (ICDHyr), were ~ 
2.0 to 7.4-fold higher in 1731(pITF1) than those in vector 
control at 0–12 h, respectively, but were sharply declined 
to low levels thereafter (Fig. 4b). Together, the enhanced 
metabolic activity in glycolysis and TCA in acidogenic 
phase could produce ample energy and building blocks 
(e.g. amino acids, nucleotides and lipids) for exponential 
growth in 1731(pITF1) (Fig. 1c).

Within ABE fermentation pathway, the flux through 
thiolase (ACACT) was 1.3 to 2.1-fold higher in strain 
1731(pITF1) than that in control at 0–18  h, but was 
remarkably low at 24 and 30 h. Similarly, in 1731(pITF1) 
the fluxes through solventogenic reactions including 
acetoacetate decarboxylase (ADC), CoA transferases 
(COAT1/COAT2), alcohol dehydrogenases (ALCD 
and BUTOH) were significantly higher than those in 
1731(pIMP1) at 0–12 h of fermentation. (Fig. 4c). At 18 h, 
the fluxes via ADC and BUTOH in 1731(pITF1) started to 
decline, while the corresponding fluxes in 1731(pIMP1) 
achieved high levels.

In energy generation (Fig.  4d), the ATP synthetic flux 
via F1Fo-ATPase in 1731(pITF1) was 1.9 to 6.0-fold higher 
than 1731(pIMP1) at 0–6 h, but rapidly decreased at the 
following timepoints. The average NADH and ATP turn-
over rates remained at approximately 1.8–2.3 and 1.7–1.9 
fold higher in 1731(pITF1) compared to 1731(pIMP1), 

respectively (Fig.  4d), but declined to a low level after 
12  h. Notably, in 1731(pITF1), the ATP hydrolysis flux 
(ATPM) was at a 24% higher level at 0 h, but remained at 
a similar or even lower level at the following time points 
compared to that in vector control, suggesting an initially 
enhanced ATP hydrolysis activity induced by overex-
pression of F1-ATPase subunit genes. Overall, our flux 
balance analysis (FBA) results indicate that overexpres-
sion of F1-ATPase genes resulted in a significant impact 
on bacterial metabolism not only ABE fermentation, 
but also many other pathways including glycolysis, TCA 
cycle and energy metabolism.

Early onset of solventogenesis in F1‑ATPase overexpression 
strain 1731(pITF1)
In ABE fermentation, solventogenesis starts along with 
re-assimilation of extracellularly accumulated acetate 
and butyrate, rising extracellular pH, decreasing culture 
oxidoreductive potential (ORP) [20]. Strain 1731(pITF1) 
started to reutilize acids at 12 h, approximately 6-h ear-
lier than vector control strain 1731(pIMP1) (Fig. 3a). The 
culture pH of both strains declined to ~ 5.0 at 6 h owing 
to rapid acid accumulation. Notably, the pH started 
to rise at 12 h in 1731(pITF1) and 18 h in 1731(pIMP1) 
(Fig. 5a). Together with the advanced reduction of exter-
nal acetate and butyrate in 1731(pITF1) (Fig.  3a), an 
earlier acid re-assimilation is evident. As an important 

Fig. 4  Metabolic flux changes in glycolysis (a), TCA cycle (b), ABE fermentation (c) and energy associated reactions (d) of strain 1731(pITF1) (red) 
compared to those of vector control 1731(pIMP1) (blue). Mean and s.d. of 1000 flux samples are shown as line and shading, respectively. GLCpts 
glucose phosphotransferase, PFK phosphofructokinase, GAPD glyceraldehyde-3-phosphate dehydrogenase, PYK pyruvate kinase, FDXNH hydrogen 
ferredoxin oxidoreductase, POR pyruvate ferredoxin oxidoreductase, PFL pyruvate formate lyase, CS citrate synthase, ACONT aconitase, ICDHyr 
isocitrate dehydrogenase, MDH malate dehydrogenase, PYC pyruvate carboxylase, SACOT succinyl-CoA:acetoacetate CoA-transferase, SUCOAS 
succinyl-CoA synthetase, SUCCex succinate cross-membrane transport, ACK acetate kinase, BUTK butyrate kinase, COAT1 acetate-acetoacetate 
CoA transferase, COAT2 butyrate-acetoacetate CoA transferase, ALCD alcohol/aldehyde dehydrogenase, ADC acetoacetate decarboxylase, ACACT​ 
acetyl-CoA C-acetyltransferase, BUTOH butanol dehydrogenase, ATPM maintenance ATP hydrolysis
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fermentation parameter, the culture ORP indicates the 
overall oxidoreductive status of fermentation broth [20], 
and it rapidly declines when solvents start to accumu-
late extracellularly. In 1731(pITF1), ORP displayed a 
sharp decrease to its minimum value after 12 h and was 
remained at approximately −  340 mV till 27 h; whereas 
in 1731(pIMP1), ORP level slowly decreased to its low-
est value at 30  h (Fig.  5b), indicating an earlier solvent 
accumulation in 1731(pITF1). Furthermore, alcohol 
(i.e. ethanol and butanol) formation is one of the major 
electron sinks during solventogenesis of C. acetobutyli-
cum [21, 22]. The turnover rate of intracellular NADH 
in 1731(pITF1) was much higher than that of control in 
the first 12 h of fermentation (Fig. 4d, Additional file 2: 
Table S5); whereas the NADH/NAD ratio in 1731(pITF1) 
remained unchanged (Additional file 1: Fig. S2), implying 
that a large amount of NADH was rapidly generated via 
glycolysis to drive alcohol formation without significantly 
disturbing cellular redox balance. Consistently, at 18  h 
the ethanol and butanol titers of 1731(pITF1) were 2 and 
3-fold higher than those in control, respectively (Fig. 3a, 
3b). These results together indicate an early commence-
ment of solventogenesis in 1731(pITF1) in concomitant 
with the significantly decreased intracellular ATP level.

Discussion
The biological production ABE process using anaerobe C. 
acetobutylicum recently attracts extensive interests from 
both academic and industry owing to the limited sup-
ply of petroleum fuel and mounting environmental con-
cerns [23, 24]. Many efforts have been done to improve 
solvent production, including trimming the competing 
butyrate biosynthesis pathways [25], overexpressing alde-
hyde/alcohol dehydrogenase (adhE1) [18], and screening 

solvent tolerant mutants [26]; however, these studies 
either directly worked on ABE enzymes or purely relied 
on screening from random mutagenesis. Acid production 
is one of energy generation pathway of C. acetobutylicum; 
hence, inactivation of butyrate production might impair 
energy production and result in slow growth and low cell 
density [25]. Overexpression of aldehyde/alcohol dehy-
drogenase may result in strong competition of carbon 
flow with acid biosynthesis, thereby affecting cell growth 
[18]. Enhancing cellular tolerance to solvent products 
is an alternative strategy, but it is in concomitant with 
rapid accumulation of many random mutations poten-
tially with adverse effects [26]; this may be inappropriate 
for continuous industrial production. Here, we employed 
a rational strategy of enforcing glycolysis via decreasing 
intracellular ATP level. To the best of our knowledge, this 
is the first application of such strategy in ABE fermenta-
tion by C. acetobutylicum.

Different strategies were applied in aerobic microor-
ganisms to reduce intracellular ATP level and reinforce 
glycolysis; these include construction of ATP futile cycles 
by overexpression of pyruvate carboxylase and phospho-
enolpyruvate carboxykinase in Saccharomyces cerevisiae 
for ethanol fermentation [27], and overexpression of 
phosphoenolpyruvate synthase and pyruvate kinase in 
E. coli for lactate production [28]. Notably, both pyru-
vate carboxylase and pyruvate kinase use pyruvate as 
a substrate, and ABE fermentation pathway starts with 
acetyl-CoA from pyruvate cleavage. Therefore, overex-
pression of these futile cycle enzymes may significantly 
disturb the flux through pyruvate towards ABE fermen-
tation, thereby unlikely resulting in a high yield of sol-
vents. Whereas overexpression of F1-ATPase enforced 
ATP hydrolysis, without directly competing glycolytic 

Fig. 5  The variations of pH (a), ORP (b) of 1731(pITF1) and 1731(pIMP1) in anaerobic ABE fermentation. Data of a and b are shown as mean ± s.d. 
(samples were collected from 3 independent bioreactor runs)
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metabolites or diverging glycolytic fluxes to other path-
ways; it is thus more suitable for metabolic engineering 
ABE fermentation pathway in C. acetobutylicum.

In C. acetobutylicum strain DSM 1731, F1Fo-ATP syn-
thase is encoded by operon atpIBEFHAGDC. Previous 
studies has revealed that the membrane-bound proton 
channel Fo is formed by three subunits with the stoichi-
ometry ab2c10–15, while the soluble F1 component con-
sists of subunits α3β3γδε [7, 8, 15]. F1Fo-ATP synthase 
catalyzes ATP synthesis using the energy released from 
proton influx via oxidative phosphorylation; whereas F1 
component has the secondary function of hydrolyzing 
cytosolic ATP through the action of a rotational mecha-
nism. Overexpression of F1 subunit genes atpAGD (Addi-
tional file 1: Fig. S1) potentially resulted in accumulation 
of catalytic F1 components and excessive intracellular 
ATPase activity. As expected, we observed a significantly 
reduced intracellular ATP level and decreased ATP/ADP 
ratio in C. acetobutylicum (Fig.  1), which is consistent 
with previous findings in aerobic or facultative microbes 
[10, 12]. Previous works showed that the maximal spe-
cific growth rate was decreased in ATP depleted strains 
such as E. coli [6], B. subtilis [13] and C. glutamicum [14]. 
The unexpected increase of specific growth rate before 
6 h in 1731(pITF1) compared to control may be due to the 
hydrolyzed ATP was compensated by higher glycolytic 
(e.g. PYK) and acidogenetic fluxes (PYK, ACK, BUTK) 
(Fig. 4a, c) which generated ATP in C. acetobutylicum.

The traditional batch ABE fermentation suffers from 
low cell density and low reactor productivity, this could 
be due to the rapid accumulation of toxic byproducts 
(e.g. acetate, butyrate, acetone, ethanol and butanol) and/
or the insufficient energy supply for bacterial growth 
[23]. Anaerobic C. acetobutylicum uses glycolysis, acid 
fermentation and membrane-bound F1Fo-ATP synthase 
to produce ATP. In the present study, the significantly 
reduced ATP level resulted in substantially increased 
glucose consumption, fast growth (0–20  h, Fig.  2), and 
reduced acetate and butyrate accumulation (Fig. 3) com-
pared to vector control. Consequently, strain 1731(pITF1) 
had a 22.8% increase at maximal cell density compared to 
vector control 1731(pIMP1) and a significantly improved 
solvent volumetric productivity which is necessary to 
develop effective continuous butanol production [29].

Clostridial ABE fermentation involves two physi-
ological stages, namely acidogenesis and solventogen-
esis. In acidogenic phase, cells grow exponentially with 
the production of acetate and butyrate, thereby causing 
a dramatic decline of extracellular pH. Previous stud-
ies revealed that many factors including low pH, large 
amount of undissolved organic acids and significantly 
altered energy charge (ATP/ADP ratio) could induce the 
expression of solventogenic genes (e.g. adc, ctfA/B and 

adhE) [30, 31]. In the present study, strain 1731(pITF1) 
started acid-assimilation and solventogenesis 6-h earlier 
than vector control. In addition, with metabolic model-
ling, we identified many elevated metabolic fluxes dur-
ing acidogenesis and early induction of solventogenic 
fluxes in 1731(pITF1) (Fig.  4). Overall, the performance 
of the entire ABE fermentation using 1731(pITF1) was 
significantly improved with better cell growth and higher 
solvents titer, yield, productivity. High cost is a main lim-
iting factor of commercializing ABE fermentation. The 
substrate consumption and solvent extraction account 
for > 30% of total fermentation cost [32]. The higher yield, 
titer and productivity developed here could significantly 
reduce the total cost of ABE fermentation. This work sug-
gests that glycolysis via reducing intracellular ATP level 
is an effective approach to improve solvent production in 
clostridial cell factory.

Conclusions
By overexpression of F1-ATPase, we significantly reduced 
the intracellular ATP level in C. acetobutylicum industrial 
strain DSM 1731. The overexpression strain 1731(pITF1) 
exhibited higher cell density, enhanced glycolytic rate, 
early onset of solventogenesis, significant changes of 
many metabolic fluxes, and importantly, much improved 
solvent production than its vector control. Our study, for 
the first time, demonstrates that the glycolytic rate can be 
manipulated via altering ATP level in C. aceotbutylicum. 
This strategy can also be employed for metabolic engi-
neering of other anaerobic fermentations.

Methods
Bacterial strains and culture conditions
C. acetobutylicum strain DSM 1731 and its derivatives 
(Additional file  1: Table  S1) were grown in Reinforced 
Clostridial Medium (RCM) anaerobically at 37  °C [33, 
34]. All E. coli strains were grown aerobically in Luria–
Bertani (LB) broth at 37  °C with vigorous shaking at 
220 rpm [35]. E. coli JM109 was employed for gene clon-
ing. Shuttle vector was methylated by transforming E. 
coli ER2275 bearing plasmid pAN1. Ampicillin (100  μg 
mL−1) and erythromycin (50  μg mL−1) were used for 
screening and maintaining of plasmids whenever neces-
sary. Cell growth was monitored by measuring the opti-
cal density at 600  nm (OD600) with a UV/Vis 2802PC 
spectrophotometer (Unico, New Jersey, USA).

Overexpression of F1‑ATPase in DSM 1731
The F1 component genes, atpAGD (SMB_G2901-SMB_
G2903), and thiolase promoter (Pthl) were amplified from 
DSM1731 genome using primers atpAGD-1: 5′-CGC​
GGA​TCC​ATG​AAC​ATA​AAA​CCT​GAA​GAG​ATA​ACT​
TCA​-3′, atpAGD-2: 5′-CCG​GAA​TTC​TTA​GCT​TTC​
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CAT​CAT​TTT​TTT​AGC​TTT-3′, thl-1: 5′-CGC​GTC​
GAC​TAT​ATT​GAT​AAA​AAT​AAT​AAT​AGT​G and thl-
2: 3′-CGC​GGA​TCC​TTC​TTT​CAT​TCT​AAC​TAA​CCT​
CCT​A. The fragments were then jointed and cloned into 
the shuttle vector pIMP1 [36]. The derived plasmid was 
designated as pITF1. Insertion of DNA sequence was 
confirmed by sequencing. Plasmids pIMP1 and pITF1 
(Additional file  1: Table  S1) were methylated before 
transformation of DSM1731 [37]. Electroporation to 
DSM1731 and SDS-PAGE for detecting protein overex-
pression were performed based on previous work [38].

Batch fermentation
Three independent batch fermentations were performed 
in two 7.5-L BioFlo 110 fermentors (New Brunswick Sci-
entific, Edison, NJ, USA) containing 3.0 L clostridium 
growth medium (CGM) [22, 39]. Anaerobic condition 
was assured by continuously sparging nitrogen into reac-
tor. Refined corn oil (2.7 mL L−1) was added for defoam-
ing purpose. The reactor medium (initial pH 7.0) was 
inoculated with 300-mL preculture of early log-phase 
(OD600 ~ 2.0). Broth pH was monitored by pH meter 
(Mettler-Toledo) and controlled above 5.0 by supple-
mentation with 6  M ammonia automatically. Broth oxi-
doreductive potential (ORP) was measured by real-time 
ORP electrode (Mettler-Toledo). Extracellular metabo-
lites from three independent bioreactors including glu-
cose, butanol, ethanol, acetone, butyrate and acetate were 
determined by high performance liquid chromatography 
(HPLC, Agilent Technologies, Santa Clara, CA, USA) 
[38, 40].

Quantification of intracellular ATP, ADP, NADH and NAD+

Intracellular ATP and ADP were extracted with perchlo-
ric acid method as described previously [41] with minor 
modifications. Samples were collected from three inde-
pendent bioreactors at multiple time points and sub-
jected to centrifugation at 10,000×g for 1  min. The cell 
pellets were homogenized immediately in 200 μL ice-cold 
7% perchloric acid and incubated on ice for 10 min. After 
centrifugation at 15,000×g for 5  min, the supernatant 
was collected and neutralized using 50 μL 3 M potassium 
hydroxide, 100 μL 0.4 M Tris and 50 μL 3 M potassium 
chloride. The mixture was vortexed thoroughly and sub-
jected to another centrifugation at 15,000×g for 5 min to 
remove residual precipitate. The supernatant was then 
transferred to another sterile centrifuge tube for HPLC 
analysis. An ion-pair reversed-phase HPLC method was 
used to determine the intracellular adenine nucleotides 
level according to previous work [42, 43]. Agilent 1200 
HPLC was used with 10 μL injection each time. The 
mobile phase containing potassium phosphate dibasic 
(107.5  mM), tetrabutylammonium hydrogen sulphate 

(2.3  mM) and acetonitrile (6%) at pH 6.25 was pumped 
through a C18 column (SB-AQ 4.6 × 250 mm, 5-micron, 
Agilent) at a flow rate of 1 mL min−1.

The extraction and determination of intracellu-
lar NADH and NAD+ were conducted as preciously 
described [44] with slight modifications. To prepare 
NADH, 400 μL ice-cold 0.4 M potassium hydroxide was 
firstly added into 1 mL fermentation broth. The mixture 
was then incubated at 30 °C for 10 min and subject to a 
centrifugation at 15,000 × g for 10 min at 4 °C. Then, 200 
μL supernatant was collected and neutralized to pH 7.5–
8.0 by adding 0.4 M hydrochloride acid. For NAD+, 400 
μL ice-cold 0.4 M hydrochloride acid was added to 1 mL 
broth. The mixture was incubated at 50 °C for 10 min and 
centrifuged at 15,000 × g for 10 min at 4 °C. Then, 200 μL 
supernatant was collected and neutralized to pH 7.2–7.4 
using 0.4 M potassium hydroxide. The neutralized sam-
ples were immediately used for NADH and NAD+ deter-
mination. The spectrometric enzymatic cycling assay 
was applied with slight modifications. The assay mixture 
contained 2  mL buffer (0.15  M glycylglycine/nicotinic 
acid buffer, pH 7.4), 400 μL phenanziniummethylsulfate 
(PES) (4 mg mL−1), 400 μL thiazolyl-blue (MTT) (5 mg 
mL−1), 70 μL ethanol, and 40 μL alcohol dehydrogenase 
(60 U mL−1). After addition of 50 μL neutralized sample 
into reaction buffer followed by a brief vortexing, absorp-
tion was examined using spectrophotometer for 10 min 
at 570 nm. Mass balance was calculated by summing up 
carbon amounts of metabolite products and biomass, 
and compared with glucose consumption. Specific car-
bon partition was calculated by normalizing the carbon 
molar amount of a produced metabolite with the carbon 
molar amount of the consumed glucose. For biomass, its 
molar carbon per gram dry weight (36.8 mM C gDW−1) 
was calculated by FBA (see below) with glucose uptake 
rate set as − 10 mmol⋅gDW−1⋅h−1.

GSMM construction for C. acetobutylicum DSM 1731
The model construction started with collecting genome 
annotation (GCA_000218855.1) from GenBank and 
obtaining metabolic reactions from KEGG (Kyoto Ency-
clopedia of Genes and Genomes) [45] and BioCyc data-
bases [46]. A draft model was constructed based on 
the  predicted metabolic reactions in KEGG, and then 
supplemented with the missing metabolites, reactions 
and genes according to the genome annotation of DSM 
1731 and BioCyc pathways. Extensive manual curation 
was conducted to improve the model, including (i) add-
ing extracellular metabolites, (ii) adding exchange and 
transport reactions, (ii) filling pathway gaps, and (iii) 
checking the mass and charge balance of each reaction. 
The resulting model was compiled in Systems Biology 
Markup Language [47]. The biomass formation equation 
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consisting of necessary building blocks for growth was 
created using the one from existing model for ATCC 824 
model owing to its very close phylogeny relationship to 
this type strain [48]. The minimum of non-growth associ-
ated maintenance (NGAM) was set to 1 mmol gDW h−1, 
2.5% of growth associated maintenance (40 mmol gDW 
h−1) according to previous modeling effort [49].

Constraint‑based metabolic modeling
Our FBA is based on an assumption of pseudo steady 
state where the intracellular metabolite concentrations 
are invariant but the extracellular metabolite concen-
trates are variable; the exchange fluxes of extracellular 
metabolites were estimated from the batch fermenta-
tions and used as the constraints of FBA. Specifically, 
the OD600 and external metabolite molar concentra-
tions were employed to estimate the specific rates. First, 
a shape-preserving piecewise cubic Hermite function 
from shape language modelling (SLM) MATLAB toolbox 
(https://​au.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​
24443-​slm-​shape-​langu​age-​model​ing) was used for data 
fitting of OD600 values and metabolite molar concentra-
tions, followed by a numerical differentiation to compute 
the changing rates (i.e. dOD600/dt, dcglc/dt and dcproduct/
dt). Then the specific growth rates (µ), specific glucose 
consumption rates (rglc), and specific product secretion 
rates (rproduct) were calculated using equations

where cell dry weight DW is calculated by 0.34 × OD600 
as previously described [50, 51] (Additional file  1: Fig. 
S3). The calculated specific rates were employed to con-
strain the corresponding exchange fluxes in iCac20 with 
up to 10% variations. The optimal specific growth rate 
(µ*) was firstly calculated using FBA, and then the solu-
tion space was sampled with 1000 points using artifi-
cially centered hit-and-run (ACHR) algorithm [52] with 
the specific growth rate set to ≥ 99% of µ*. The obtained 
feasible solutions were adjusted by applying loopless FBA 
(ll-FBA) method [53] to avoid unnecessary flux loops. 
Student’s t-test was conducted to determine the differen-
tially changed metabolic fluxes with FDR (false discovery 
rate) adjusted P < 0.05. Metabolite turnover rates were 
calculated by summing up all the incoming or outgoing 
fluxes of the metabolite i [54] using equation ϕ =

∑
jSijvj.

(1)µ =

dOD600

dt • OD600

,

(2)r =
dc

dt • DW
,
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