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Abstract 

Background: Lactobacillus reuteri is a heterofermentative Lactic Acid Bacterium (LAB) that is commonly used for 
food fermentations and probiotic purposes. Due to its robust properties, it is also increasingly considered for use as a 
cell factory. It produces several industrially important compounds such as 1,3-propanediol and reuterin natively, but 
for cell factory purposes, developing improved strategies for engineering and fermentation optimization is crucial. 
Genome-scale metabolic models can be highly beneficial in guiding rational metabolic engineering. Reconstructing 
a reliable and a quantitatively accurate metabolic model requires extensive manual curation and incorporation of 
experimental data.

Results: A genome-scale metabolic model of L. reuteri JCM  1112T was reconstructed and the resulting model, Lreu-
teri_530, was validated and tested with experimental data. Several knowledge gaps in the metabolism were identified 
and resolved during this process, including presence/absence of glycolytic genes. Flux distribution between the two 
glycolytic pathways, the phosphoketolase and Embden–Meyerhof–Parnas pathways, varies considerably between 
LAB species and strains. As these pathways result in different energy yields, it is important to include strain-specific 
utilization of these pathways in the model. We determined experimentally that the Embden–Meyerhof–Parnas path-
way carried at most 7% of the total glycolytic flux. Predicted growth rates from Lreuteri_530 were in good agreement 
with experimentally determined values. To further validate the prediction accuracy of Lreuteri_530, the predicted 
effects of glycerol addition and adhE gene knock-out, which results in impaired ethanol production, were compared 
to in vivo data. Examination of both growth rates and uptake- and secretion rates of the main metabolites in central 
metabolism demonstrated that the model was able to accurately predict the experimentally observed effects. Lastly, 
the potential of L. reuteri as a cell factory was investigated, resulting in a number of general metabolic engineering 
strategies.

Conclusion: We have constructed a manually curated genome-scale metabolic model of L. reuteri JCM  1112T that 
has been experimentally parameterized and validated and can accurately predict metabolic behavior of this impor-
tant platform cell factory.
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Introduction
Lactobacillus reuteri is a heterofermentative Lactic 
Acid Bacterium (LAB) that is present in the human gut 
and is an important probiotic organism [52]. There is 
an increasing interest in using it as a cell factory for the 
production of green chemicals and fuels in a biorefin-
ery [11, 44], due to its robustness properties. It has high 
growth and glycolytic rates, without the requirement for 
either aeration or strictly anaerobic conditions. It is toler-
ant to low pH, ethanol and salt, and has a wide growth 
temperature range. Moreover, it is genetically accessible, 
enabling metabolic engineering for cell factory optimi-
zation [3]. The species is known to produce 1,3-propan-
ediol, reuterin, and other related industrially important 
compounds in high yields from glycerol [11], of which 
reuterin has also since long been known as antimicro-
bial [58]. L. reuteri also has most of the genes encoding 
for the enzymes needed for biosynthesis of 1,2-propan-
ediol and 1-propanol, both of which are industrially rel-
evant chemicals. These compounds are, however, not 
produced under normal conditions by L. reuteri, requir-
ing improved engineering- and optimization strategies 
to achieve commercial level cell factories and production 
processes [7].

Genome-scale metabolic models are highly useful for 
directing metabolic engineering strategies, as well as to 
improve understanding of the physiology and metabo-
lism of the target organism [43, 52]. So far, highly curated 
and experimentally validated metabolic models have 
been primarily developed for model organisms such as 
Escherichia coli and Saccharomyces cerevisiae, but mod-
els for several LAB species are also available, including 
Lactobacillus plantarum [61], Lactobacillus casei [62], 
Lactococcus lactis [16, 38] and Streptococcus thermo-
philus [42] (Table  1). These LAB are homofermentative 

or facultatively heterofermentative organisms and have 
substantial differences in metabolism compared to strict 
heterofermenters such as L. reuteri [3]. Metabolic mod-
els for the heterofermenters Leuconostoc mesenteroides 
[29, 39] are available (Table 1), but this is only distantly 
related to L. reuteri [3] and shows different metabolic fea-
tures such as malolactic fermentation and a limited abil-
ity to use amino acids as energy source [29]. Models for 
two probiotic strains of L. reuteri have been previously 
published [52] (Table 1). They were automatically recon-
structed from the same draft model we started with here 
[48]. The two previously published L. reuteri models were 
used along with transcriptomics data to identify qualita-
tive metabolic differences between the two strains as well 
as to analyze their probiotic properties [52]. However, 
these previous models were not manually curated and 
were not used to quantitatively predict metabolic behav-
ior. The construction of a genome-scale metabolic model 
that can be reliably used in basic research and cell factory 
design is a time-consuming process, requiring significant 
amount of manual curation and availability of strain-spe-
cific phenotypic data. At present, models obtained using 
automated tools or models that do not include experi-
mental data are generally of limited use for quantitative 
predictions.

Here, we set out to reconstruct the metabolic net-
work of L. reuteri JCM 1112, specifically for use in 
metabolic engineering applications, which requires 
collection of phenotypic data under several different 
conditions. We first performed an in-depth analysis 
of the genome to evaluate conflicting reports about 
metabolic pathways compared to strain DSM 20016. 
We then performed experiments to collect phenotypic 
data for the wild-type strain as well as for an alcohol 
dehydrogenase (adhE) knockout strain to constrain, 

Table 1 LAB species with available genome-scale metabolic models

Species Hetero-/homo-fermenter Main applications and distinguishing 
characteristics

Genome 
size (Mb)

References

Lactobacillus reuteri Hetero- Produces Vitamin B12, 1,3-PDO, 3-HPA; used as 
probiotic and potential cell factory

2.0 [52], (This study)

Leuconostoc mesenteroides Hetero- Used in food fermentations (many non-dairy); 
malolactic fermentation; aroma production in 
foods

2.0 [29, 39]

Lactobacillus plantarum Facultatively hetero- Used in food fermentations, probiotics and poten-
tial cell factory

3.3 [61]

Lactobacillus casei Facultatively hetero- Used in food fermentations, probiotics and poten-
tial cell factory

2.9 [62]

Lactococcus lactis Homo- Used in dairy fermentations and potential cell 
factory

2.4 [38, 16]

Streptococcus thermophilus Homo- Used in dairy fermentations; fewer amino acid 
auxotrophies than other LAB, missing PPP genes

1.9 [42]
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validate, and test the model. Lastly, we use the model 
to test predictions for metabolic engineering strate-
gies. The model as well as the experimental data are 
available in Additional files.

Materials and methods
Strains, media and culture conditions
Strains used in this study are listed in Table  2 and an 
overview of the experimental datasets in Table  3. All 
experiments were performed in triplicate except the one 
used for determining biomass composition and energy 
requirements as well as dataset B (Table  3). Apart from 
the growth mode, the dataset used for determining bio-
mass and energy components and dataset A are identical, 
and the resulting data is in good agreement (Additional 
file  1). Dataset B was included, as it was available from 
the previous work that this paper builds upon [48], and is 
in good agreement with dataset D (Additional file 1).

De Mann Rosa Sharp (MRS) medium (incl. 20 g/L glu-
cose) was obtained from VWR and prepared according to 
the manufacturer’s instructions.

Chemically defined medium (CDM) was used as 
described in [48, 60] with the following modifica-
tions: arginine 5 g/L, tween-80 1 mL/L. Substrates were 
111  mM glucose and 20  mM glycerol as indicated. The 

CDM was filter-sterilized and the final pH after mixing 
all components was 5.6.

All flask cultivations were performed in a stationary 
incubator at 37  °C. A 5 mm inoculation loop of culture 
was inoculated from − 80  °C glycerol stocks into 1  mL 
MRS with or without glycerol in a 1.5 mL Eppendorf tube 
and grown overnight (16 h). Next morning, cultures were 
washed 3× with sterile 0.9% NaCl, after which  OD600 was 
measured and cells were transferred to 12 mL CDM with 
or without glycerol in a 15 mL Falcon tube to a starting 
 OD600 of 0.08. After 4 h of growth,  OD600 was measured 
and cultures were transferred to a starting  OD600 of 0.05 
in 100 mL pre-warmed CDM with or without glycerol in 
a 100 mL Schott flask. Samples for  OD600 measurement 
and HPLC were taken directly after inoculation (t = 0 h) 
and at 2, 3, 4, 5, and 6 h; cultures were swirled for mixing 
prior to taking samples. The 6 h samples were also used 
for protein and amino acid determinations. The time 
points used were all during exponential growth, ensuring 
a pseudo steady state (Additional file 1).

All bioreactor cultivations were performed in batch 
mode and samples were taken during exponential/
pseudo-steady state (Additional file  1). One of the fer-
mentations was performed in CDM at 37  °C in 3.0 L 
bioreactors (BioFlo 115, New Brunswick Scientific/
Eppendorf ) with a 2.2 L working volume, 50  rpm 

Table 2 Lactobacillus reuteri strains used in this study

a DSMZ = Deutsche Sammlung von Mikroorganismen und Zellkulturen

Strain name Description/genotype Origin/reference

JCM 1112 (DSM 20016, ‘WT’) Wild-type DSMZa

SJ11774 (‘SJ (WT*)’) Strain JCM 1112 (DSM 20016) with two inactivated 
restriction-modification systems (ΔLAR_RS04635 ΔLAR_
RS07680::cat)

Novozymes; [7]

SJΔadhE Strain SJ11774 with a clean and full in-frame deletion of 
the bifunctional aldehyde/alcohol dehydrogenase adhE 
(LAR_RS01690)

Unpublished (manuscript in preparation)

Table 3 Experimental datasets used for the model reconstruction

Growth curves and uptake and secretion data for all datasets can be found in Additional file 1

Strain Substrate Growth mode Dataset name 
(Figures 4 + 5)

Used for:

WT Glucose Flask – Determining biomass composition and energy requirements (“Metabolic 
reconstruction” and “Resequencing reveals inconsistencies between 
the “same” strains L. reuteri DSM 20016 and JCM 1112—implications for 
glycolytic genes” sections)

WT Glucose Reactor A Model validation

WT Glucose + glycerol Reactor B Model validation

SJ (WT*) Glucose Flask C Model validation and model predictions

SJ (WT*) Glucose + glycerol Flask D Model validation and model predictions

SJΔadhE Glucose Flask E Model validation and model predictions

SJΔadhE Glucose + glycerol Flask F Model validation and model predictions
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agitation without gas sparging. The pH was controlled at 
5.7 ± 0.1 using 5 N NaOH. Pre-cultures were performed 
similarly as for the flask cultures described above, with 
the pre-culture in CDM in 100  mL medium in 100  mL 
flasks, and reactors inoculated to an  OD600 of 0.1. The 
other two reactor cultivations were performed in CDM, 
with and without glycerol, at 37 °C in 0.4 L reactors with 
a 0.5 L working volume, 50  rpm agitation and sparged 
with  N2 at 15  mL/min for 1  h prior to inoculation. The 
pH was controlled at 5.8 using 5  M NaOH. Fermenters 
were inoculated to an initial  OD600 of 0.05 from an expo-
nentially growing culture on CDM without glycerol. As 
can be seen in Additional file  1, there is no difference 
between the cultures in the reactors that were sparged 
with  N2 prior to fermentations and those that were not 
and hence we decided to treat these as replicates.

The correlation factor between cell dry weight (gDW) 
and  OD600 was experimentally determined to be 0.4007 
gDW/OD600 in CDM and used for calculating gDW from 
 OD600 in all experiments.

Analytical methods
Protein concentration of the cells was determined in the 
6 h samples as described above, via a BCA protein assay 
(Merck-Millipore cat. 71285) according to the manufac-
turer’s protocol. Prior to the BCA assay, cell pellets were 
washed once in 0.9% NaCl and resuspended in 0.25 mM 
Tris–HCl pH 7.5 and sonicated on ice with an Ultrasonic 
Homogenizer 300VT (BioLogics) for 3 × 30  s at 40% 
power, with 30 s breaks on ice.

Amino acid composition of the cells was determined by 
Ansynth BV (The Netherlands) on washed cell pellets of a 
6 h CDM culture as described above.

Substrates, products and amino acids secreted and 
taken up during the cultivations were quantified using 
HPLC. Glucose, glycerol, ethanol, lactate, acetate, cit-
rate, 1,2-propanediol, 1,3-propanediol, 1-propanol, 
2-propanol, pyruvate, succinate and malate were quanti-
fied with either one of two HPLCs: 1) a Dionex Ultimate 
3000 (Thermo Scientific) containing an LPG-3400SD 
pump, a WPS-3000 autosampler, a UV–visible (UV–
Vis) DAD-3000 detector, and an RI-101 refraction 
index detector. Injection volume was 20 µL. An Aminex 
HPx87 ion exclusion 125-0140 column was used with a 
mobile phase of 5 mM  H2SO4, a flow rate of 0.6 mL/min 
and an oven temperature of 60  °C; 2) a Shimadzu LC-
20AD equipped with refractive index and UV (210  nm) 
detectors, with an injection volume of 20 µL. A Shodex 
SH1011 8.0  mmIDx300mm column was used with a 
mobile phase of 5 mM  H2SO4, a flow rate of 0.6 mL/min 
and an oven temperature of 50 °C. All amino acids, orni-
thine and GABA were quantified using a Dionex Ulti-
mate 3000 (Thermo Scientific), for which the procedure 

is as follows: 20 µg/mL 2-aminobutanoic acid and sarco-
sine were used as internal standards for dilution of the 
samples; derivatization was performed in the autosam-
pler. 0.5 µL sample was added into 2.5 µL of (v/v) 3-mer-
captopropionic acid in borate buffer (0.4  M, pH 10.2), 
mixed and incubated for 20 s at 4 °C to reduce free cys-
tines. Then 1 µL of 120 mM iodoacetic acid in 140 mM 
NaOH was added, mixed and incubated for 20 s at 4  °C 
to alkylate reduced cysteines. 1.5 µL of OPA reagent 
(10  mg o-phthalaldehyde/mL in 3-mercaptopropionic 
acid) was then added to derivatize primary amino acids. 
The reaction was mixed and incubated for 20  s at 4  °C. 
1 µL of FMOC reagent (2.5 mg 9-fluorenylmethyl chloro-
formate/mL in acetonitrile) was added, mixed and incu-
bated for 20 s at 4 °C to derivatize other amino acids. 50 
µL of Buffer A (Buffer A: 40 mM  Na2HPO4, 0.02%  NaN3 
(w/v) at pH 7.8) at pH 7 was added to lower the pH of 
the reaction prior to injecting the 56.5 µL reaction onto a 
Gemini C18 column (3 um, 4.6 × 150 mm, Phenomenex 
PN: 00F-4439-E0) with a guard column (SecurityGuard 
Gemini C18, Phenomenex PN: AJO-7597). The column 
temperature was kept at 37 °C in a thermostatic column 
compartment. The mobile phase had the following com-
position: Buffer A: see above, pH 7.8; Buffer B: 45% (v/v) 
acetonitrile, 45% (v/v) methanol and 10% (v/v) water; 
flow rate 1 mL/min. Derivatized amino acids were moni-
tored using a fluorescence detector. OPA-derivatized 
amino acids were detected at  340ex and  450em nm and 
FMOC-derivatized amino acids at  266ex and  305em nm. 
Quantifications were based on standard curves derived 
from dilutions of a mixed amino acid standard (250 µg/
mL). The upper and lower limits of quantification were 
100 and 0.5 µg/mL, respectively.

Genome sequencing and analysis
For genomic DNA (gDNA) isolation, overnight cultures 
of DSM 20016 and SJ 11774 were grown in MRS and the 
pellet was used for gDNA isolation using the Epicentre 
MasterPure™ Gram Positive DNA Purification kit accord-
ing to the manufacturer’s protocol. Subsequent genome 
sequencing was performed at the sequencing facility at 
the NNF Center for Biosustainability. Library preparation 
was performed using KAPA HyperPlus Library Prep Kit 
(ROCHE) with Illumina-compatible dual-indexed PentA-
dapters (PentaBase). The average size of the library pool 
was 317 bp. Sequencing was performed on MiSeq (Illu-
mina) using the MiSeq Reagent Kit v2, 300 Cycles (Illu-
mina). The libraries were loaded to the flow cell at 10 pM 
and sequenced using paired-end reads of 150  bp. Read 
quality check was performed with FastQC version 0.11.5. 
Mutations relative to reference (L. reuteri JCM 1112, 
GenBank accession nr AP007281, annotated with Prokka 
version 1.11) were identified using Breseq (version 0.31.0) 
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[10]. Mean coverage was 143.7x (SJ 11774) and 129.5x 
(DSM 20016). All runs were performed at the Danish 
national supercomputer for life sciences (Computer-
ome), Technical University of Denmark. For this work, 
the annotated genome of L. reuteri JCM 1112 from NCBI 
was used. During the reconstruction, several genes were 
re-annotated, based on BLAST and physiological data. A 
list of all genes in the JCM 1112 genome can be found 
in Additional fie 2, along with annotations from the Gen-
Bank file and which model reactions are associated with 
each gene.

Metabolic reconstruction
The L. reuteri JCM 1112 metabolic reconstruction was 
based on an unpublished, automatically generated draft 
reconstruction of JCM 1112 [48]. We performed exten-
sive manual curation, including: gap filling, updating and 
adding gene-protein-reaction (GPR) associations, updat-
ing gene IDs, updating metabolite- and reaction abbre-
viations, in line with the BiGG database [28], updating 
and adding missing formulas and/or charges to metabo-
lites, fixing unbalanced reactions, adding annotation to 
metabolites, reactions and genes and detailed review and 
integration of organism specific data. A biomass objec-
tive function was formulated based on available data on 
L. reuteri and related strains. The ATP cost of growth-
associated maintenance (GAM) was estimated using one 
of the data sets (Table 3) by adjusting the GAM param-
eter so that growth predictions matched in vivo growth. 
This data set was then excluded from subsequent valida-
tion and prediction steps.

Flux balance analysis
Flux balance analysis (FBA) was used to analyze the 
genome-scale metabolic model [15, 53] by constraining 
exchange reactions in the model with experimental val-
ues of substrate uptake and secretion rates. To take into 
account that the Embden–Meyerhof–Parnas (EMPP) 
pathway is a minor glycolytic pathway in L. reuteri com-
pared to the phosphoketolase pathway (PKP) (“Curation 
process” section), an additional flux constraint was added 
to the model

where r is an empirically determined flux ratio,  vPFK 
denotes flux in the rate limiting step of the EMPP and 
 vG6PDH2r is the flux in the first reaction branching into the 
PKP.We used a variant of FBA called parsimonious FBA 
[33] which identifies flux values corresponding to maxi-
mum growth with the side constraint that the sum of 
absolute flux values is made as small as possible. The sum 

vPFK

vPFK + vG6PDH2r

≤ r,

of fluxes is proxy for enzyme usage and the method can 
therefore be considered to simulate biological pressure 
for rapid and efficient growth using minimum amount of 
resources (enzymes). An advantage over FBA is that the 
resulting solution is likely to contain fewer infeasible flux 
cycles. Model simulations were carried out in Python 
with the CobraPy toolbox [12] and GLPK solver. All code 
used in the simulations is provided in the form of a Jupy-
ter notebook in Additional file  3 and on https ://githu 
b.com/stein ng/reute ri. The Escher package [27] was used 
for visualization of flux predictions. Escher maps of L. 
reuteri´s central metabolism are provided in Additional 
file 4, both simplified maps as shown in “Effects of adding 
glycerol and deleting adhE” and “Model-based analysis of 
1-propanol production in L. reuteri” sections as well as a 
detailed map linking different sugar utilization pathways 
to the central metabolism.

To predict growth rates the model was constrained 
with uptake rates of glucose, glycerol and five amino acids 
(Arg, Ser, Asn, Asp and Glu), and with the secretion rates 
of ethanol, lactate, acetate and 1,3-propanediol. Effects of 
knocking out the adhE gene were predicted by temporar-
ily deleting it from the network. Where the effects of an 
active 1,2-propanediol pathway were predicted, a meth-
ylglyoxal synthase (MGS) was added to the model and 
optimized for growth.

To predict the theoretical maximum yields of selected 
target compounds, a reaction enabling the secretion of 
the corresponding metabolite was added to the model, 
unless an exchange reaction already existed, and flux 
through the reaction maximized. The glucose uptake 
rate was 25.2  mmol/gDW/h, based on experimental 
data, and free secretion of by-products was allowed. For 
the production of l-alanine, an l-alanine dehydrogenase 
was added to the model. The production of ethyl lactate 
required the addition of a lactate acyl transferase and a 
reaction for the condensation of lactoyl-CoA with etha-
nol [32]. To produce 1-propanol, a methylglyoxal syn-
thase (MGS) was added to the model. The presence of 
a complete 1-propanol pathway enables more efficient 
regeneration of  NAD+ and the flux predictions were 
therefore repeated in the presence of an active MGS. To 
simulate a non-limiting phosphofructokinase, the flux 
constraint involving  vPFK above was omitted.

Results and discussion
Metabolic network reconstruction
To reconstruct a genome-scale metabolic model of L. 
reuteri suitable for use in cell factory design and opti-
mization, we built upon a draft metabolic model of 
L. reuteri JCM 1112 described in [48] that we in turn 

https://github.com/steinng/reuteri
https://github.com/steinng/reuteri
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extensively curated. The Memote tool [34] was used to 
assess the quality of the reconstruction and to guide the 
curation process (Additional file  5). The main charac-
teristics of the resulting Lreuteri_530 model (Additional 
file 6) are listed in Table 4.

Curation process
Reactions and metabolites were abbreviated according to 
the BiGG database nomenclature where applicable and 
annotations with links to external databases included. 
Genes from the JCM 1112 genome were identified with 
locus tags from the GenBank file, and annotations were 
included which contain: the old locus tag which is often 
found in older literature, the NCBI protein ID, gene 
annotation and the protein sequence. Apart from gen-
eral network curation, organism-specific information 
obtained from laboratory experiments and from available 
literature was integrated by reviewing reactions, genes 
and gene-protein-reaction (GPR) rules.

Resequencing reveals inconsistencies between  the  “same” 
strains L. reuteri DSM 20016 and  JCM 1112—implica-
tions for glycolytic genes The two most well-known strain 
names and origins for the type strain are DSM 20016 and 
JCM 1112 from the DSMZ and JCM culture collections, 
respectively. These two are derived from the same origi-
nal human faeces isolate L. reuteri F275 [25], which was 
grown and stocked in two different laboratories [17]. Both 
genomes have been sequenced previously and a compari-
son showed that they are identical except for two regions 
that were missing in DSM 20016 [37], which were most 
likely lost during the 20 years of separate laboratory culti-
vation [17]. The first region (8435 bp, flanked by IS4 inser-
tion sequences on each end) contains genes for glycolysis, 
namely glyceraldehyde-3-P dehydrogenase, phosphoglyc-
erate kinase, triosephosphate isomerase, and enolase. 
The second region (30,237  bp, flanked by two different 
insertion sequence elements) contains for example a gene 
cluster for nitrate reductases and molybdopterin biosyn-

thesis [37]. As the first island consists of glycolytic genes, 
the implications of its presence or absence are profound. 
This island is absent in DSM 20016, but we could identify 
homologs of all this island’s genes except glyceraldehyde-
3-P dehydrogenase elsewhere in its genome based on 
annotation and/or BLAST.

During the preparation of our model, it became clear 
that there are inconsistencies in naming and hence gene 
content of the L. reuteri type strain. We sequenced the 
DSM 20016 strain that we obtained from DSMZ and 
this showed that its genome is identical to that of JCM 
1112 instead, meaning it contained the two islands miss-
ing in DSM 20016. A similar result of these strains being 
‘swapped’ was obtained by others based on whole genome 
sequencing [24] and PCR of part of the largest missing 
region in DSM 20016 in a study looking at cell-surface 
proteins in the different strains [13]. This inconsistency 
between the two strains does not seem to be commonly 
known and taken into account, and we suspect that some 
papers referring to either the DSM or the JCM strain 
might in fact be working with the other strain. For exam-
ple, the DSM 20016 strain used by Sun et al. sequenced in 
2015 (accession nr AZDD00000000), contains the islands 
as indicated by the presence of all glycolytic genes and 
hence is actually the JCM 1112 strain [56]. Contrarily, 
the DSM 20016 referred to by Morita et al. sequenced in 
2007 by JGI (accession nr CP000705), was shown to be 
DSM 20016, missing the islands [37]. Both strains were 
obtained from DSMZ. This highlights the importance of 
re-sequencing of strains ordered from culture collections 
or lab strains present in the laboratory before using them 
for engineering or characterization studies. We strongly 
suggest that studies working with any L. reuteri type 
strain perform PCR on the two islands or perform rese-
quencing to validate the presence or absence of the genes 
in the two islands.

Based on our sequencing results, we have included all 
genes in the two islands in our metabolic reconstruc-
tion and model. The genes in the model are identified 
with the locus tags obtained from the JCM 1112 strain’s 
genome in NCBI (NC_010609). As many other pub-
lications refer to genes in the DSM 20016 strain or use 
the old locus tags from the JCM 1112 genome, we have 
included a table (Additional file 2) which lists: the locus 
tags used in the model (gene numbers prefixed by LAR_
RS), the old locus tags (gene numbers prefixed by LAR_), 
the annotations obtained from the NCBI GenBank file, 
the NCBI protein IDs (WP numbers), the locus tags of 
the corresponding genes in the DSM 20016 strain, when 
applicable (gene numbers prefixed by Lreu_), and finally 
the reaction(s) in the metabolic model associated with 
the genes.

Table 4 Main characteristics of  Lreuteri_530—the L. 
reuteri JCM 1112 genome-scale metabolic reconstruction

Genome characteristics

 Genome size 2.04 Mb

 Total protein coding sequences 1943

Model characteristics

 Genes 530

 Percentage of genome 27%

 Reactions (with GPR) 710 (690)

 Metabolites (unique) 658 (551)

 Memote total score 62%
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Phosphofructokinase (PFK) and  the  distribution 
between  EMP and  PK pathway usage Obligately het-
erofermentative lactobacilli like L. reuteri are often 
considered to solely use the phosphoketolase pathway 
(PKP) instead of the Embden–Meyerhof–Parnas path-
way (EMPP) for glucose consumption [3] (Fig. 1). Both 
pathways result in the glycolytic intermediate glycer-
aldehyde-3-phosphate but use different redox cofac-
tors (Fig. 1). As the PKP yields one and the EMPP two 
molecules of glyceraldehyde-3-phosphate, the PKP has 
a lower energy yield than the EMPP (Fig. 1). The PKP 
generally results in the production of one molecule of 
lactate and one molecule of ethanol or acetate for one 
glucose molecule while the EMPP generally yields two 
lactate molecules. Key enzymes of the EMPP are fruc-
tokinase (FK), glucose-6-phosphate isomerase (PGI), 
phosphofructokinase (PFK), fructose-bis-phosphate 

aldolase (FBA), and triosephosphate isomerase (TPI). 
In line with the idea that heterofermenters use the PKP, 
Sun et al. showed in a comparison of 213 LAB genomes 
that pfk was lacking from a distinct monophyletic group 
formed by mainly (87%) obligatively and otherwise fac-
ultatively heterofermentative Lactobacillus spp., includ-
ing L. reuteri DSM 20016 and L. panis DSM 6035 [56]. 
Contrary to most other species in the same group, these 
two species did contain fba, which has traditionally 
been linked to the presence of the EMPP. Despite the 
absence of pfk, EMPP activity has been observed in sev-
eral L. reuteri strains and in some strains it appears to 
play a major role compared to the PKP, depending on 
the growth phase, and showing strain-specific differ-
ences [2, 4]. For modeling and engineering purposes, it 
is crucial to understand the presence and activity of the 
PKP vs the EMPP.
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Årsköld et  al. [2] compared the genomic organization 
of 13 sequenced Lactobacillales and showed that L. reu-
teri (strains ATCC 55730 and DSM 20016) is one of the 
four exceptions that do not have a pfkA gene where this 
is located in all other species. Nevertheless, they detect 
PFK and EMPP activity in strain ATCC 55730 and sub-
sequently identify two genes (GenBank accession nrs 
EF547651 and EF547653) for orthologues of pfkB, a 
minor PFK-variant in E. coli [2]. In analogy with Årsköld 
et al. in L. reuteri, Kang et al. [26] identified a ribokinase 
in the obligately heterofermentative L. panis PM1 with 
82% similarity to the pfkB gene identified in L. reuteri 
ATCC 55730 from Årsköld et al. (74% in our own BLAST 
search).

A BLAST comparison of the pfkB protein sequence 
of L. panis PM1 (GenBank accession nr AGU90228.1) 
and L. reuteri ATCC 55730 (GenBank accession nr 
ABQ23677.1) against L. reuteri JCM 1112 resulted in 81% 
and 99% identity, respectively, to JCM 1112 gene number 
LAR_RS02150, which is annotated as ribokinase rbsK_2. 
On a gene level, this gene shares 97% identity with L. reu-
teri ATCC 55730 and 73% with L. panis PM1. The same 
identities were found in L. reuteri DSM 20016 for gene 
LREU_RS02105 (previously Lreu_0404, GenBank pro-
tein KRK49592.1). A second gene annotated as “riboki-
nase rbsK_3” (locus tag LAR_RS06895) showed only 

limited query coverage and identity and hence rbsK_2 
is the most likely homolog of pfkB. The growth experi-
ments conducted in the present study with JCM 1112 are 
in line with the findings of Burgé et  al. [4] and indicate 
minor though detectable usage of the EMPP in this strain 
with a peak in the early growth stage (Fig.  2), in which 
this rbsK_2 likely fulfills the role of pfkB. The average flux 
through the EMPP in all cultures was 7.0% (Fig.  2) and 
was used to define the corresponding flux split ratio in 
the model (“Flux balance analysis” section).

Sugar transport Transport of carbohydrates can be 
mediated by ATP-Binding Cassette (ABC) transporters, 
phosphotransferase systems (PTS), or secondary trans-
porters (permeases of the Major Facilitator Superfamily, 
MFS) [47]. PTS systems mediate hexose mono- or dimer 
transport and phosphorylation simultaneously—mostly 
by using PEP to pyruvate conversion as phosphate donor, 
whereas ABC-transporters (mostly used for pentoses) 
and permeases (both pentoses and hexoses) perform 
only transport, and a separate ATP-utilizing kinase step 
is needed for sugar phosphorylation. Moreover, in Gram 
positives, PTS systems have an important role in carbon 
catabolite repression via phosphorylation cascades and 
direct interaction with the carbon catabolite repression 
protein A (ccpA) [18, 21]. Heterofermentative LAB con-
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tain fewer PTS system components than homofermenta-
tive LAB, which is thought to be the result of gene loss 
[67]. In general, organisms using the EMPP are believed 
to use PTS systems, and organism using the PKP to use 
secondary carriers [45]. Likely as a result of the lack of 
full PTS systems, glucose utilization is not constitutive 
but substrate-induced in heterofermenters, and utiliza-
tion of several other sugars is not repressed by glucose 
[18]. Sugar transport in heterofermenters is poorly char-
acterized, and only recently a study was dedicated to the 
genomic and phenotypic characterization of carbohydrate 
transport and metabolism in L. reuteri, as representative 
of heterofermentative LAB [66]. This showed that L. reu-
teri completely lacks PTS systems and ABC-transporters 
and solely relies on secondary transporters of the MFS 
superfamily, which use the proton motive force (PMF) as 
energy source for transport [66]. In L. reuteri JCM 1112, 
we could identify the two common proteins of the PTS 
system, Enzyme I (Lreu_1324) and HPr (Lreu_1325). 
Some sugar-specific parts were present, but no complete 
PTS was identified. As a result, all sugar transport in the 
model takes place via secondary transporters and the 
PMF.

Glycerol utilization Lactobacillus reuteri, like many lac-
tobacilli, is known to be unable to grow on glycerol as a 
sole carbon source, but can use it as an alternative electron 
acceptor, providing a means to gain energy on a variety of 
carbon sources [55, 57]. L. reuteri is among the best native 
producers of large amounts of 3-hydroxypropionaldehyde 
(reuterin, 3-HPA) from glycerol that are currently known 
[35]. This is an intermediate in the pathway to 1,3-pro-
panediol (1,3-PDO, also produced by L. reuteri, depend-
ing on the conditions used) that is known to be toxic and 
produced in a microcompartment [5]. The reason why it 
cannot grow on glycerol as sole carbon source is currently 
not fully clear, although it is likely related to gene regula-
tion. All the genes that are necessary to convert glycerol 
to dihydroxyacetone phosphate via either dihydroxyac-
etone (DHA) or glycerol-3-phosphate and hence shuttle 
it into glycolysis are present in the L. reuteri genome [5]. 
However, several of these genes have been shown to be 
downregulated in the presence of glycerol [5, 50]. Fur-
thermore, the L. reuteri glycerol dehydrogenase also has 
activity as 1,3-PDO:NAD-oxidoreductase, whereas in for 
example Klebsiella pneumoniae, which does produce gly-
colytic end products from glycerol, these are two differ-
ent enzymes [57]. It seems that the physiological role of 
this enzyme in L. reuteri is the reduction of 3-HPA to 1,3-
PDO, rather than glycerol to DHA conversion, explaining 
the lack of growth on glycerol [57].

Other pathways Most heterofermentative LAB possess 
a malolactic enzyme but no malic enzymes [31], which is 
also the case for our L. reuteri strain, based on sequence 
comparisons with the L. casei strain used by Landete et al. 
[31]. Based on BLAST analysis and in line with literature, 
L. reuteri JCM 1112 possesses a malate dehydrogenase 
and PEP carboxykinase, and cannot utilize citrate; malate 
(and fumarate) is converted to succinate [20].

From a biotechnological perspective, an interesting 
branch point of central carbon metabolism is the con-
version from methylglyoxal (MG) to 1,2-propanediol 
(1,2-PDO), which can then be further metabolized into 
1-propanol and propanoate. L. reuteri possesses all 
enzymes needed for these pathways, except methylgly-
oxal synthase (MGS), the step of the pathway convert-
ing dihydroxyacetone phosphate into MG [19, 55]. It has 
been shown that when MG is added to L. reuteri JCM 
1112 cultures or when a heterologous mgs is expressed, 
all the subsequent metabolites are formed [7]. Although 
we identified a potential distant homolog of mgs in the L. 
reuteri genome, this homolog is clearly not active under 
normal conditions since no 1,2-PDO was observed in 
our experiments. Hence, all the genes in these pathways 
except mgs were included in the reconstruction. For 
methylglyoxal reductase, mgr, we also identified several 
aldo/keto reductases as possible homologs, based BLAST 
comparison to genes identified in [19]. However, verifica-
tion of these hypothetical activities would need extensive 
enzyme assays, and it is also likely that this reaction is 
performed by LAR_RS09730 (Glycerol dehydrogenase) 
[1, 65], which has been added to the reconstruction for 
the MGR reaction. Alternatively, MG might be converted 
directly to lactate by a glyoxalase  [19].

Whereas many LAB are auxotrophic for vitamin B12, 
L. reuteri is a native producer. Vitamin B12 is impor-
tant as a cofactor in for example the 3-HPA pathway 
but is also of relevance for biotechnological and medi-
cal/health applications (e.g. when produced by probiotic 
strains). The structure and biosynthetic genes have been 
studied in detail [49, 50]. The corresponding pathway is 
present in the reconstruction and is active during growth 
predictions.

Biomass reaction and energy requirements
A biomass objective function (BOF), which contains 
all necessary components for biomass biosynthesis, 
is commonly used to predict growth rate in metabolic 
models. Ideally, the BOF should be constructed based 
on organism-specific experimental data, mainly the 
fractional composition of the macromolecules (pro-
teins, DNA, RNA, lipids, etc.) and their individual 
building blocks (amino acids, nucleotides, fatty acids, 
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etc.), as well as the energy necessary for their biosyn-
thesis [14]. The protein fraction is a significant fraction 
of the biomass and was therefore measured experi-
mentally. The ratio of individual amino acids in the L. 
reuteri biomass was also measured experimentally. The 
remaining macromolecular fractions were derived from 
L. plantarum [61] and L. lactis [38]. Nucleotide com-
position was estimated from the genome, which in the 
case of RNA is not ideal since it assumes equal tran-
scription of all genes. We however preferred to use this 
approximation instead of using experimental data from 
another organism. Fatty acid composition of L. reuteri 
was obtained from literature [36], while phospholipid 
composition was adopted from L. plantarum. The com-
position of lipoteichoic acid [63] and exopolysaccha-
rides [30] in L. reuteri were obtained from literature. 
Peptidoglycan composition was adopted from L. plan-
tarum and glycogen was assumed to be negligible [8, 9].

Energy required for growth (GAM) and cell mainte-
nance (NGAM) are important parameters in metabolic 
models, and can be estimated from ATP production 
rates, which can be calculated from experimental data 
obtained at different dilution rates [59]. Unfortunately, 
this data is not publicly available for L. reuteri. These 
parameters have been estimated from experimental 
data for several other LAB, including L. plantarum, 
and reported in literature [61]. Even though L. reuteri 
and L. plantarum are relatively closely related, adopt-
ing these parameters from L. plantarum can negatively 
affect the quality of model predictions. When the dif-
ferences in physiologies of L. plantarum and L. reuteri 
are considered, it is possible that L. reuteri requires less 
energy: (1) The genome is only ~ 2  Mb, while L. plan-
tarum’s genome is 3.3 Mb. (2) L. reuteri is an obligate 
heterofermenter, which means it uses almost solely 
the PKP (Fig.  2) to break down glucose, resulting in 
one ATP per glucose, while a facultative heterofer-
menter like L. plantarum uses the EMPP when grown 
on glucose, resulting in two ATPs. (3) LAB in general 
have low catabolic capabilities, and for L. reuteri this 
includes auxotrophy for several amino acids. This, com-
bined with the fact that macromolecular biosynthesis 
is already accounted for in the model reactions, sup-
ports the claim that adopting energy parameters from 
L. plantarum can negatively affect model predictions, 
as we also observed when evaluating this in our model. 
We decided to use one of our experimental datasets 
(Table  3) to estimate the GAM value, while using the 
NGAM value from L. plantarum (“Metabolic recon-
struction” section). In general, NGAM represents only 
a small portion of the total energy requirements of the 
cell and therefore has much smaller effect on model 
predictions than GAM. This resulted in a GAM value of 

10.2 mmol/gDW/h. Detailed description of the biomass 
reaction, relevant data and calculations can be found in 
Additional file 7.

The sensitivity of the predicted growth rate to 
changes in biomass and energy components was inves-
tigated by varying the coefficient of each component, 
one at a time, by 50% while varying the glucose uptake 
rate. The components tested were protein, polysaccha-
ride, DNA, RNA, lipid, GAM and NGAM. The analy-
sis showed that predicted growth rate was sensitive to 
changes in the protein and GAM components of the 
biomass, compared to the other components (see figure 
in Additional file 7). As described earlier, these two par-
ticular components of the biomass are based on L. reu-
teri specific experimental data obtained in this study.

Lactobacillus reuteri model compared to models of L. lactis 
and L. plantarum
The model was compared to genome-scale metabolic 
models of two other LAB, L. lactis and L. plantarum 
(Table 1). Common and unique metabolic reactions were 
analyzed based on EC-numbers (Fig.  3a). Unique reac-
tions in L. reuteri included reactions belonging to: cofac-
tor and prosthetic group biosynthesis, most of which 
related to B-12 vitamin synthesis; alternative carbon 
metabolism, such as glycerol; amino acid metabolism, 
which can be explained by the different amino acid auxo-
trophies among the three strains; methylglyoxal metabo-
lism (see Additional file 8 for more details). Basic model 
statistics and biomass composition from the three mod-
els are presented in Fig.  3b. Comparing biomass ratios 
shows that L. plantarum´s biomass contains less protein 
than the others and more teichoic acid. Model predic-
tions reflected the well-established and previously dis-
cussed differences in glycolytic pathways between the 
strains, namely how L. lactis and L. plantarum, as homo-
fermenter and facultative heterofermenters, use the EMP 
pathway resulting in higher energy compared to L. reuteri 
which, as a strict heterofermenters, mostly uses the PKP.

Model applications

Model validation using experimental data: Growth rate 
comparisons
To validate the model, several different datasets (Table 3) 
with measured uptake- and secretion rates of carbon 
sources, amino acids and organic byproducts were used 
to constrain exchange fluxes in the model. The predicted 
growth rates were compared with observed experimental 
growth rates (Fig. 4). In all cases, flux through the EMPP 
was set to maximally 7% based on the experimentally 
determined value (Fig. 1). The chemically defined culture 
medium used in the growth experiments contained all 
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20 amino acids, except for l-glutamine. Subsequently, all 
these amino acids were quantified during growth and the 
model was constrained with the resulting uptake rates. 
Of all the amino acids, only arginine was depleted at the 
end of the exponential phases in data sets A, B and C 
(Additional file 1). Due to auxotrophy for several amino 
acids (Glu, His, Thr, Arg, Tyr, Val, Met, Try, Phe, Leu), 
the model is highly sensitive to uncertainties in measure-
ments, as well as in determined protein- and amino acid 
fractions of the biomass reaction. To accurately represent 
amino acids in the biomass reaction, both the protein 
content and the amino acid ratio were measured (Addi-
tional file  7). By enabling unrestricted uptake of amino 
acids in the model, we noticed that only 5 amino acids 
(Arg, Ser, Asn, Asp, Glu) needed to be constrained with 
measured uptake rates for accurate growth predictions, 
for both the wild-type and the mutant. This is due to 
their role in energy- and cofactor metabolism, not only 
in biomass biosynthesis. Hence, only this minimum num-
ber of amino acids was used to constrain the model in the 
following. The remainder were assumed to be non-lim-
iting by allowing unrestricted uptake. This has twofold 
advantage. First, it limits the effects of uncertainties in 
amino acid uptake rate measurements on model predic-
tions, a problem exacerbated by the amino acid auxotro-
phy. Second, it simplifies future applications of the model 
by reducing the number of measurements needed.

In most cases, model predictions and in vivo data were 
in good agreement (Fig.  4). Datasets C and D in Fig.  4 
show a variant of the WT strain (marked SJ (WT*)), 

which lacks two restriction modification (RM) systems 
for easier genetic manipulation (Table 2). Datasets E and 
F show a mutant derived of the SJ strain with a clean 
and in-frame deletion of the adhE gene (bifunctional 
aldehyde/alcohol dehydrogenase). The model predicts 
slightly higher growth rates than observed in  vivo for 
the SJ strain (datasets C and D in Fig. 4) and the mutant 
strain grown on glucose and glycerol (F in Fig. 4). Unex-
pectedly, the RM-modifications in the SJ strain seem 
to slightly alter its behavior on CDM with glucose and 
glycerol compared to the WT (Additional file 1). For the 
mutant strain grown on glucose (dataset E in Fig. 4), the 
model predicts a slightly lower growth rate than observed 
in  vivo, though both show a large decrease in growth, 
compared to the WT. The most likely explanation for 
this is that some glucose is being taken up in vivo, even 
though the measurements did not show this (the likely 
amount consumed between two samples is within the 
error of the assay). Secretion of 2.6  mmol/gDW/h of 
lactate and 2.7  mmol/gDW/h of acetate was observed 
in vivo. The model, however, does not predict lactate and 
acetate secretion unless some glucose uptake is allowed. 
If a glucose uptake of 2.6  mmol/gDW/h is allowed, the 
growth rate increases from 0.22 to 0.34  h−1, compared 
to 0.30  h−1 in  vivo. Amino acid measurements showed 
that the mutant in dataset E used l-arginine to a greater 
extent than the WT, which the model predicts is used 
to generate energy via the arginine deiminase pathway, 
resulting in increased growth.
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Fig. 3 Comparison of genome-scale metabolic models of L. reuteri, L. lactis and L. plantarum. a Venn diagram showing number of EC-numbers that 
represent common and unique reactions in the three models. b Model statistics for the three strains, along with biomass ratio



Page 12 of 19Kristjansdottir et al. Microb Cell Fact          (2019) 18:186 

Effects of adding glycerol and deleting adhE
To investigate the applicability of the model for cell fac-
tory design, it was used to predict the effects of adding 
glycerol to the glucose-based culture medium, as well as 
knocking out the adhE gene, which plays a critical role 
in ethanol production and redox balance (Fig.  1). The 
datasets used here are the same as in the previous sec-
tion (datasets C–F in Fig. 4). There, the aim was to vali-
date the model by means of comparing predicted growth 
rates to experimentally determined growth rates. In this 
section, we look more specifically at predicted flux dis-
tributions in central metabolism, both with and without 
strain- and condition-specific experimentally determined 
constraints. For this purpose, we studied two cases in 
order to answer the following questions: (1) If the model 
is constrained only with experimentally determined glu-
cose- and five amino acid uptake rates from the WT 
strain grown on glucose, how do the predicted effects 
of glycerol addition and/or adhE knock-out (dark green 
bars in Fig. 5) compare to in vivo growth rate and uptake- 
and secretion measurements (light orange bars in Fig. 5)? 
This was tested to evaluate the applicability of the model 
in a practical setting. One of the main goals of using a 
model like this should be to probe the effects of genetic 
and media perturbations in silico, i.e. without having to 
do extensive condition-specific cultivations and measure-
ments beforehand. (2) If the model is constrained with 
uptake- and secretion rates of carbon source(s), amino 
acids and byproducts of the strain and condition under 
study, how well do the model predictions (light green 
bars in Fig. 5) compare to in vivo results? Here the model 

was allowed, but not forced, to take up (lower bound 
constrained, upper bound unconstrained) and secrete 
(lower bound unconstrained, upper bound constrained) 
metabolites according to the experimental data. This tells 
us if the model, when imposed with realistic limitations, 
“chooses” a flux distribution which results in extracellu-
lar fluxes of metabolites in line with in vivo data. In both 
cases, the constrained amino acids only included Arg, 
Ser, Asn, Asp and Glu as before (“Model validation using 
experimental data: growth rate comparisons” section) 
and in case 1 the allowed glycerol uptake rate was arbi-
trarily limited to 25 mmol/gDW/h, when glycerol effects 
were being predicted.

The flux maps in Fig.  5 show results for case 1 (dark 
green bars). The predicted uptake of glucose and glyc-
erol (dark green bars in Fig. 5b) is higher than observed 
in vivo (light orange bars in Fig. 5b), resulting in higher 
secretion of by-products and a higher growth rate as well. 
However, the distribution of secreted by-products is very 
similar. The effect of glycerol can be predicted quite well 
with the model as ethanol secretion decreases and ace-
tate secretion increases, relative to glucose uptake, and 
1,3-propanediol is secreted in large amounts (compared 
to graphs in Fig.  5a). Several studies have described an 
increased growth rate in L. reuteri when glycerol is added 
to a glucose-based medium (in flasks and bioreactors), 
which is to be expected based on inspection of redox 
balance [5, 48, 57] and this is also what we observed in 
silico in case 1. L. reuteri uses practically only the PKP 
and not the EMP for glucose fermentation. In the PKP, 
two extra NAD(P)H molecules are formed compared to 
the EMP, which are regenerated to NAD(P)+ by AdhE 
through the formation of ethanol (Fig. 1). When glycerol 
is added, it is used as an alternative electron acceptor via 
the production of 1,3-PDO, which generates one  NAD+. 
As a result, one of the actetyl-phosphates that is normally 
converted to ethanol can now be converted to acetate. 
This does not yield  NAD+ (which is now regenerated in 
1,3-PDO production) but does yield one ATP, enabling a 
higher growth rate [5, 48]. Along these lines of reason-
ing and in line with existing literature [5], knocking out 
the adhE gene has dramatic effects on the metabolism 
when glucose is the sole carbon source, both in vivo and 
in silico (Fig.  5c). When ethanol production was inac-
tive, the growth decreased which also led to reduction in 
lactate production. This is due to redox imbalance since 
AdhE no longer recycles the NADH generated in gly-
colysis. The predictions in case 1 show highly decreased 
uptake of glucose, yet a small amount of glucose is still 
taken up, resulting in acetate and lactate production. As 
discussed in Model validation using experimental data: 
Growth rate comparisons, it is possible that glucose is 
being taken up in vivo, even though this is not detected 

Strain

Substrate

WT SJ (WT*) SJ∆adhE

glc glc+glyc glc glc+glyc glc glc+glyc

Fig. 4 Predicted and experimental growth rates. Experimentally 
measured growth rates for each of the six data sets are shown 
in blue, with blue dots denoting individual replicates and blue 
bars representing average values. For each dataset, the model 
was constrained with average experimental values for uptake 
and secretion rates of carbon sources, byproducts and selected 
amino acids, and optimized for growth. Predicted growth rates are 
represented by red bars. Different datasets used are indicated with 
letters—glc: glucose; glyc: glycerol
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by measurements, which is in line with model predictions 
and would also explain the lower growth rate observed in 
silico in case 2 compared to in  vivo. The higher growth 
rate in  vivo compared to in silico in case 1 is due to a 
much higher arginine uptake than measured in the WT. 
Also in line with published studies and the redox bal-
ance explained above [5], addition of glycerol to the adhE 
mutant increases the growth rate to almost WT levels 
(Fig. 5d). Similarly to the WT predictions, the model in 
case 1 predicts slightly higher growth rate and uptake 
rates of glucose and glycerol, resulting in higher secretion 
of by-products. But as before, the flux distribution is very 
similar to the one measured in vivo.

In all four conditions in Fig. 5 the in silico predictions 
in case 2 and the in vivo data are almost identical, with 
the exception of the few instances described above. In 
few cases discrepancies can be explained by carbon 
imbalance in vivo, which is most likely due to measure-
ment uncertainties. Taken together, these results show 
that the model can be used to accurately predict meta-
bolic behavior, without requiring extensive experimental 
data.

Model‑based analysis of 1‑propanol production in L. reuteri
In the two previous sections we used experimental data 
to validate model predictions. In this section we focus on 
in silico predictions involving the production of 1-pro-
panol. It has been shown that heterologous expression 
of methylglyoxal synthase (mgs) in L. reuteri can activate 
the pathway to 1,2-PDO and 1-propanol production [7]. 
Both these compounds have many applications, e.g. in 
the production of polyester resins for 1,2-PDO and as a 
solvent and potential biofuel for 1-propanol [23]. In addi-
tion to the 1,2-PDO pathway, several different pathways 
have been described for 1-propanol production [64]. The 
1,2-PDO pathway towards 1-propanol has not frequently 
been reported for 1-propanol production; the most fre-
quently used pathways are the citramalate and threonine 
pathways (Fig. 6). Other options are the acetone, Wood-
Werkman (or methylmalonyl), acrylate and succinate 
pathways [64]. For a recent extensive overview of these 
pathways and engineered and non-engineered organ-
isms, the reader is referred to the review by Walther and 
Francois [64]. The thermodynamic maximum yield of 

1-propanol from glucose calculated based on the degree 
of reduction is 1.33  mol/mol (or 44,4% carbon yield). 
However, only the stoichiometry of the 1,2-PDO, suc-
cinate, acrylate and Wood-Werkman pathways allow 
this maximum yield—the others result in up to 25% less 
yield [64]. Here, we evaluated the citramalate, threonine, 
succinate, acrylate, methylmalonyl, and 1,2-PDO path-
way. One of the advantages of L. reuteri for using the 
1,2-PDO pathway towards 1-propanol is that L. reuteri 
produces vitamin B12, which is needed as a co-factor for 
the B12-dependent diol dehydratase step and has been 
suggested to be a limiting factor in this pathway in for 
example C. glutamicum [54] and was added to the fer-
mentations in an E.  coli strain harboring this pathway 
[22]. The model was used to analyze the suitability of six 
different pathways for 1-propanol production in L. reu-
teri (Fig. 6). These were the known pathways as described 
in literature, but in addition we used the minRxn algo-
rithm [6] and the accompanying database of enzymatic 
reactions to search for heterologous pathways from glu-
cose to 1-propanol. This search did not reveal pathways 
that differed significantly from the already-known path-
ways as shown in Fig. 6, neither qualitatively nor in terms 
of carbon yields (data not shown). The model was maxi-
mized for 1-propanol production, while constrained with 
the experimentally determined uptake rate of glucose and 
additional 20 mmol/gDW/h of glycerol when applicable, 
no uptake of amino acids and free secretion of by-prod-
ucts. Of the six pathways in Fig. 6, the citramalate path-
way performed the worst, with no production on glucose 
and only 9.5% maximum carbon yield when glycerol was 
added. This was due to redox imbalance, which was due 
to lack of production of the precursors pyruvate and 
acetyl-CoA, and was partly fixed by adding glycerol. Add-
ing this pathway in combination with the threonine path-
way did not increase maximum carbon yield compared 
to threonine pathway alone. The highest carbon yields, 
40.0% and 45.7% on glucose and glucose + glycerol, 
respectively, were observed in four different pathways, 
namely the 1,2-PDO, succinate, acrylate and methylmal-
onyl pathways. Since the maximum theoretical carbon 
yield of this pathway is 44.4% on glucose and 50.8% on 
glucose + glycerol, these values represent around 90% of 
the theoretical maximum, which can be achieved with 

(See figure on next page.)
Fig. 5 Predicted and experimental fluxes of key metabolites in the wild-type strain (SJ) and the adhE mutant. The wild-type strain was grown on 
glucose (a) and glucose and glycerol (b), and the adhE mutant was also grown on glucose (c) and glucose and glycerol (d). Bar plots show the 
average measured rates from 3 replicates (light orange), predicted rates from model constrained with average experimental uptake rates of the 
WT grown on glucose, or case 1 (dark green), and predicted rates from model constrained with average experimental rates from the strain and 
condition under study, or case 2 (light green). Metabolic maps show predicted flux distributions for case 1. All units for uptake- and secretion rates 
are in mmol  gDW−1  h−1 and for growth rates in  h−1. Metabolic maps correspond to Fig. 1. Amino acids (a.a.) in case 1 refer to Arg, Ser, Asn, Asp and 
Glu
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Glucose and glycerol
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In-vivo

0 30

Flux (mmol gDW-1 h-1)



Page 15 of 19Kristjansdottir et al. Microb Cell Fact          (2019) 18:186 

minimal metabolic engineering (i.e. only heterologous 
expression of mgs). Since for the 1,2-PDO pathway only 
one heterologous enzyme is needed, we decided to ana-
lyze 1-propanol production via the 1,2-PDO pathway 
further.

While optimizing in silico for 1-propanol production as 
described above is a good way to assess suitability of dif-
ferent engineering strategies, optimizing for growth gives 
more biologically realistic results. Hence, next the model 
was used to maximize growth while constrained with 
experimental uptake rates of glucose and the 5 amino 
acids from the WT grown on glucose (same as case 1 in 
“Effects of adding glycerol and deleting adhE section”). 
As previously discussed (“Effects of adding glycerol and 
deleting adhE section”), the adhE mutant grows poorly 
on glucose due to redox imbalance. The synthesis of both 
1,2-propanediol and 1-propanol consumes NADH and 
activating these pathways therefore has the potential to 
restore growth. The adhE gene was knocked out in silico, 
and flux predictions with (Fig.  7) and without (Fig.  5c) 

an active 1,2-PDO pathway were compared. The active 
1,2-PDO pathway resulted in a high increase in growth 
rate (0.11 to 0.49  h−1) as well as growth-coupled pro-
duction of 1-propanol (14.7  mmol/gDW/h). Given the 
good agreement between in silico predictions and in vivo 
measurements in “Effects of adding glycerol and deleting 
adhE section”, the expression of the missing mgs gene in 
the 1,2-PDO pathway at a sufficiently high level in vivo is 
expected to result in a relatively fast-growing 1-propanol-
producing cell factory, which is also in agreement with 
existing literature [7].

Model‑based analysis of L. reuteri as a cell factory
LAB are natural producers of several chemicals of indus-
trial interest [3, 40, 51]. They possess high sugar uptake 
rates and, in many species, the central metabolism is 
only weakly coupled to biomass formation because of 
their adaptation to nutrient rich environments. As a 
result, the carbon source is mostly used for energy gain 
and is converted to fermentation products in high yields. 
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Combined with high tolerance to environmental stress, 
these properties have led to significant interest in using 
LAB as cell factories.

The heterofermentative nature of L. reuteri and the 
dominance of the phosphoketolase over the Embden–
Meyerhof–Parnas pathway make some target com-
pounds less suitable than others, with lactic acid being 
an obvious example. On the other hand, these proper-
ties can also be used to an advantage as is demonstrated 
here. We used our newly established L. reuteri metabolic 
model to study the feasibility of this organism to pro-
duce some of the compounds that have been the sub-
ject of recently published LAB metabolic engineering 
experiments. These native and non-native compounds 
include a flavoring compound (acetoin), a food additive 
(l-alanine), biofuels (1-propanol and ethanol), chemical 
building blocks (acetaldehyde and 2,3-butanediol) and an 
environmentally friendly solvent (ethyl lactate). The last 
compound has recently been produced in an engineered 
E.  coli strain [32] and is an interesting target in L. reu-
teri since it is a condensation product of the two major 

products of glucose fermentation via the phosphoketo-
lase pathway, lactate and ethanol.

The suitability of L. reuteri for producing a particular 
compound was assessed in terms of the maximum car-
bon yield, using a fixed glucose uptake rate (Table  5). 
This gives an overly optimistic estimate of product yields 
in most cases since it completely ignores variations in 
enzyme efficiency, compound toxicity, regulation and 
other issues outside the scope of the model. The maxi-
mum flux is still useful to identify products that appear to 
be ill suited for a particular metabolism as well as prod-
ucts that may be suitable.

The predicted flux for acetaldehyde, acetoin and 
2,3-butanediol, which are all derived from acetyl-CoA, 
was low, suggesting that the metabolism in the wild type 
is not well suited for overproducing these compounds. 
The flux increased significantly upon addition of meth-
ylglyoxal synthase, suggesting the importance of the 
1-propanol pathway in cofactor balancing (“Model-based 
analysis of 1-propanol production in L. reuteri” section). 
Addition of glycerol to the medium served the same pur-
pose and increased the predicted flux in all cases (data 
not shown), which is in line with glycerol being known 
and used as an external electron sink in L. reuteri [11]. 
For all the compounds except ethanol and 1-propanol, 
the addition of a fully functional phosphofructoki-
nase was predicted to increase the yields even further 
(Table 5). Such a strategy has been shown successful for 
mannitol production [41].

Taken together, the model suggests that L. reuteri is 
better suited for producing compounds derived from 
pyruvate than compounds derived from acetyl-CoA and 
that the simultaneous expression of heterologous MGS 
and PFK enzymes is a general metabolic engineering 
strategy for increasing product yields in L. reuteri.

In-silico constrained with WT glucose- and a.a. uptake rates

0 30

Flux (mmol gDW-1 h-1)
Fig. 7 Predicted flux distribution, growth rate and 1-propanol 
production of adhE mutant grown on glucose, with active 
1,2-propanediol and 1-propanol pathways. The model was 
constrained with average experimental uptake rates of the WT grown 
on glucose and optimized for growth. Units for propanol secretion 
rate is in mmol  gDW−1  h−1 and growth rate in  h−1. Amico acids (a.a.) 
refer to Arg, Ser, Asn, Asp and Glu

Table 5 Model predictions of  the  maximum theoretical 
yields of selected target compounds

A maximum glucose uptake rate of 25.2 mmol  gDW−1  h−1 was assumed. MGS 
indicates the presence of methylglyoxal synthase in the model, ↑-PFK indicates 
the presence of a phosphofructokinase that is not flux-limiting. Non-native 
compounds are indicated with (n–n)

Compound Maximum flux (mmol  gDW−1 
 h−1)

Maximum 
carbon yield 
(%)

MGS MGS, ↑-PFK

Ethanol 50.4 50.4 50.4 67

Acetaldehyde 0 31.5 37.8 50

1-Propanol (n–n) 20.2 20.2 20.2 40

l-Alanine (n–n) 27.0 27.0 50.4 100

Acetoin 0 10.1 18.9 50

2,3-Butanediol 0 11.6 21.6 57

Ethyl lactate (n–n) 20.4 20.4 25.2 83
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Conclusions
In this study, we have established a manually curated 
genome-scale metabolic model of L. reuteri JCM 1112, 
referred to as Lreuteri_530, and validated it with experi-
mental data. We identified several knowledge gaps in 
the metabolism of this organism that we resolved with a 
combination of experimentation and modeling. The dis-
tribution of flux between the PKP and EMPP pathways 
is strain-specific and in line with other studies, we found 
that the EMPP activity is maximally around 7% of total 
glycolytic flux during early exponential phase. The pre-
dictive accuracy of the model was estimated by compar-
ing predictions with experimental data. Several scenarios 
were tested both in vivo and in silico, including addition 
of glycerol to a glucose-based growth medium and the 
deletion of the adhE gene, which encodes a bifunctional 
aldehyde/alcohol dehydrogenase. The results showed that 
the model gives accurate predictions, both with respect 
to growth rate and uptake- and secretion rates of main 
metabolites in the central metabolism. This indicates that 
the model can be useful for predicting metabolic engi-
neering strategies, such as growth-coupled production of 
1-propanol. The model also serves as a starting point for 
the modeling of other L. reuteri strains and related spe-
cies. The model is available in SBML, Matlab and JSON 
formats at https ://githu b.com/stein ng/reute ri as well as 
in Additional file 6. Metabolic maps in Escher format are 
provided in Additional file 4. The Escher maps together 
with the model in JSON format can be used directly with 
the Escher-FBA online tool [46] as well as the Caffeine 
cell factory design and analysis platform (https ://caffe ine.
dd-decaf .eu/).
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