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Abstract 

Background:  Acetyl xylan esterase plays an important role in the complete enzymatic hydrolysis of lignocellulosic 
materials. It hydrolyzes the ester linkages of acetic acid in xylan and supports and enhances the activity of xylanase. 
This study was conducted to identify and overexpress the acetyl xylan esterase (AXE) gene revealed by the genomic 
sequencing of the marine bacterium Ochrovirga pacifica.

Results:  The AXE gene has an 864-bp open reading frame that encodes 287 aa and consists of an AXE domain from 
aa 60 to 274. Gene was cloned to pET-16b vector and expressed the recombinant AXE (rAXE) in Escherichia coli BL21 
(DE3). The predicted molecular mass was 31.75 kDa. The maximum specific activity (40.08 U/mg) was recorded at the 
optimal temperature and pH which were 50 °C and pH 8.0, respectively. The thermal stability assay showed that AXE 
maintains its residual activity almost constantly throughout and after incubation at 45 °C for 120 min. The synergism 
of AXE with xylanase on beechwood xylan, increased the relative activity 1.41-fold.

Conclusion:  Resulted higher relative activity of rAXE with commercially available xylanase on beechwood xylan 
showed its potential for the use of rAXE in industrial purposes as a de-esterification enzyme to hydrolyze xylan and 
hemicellulose-like complex substrates.
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Introduction
Hemicellulose is the second most abundant polysac-
charide type in land plant cell walls and it consisted of 
about 25–35% of forest and agricultural residues [1, 2]. 
Hemicellulose differs from cellulose in its heterogeneous 
chemical composition associated with β-1,4-xylan, which 
has high polymerization ability and is highly branched 
[3]. Hemicellulose consists of a linear backbone of β-1,4-
linked xyloses and short-chain branches of O-acetyl, 

α-l-arabinofuranosyl, and α-d-glucuronyl residues [4]. 
Enzymatic hydrolysis of xylan is catalyzed by endoxyla-
nase and various side chain-cleaving enzymes, such as 
β-xylosidase, α-glucuronidase, α-arabinofuranosidase, 
and acetyl xylan esterase [5]. Hardwood xylans (e.g., 
beechwood and birchwood xylan) are highly acetylated, 
and acetyl xylan esterase plays a major role in making 
them partially soluble in water [6] by turning them to 
short chains through enzymatic degradation. Determin-
ing different degradation strategies for these complex and 
economically important substances is important for their 
industrial exploitation.
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The first use of xylanases [7] obtained from microbes 
by the pulp and paper industry garnered much interest; 
this was followed by many studies in this domain over 
the past few decades [8–10]. Enzymes derived from bac-
teria [11, 12], including actinomycetes [13, 14] as well as 
yeast [15, 16], have been used in these studies and are 
recently being applied at industrial scales [17]. Acetyl 
xylan esterase facilitates the action of endoxylanases by 
increasing the approachability to the xylan backbone by 
cleaving the ester bonds of acetyl groups [6]. Therefore, 
the synergistic action of acetyl xylan esterase and endox-
ylanases increases the efficient hydrolysis of xylan [18, 
19]. The marine bacterium Ochrovirga pacifica belongs 
to the family Flavobacteriaceae and was identified from 
a seaweed sample during our previous study [20]. During 
genome sequence analysis of O. pacifica, an acetyl xylan 
esterase (AXE) gene was found. This study was con-
ducted to characterize this AXE gene and perform clon-
ing, expression, and biochemical characterization of the 
expressed recombinant enzyme. Finally, the synergistic 
effect of recombinant AXE was tested with commercially 
available xylanase on beechwood xylan as the substrate.

Methods
Bacterial strains, culture conditions, plasmid, and reagents
Escherichia coli DH5α and BL21 (DE3) strains were used 
as the cloning and expression hosts, respectively. Both 
strains were grown in Luria–Bertani broth (LB broth) 
at 37 °C with agitation at 180 rpm. The pET-16b (Nova-
gen, Madison, USA) vector was used for enzyme expres-
sion and purification. Buffers and enzymes used for the 
polymerase chain reaction (PCR) and DNA manipula-
tion were purchased from Takara (Takara Bio Inc., Shiga, 
Japan). PCR products were purified using an AccuPrep® 
Gel Purification Kit (Bioneer, Daejeon, South Korea), 
and cloned plasmids were extracted using an AccuPrep® 
Plasmid MiniPrep DNA Extraction Kit (Bioneer). Sub-
strates and other reagents used for the enzyme assay, 
including p-nitrophenyl acetate (p-NPA), p-nitrophenol 
(p-NP), d-xylose, and dinitrosalicylic acid, were pur-
chased from Sigma-Aldrich (St Louis, MO, USA). The 
synergistic effect was verified with commercially avail-
able endo-1,4-β-xylanase derived from Aspergillus niger 
(Megazyme Int., Wicklow, Ireland) using beechwood 
xylan (Tokyo Chemical Industry Co. Ltd., Tokyo, Japan) 
as the substrate.

Identification and molecular characterization of AXE
The marine bacterium O. pacifica was isolated from 
a seaweed sample collected from Chuuk State, Feder-
ated States of Micronesia [20], and its genome was 
sequenced [21]. The AXE gene was identified, and 
conserved domains were predicted using the National 

Center for Biotechnology Information (NCBI) Con-
served Domain Database (CDD; http://www.ncbi.nlm.
nih.gov/cdd/). The Signal IP 4.1 server (http://www.
cbs.dtu.dk/servi​ces/Signa​lP/) [22] was used to predict 
the N-terminal signal peptide of the AXE amino acid 
sequence, and the EMBOSS Pairwise Sequence Align-
ment Tool (https​://www.ebi.ac.uk/Tools​/psa/) [23] 
was used to calculate the identity, similarity, and gap 
percentages of the AXE amino acid sequence against 
the closest neighbor proteins identified by the NCBI 
BLAST program (https​://blast​.ncbi.nlm.nih.gov) as well 
as several acetyl xylan esterases characterized by other 
works [24]. The isoelectric point and molecular weight 
were determined using the protein isoelectric point cal-
culator (http://isoel​ectri​c.org/calcu​late.php) [25] and 
DNA Dynamo (Blue Tractor Software, North Wales, 
UK), respectively. The nucleotide and amino acid 
sequence of AXE were submitted to Genbank under 
accession number MH937751.

Cloning of the AXE gene
PCR was performed to amplify the targeted AXE gene 
from the genomic DNA of O. pacifica without the pre-
dicted N-terminal signal sequence. Forward (GAG​
AGA​CAT​ATG​CAA​AAA​GAA​GTA​AAG​TTG​GCC) 
and reverse (GAG​AGA​GGA​TCC​TTA​TTC​TAC​TTT​
GCT​TAT​AGG​AAC​) primers were designed to bind 
the pET-16b cloning site using the pET-16b sequence. 
The PCR mixture consisted of 1  μL of genomic DNA 
template (200  ng/μL), 35.5  μL sterile deionized water, 
5  μL 10× Ex Taq buffer (20  mM  Mg2+), forward and 
reverse primers (20 pmol each), 4 μL dNTPs (2.5 mM), 
and Ex Taq DNA polymerase (3  U). PCR amplifica-
tion conditions were as follows: initial denaturation at 
94  °C for 5 min; 30 cycles of denaturation at 94  °C for 
30 s, annealing at 48 °C for 30 s, extension at 72 °C for 
1 min 20 s; and a final extension at 72 °C for 5 min. PCR 
products were purified using an AccuPrep Gel Purifica-
tion Kit. The pET-16b vector and purified PCR prod-
ucts were digested with NdeI and BamHI restriction 
enzymes (Takara Bio Inc.) according to the manufac-
turer’s instructions. Digested PCR product was ligated 
into the digested pET-16b vector using T4 DNA ligase 
according to the manufacturer’s protocol. Recombinant 
plasmid was transformed into E. coli DH5α cells by heat 
shock [26]. Clones of recombinant plasmid were puri-
fied using the plasmid extraction kit following the man-
ufacturer’s instructions; it was then transformed to the 
expression host E. coli BL21 (DE3) by heat shock [26]. 
The nucleotide sequence of the constructed recombi-
nant plasmid was confirmed by sequencing (Macrogen, 
Korea).

http://www.ncbi.nlm.nih.gov/cdd/
http://www.ncbi.nlm.nih.gov/cdd/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
https://www.ebi.ac.uk/Tools/psa/
https://blast.ncbi.nlm.nih.gov
http://isoelectric.org/calculate.php
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Protein expression and purification
The clone harboring pET16b-AXE was incubated over-
night at 37  °C in 4  mL LB broth supplemented with 
100  µg/mL ampicillin (LB-amp); 200  mL LB-amp broth 
was inoculated with total volume of the overnight culture 
and incubated at 37  °C with agitation until the optical 
density at 600  nm reached ~ 0.6. Then, isopropyl-β-d-
thiogalactopyranoside (IPTG) was added to a 1 mM final 
concentration. The culture was incubated for another 
24 h at 20 °C under conditions designed to induce expres-
sion of the recombinant acetyl xylan esterase (rAXE). 
Cells were harvested by centrifugation at 8000×g for 
10  min at 4  °C. Preparation of cell lysate and purifica-
tion of histidine-tagged rAXE were performed according 
to the user protocol for the His·Bind® Resin Chroma-
tography Kit (Novagen). Purified protein was quantified 
by Bradford reagent (Sigma, USA) with bovine serum 
albumin (BSA) as a standard. The molecular mass and 
purity were evaluated using 12% Sodium dodecyl sul-
fate poly-acrylamide gel electrophoresis (SDS-PAGE). A 
pre-stained protein marker (Lonza ProSieve™, Rockland, 
USA) was used as the reference.

Enzyme assay
p-NPA was used as the substrate for the rAXE activ-
ity assay. The reaction was performed on a microplate 
at 30  °C in a 200  µL total reaction volume containing 
195  µL phosphate buffer (10  mM, pH 6.7), 5  µL puri-
fied rAXE enzyme, and 100  µL substrate (0.3423  mM). 
p-NP released within 10 min was measured by monitor-
ing the absorbance at 405 nm (BioTek Instruments, Win-
ooski, USA). p-NP was used as the standard. One unit 
of enzyme activity was defined as the amount of rAXE 
required to release 1 µmol p-NP in 10 min under stand-
ard conditions. Each and every assay was performed with 
a blank contained inactivated enzyme which was run 
under same pH and temperature conditions.

Biochemical characterization of rAXE
The optimum temperature and pH were determined 
using p-NPA as the substrate at different temperatures 
(25–55 °C) and pHs (phosphate citrate buffer for pH 2.0–
7.0 and glycine–NaOH buffer for pH 8.0–10.0 at 50  °C) 
under standard conditions.

Effect of temperature and pH on rAXE stability
To analyze the temperature stability of rAXE, 5 µL puri-
fied enzyme was pre-incubated in 195  µL phosphate 
buffer (pH 6.7) at 45  °C, 50  °C, and 55  °C over various 
time durations (0–120 min at 20 min intervals); this was 
followed by cooling on ice for 5  min. Finally, residual 
activity was measured under standard assay conditions. 

To measure the effect of pH on rAXE stability, the 
enzyme was incubated in a series of buffers (phosphate–
citrate buffer for pH 2–7.0 and glycine–NaOH buffer for 
pH 8–10) at 4 °C for 12 h, and residual activity was tested 
under standard assay conditions. rAXE without pretreat-
ment was used as the control for both tests.

Effect of metal ions and salt on rAXE
The effect of different metal ions on rAXE activity was 
evaluated using 1  mM and 5  mM solutions of Ca2+, 
Mg2+, Fe2+, Mn2+, Cu2+, Zn2+ and finally ethylenediami-
netetraacetic acid (EDTA). The metal ions were incor-
porated into the buffer solution, and the enzyme activity 
assay was performed under standard conditions. The 
relative enzyme activity was calculated using the activ-
ity of the untreated sample as 100%. The effect of salt on 
rAXE was analyzed under standard assay conditions with 
different NaCl concentrations (0.05–0.5 M). The effect of 
NaCl on rAXE stability was analyzed by incubating the 
enzyme (5 µL) in different concentrations of NaCl (0.05–
0.5 M) solutions at 4 °C for 12 h and assaying the residual 
activity of the enzyme in each solution.

Synergistic effect of rAXE
The synergistic effect of rAXE on the activity of a com-
mercially available endo-1,4-β-xylanase was assayed by 
measuring the xylose released using a modified 3,5-dini-
trosalicylic acid (DNS) method [27] with d-xylose as 
the standard. The reaction mixture was prepared in an 
Eppendorf tube containing 1% beechwood xylan in phos-
phate buffer (pH 8.0), 5 U xylanase, and 1.7 U AXE. Incu-
bation was carried out at 50 °C, and activity was checked 
at 30  min intervals for 2  h. The amount of enzyme 
required to produce 1 μmol of reduced sugar per minute 
was defined as one unit of enzyme activity.

Results
Identification and molecular characterization of rAXE
The AXE gene has an 864-bp open reading frame that 
encodes 287 aa the acetyl esterase domain can be found 
from aa 60 to 274. The predicted molecular mass and 
isoelectric point were 31.75 kDa and 8.35, respectively. 
The N-terminal region of the protein contains a signal 
peptide consisting of 21 aa (Fig. 1). Conserved domain 
analysis [28] revealed that the enzyme belongs to the 
alpha/beta hydrolase family and has a conserved acetyl 
esterase/lipase (COG0657) belonging to the acetyl 
esterase superfamily. Other nonspecific hits, such as 
alpha/beta hydrolase fold (pfam07859), dienelactone 
hydrolase (COG0412), predicted esterase (COG0400), 
and carboxylesterase type B (COG2272), have also been 
associated with the sequence. AXE showed the highest 
sequence identity (55.9%) with an alpha/beta hydrolase 
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of Wenyingzhuangia fucanilytica (GenBank Accession 
No. WP_068826614.1); additional closest matching 
proteins were 1,4-beta-xylanase (54.9%) of W. fucani-
lytica (ANW96467.1), alpha/beta hydrolase (51.5%) of 

Muricauda antarctica (WP_072877402.1), and alpha/
beta hydrolase (51.2%) of Reichenbachiella versicolor 
(WP_109831252.1). These sequences were also com-
pared to amino acid sequences of four characterized 
acetyl xylan esterases (Table 1).

Fig. 1  Nucleotide and deduced amino acid sequence of AXE. The N-terminal signal sequence is underlined; the acetyl esterase domain (aa 60 to 
274) is highlighted; asterisk indicates a stop codon
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Expression and purification of rAXE
The AXE gene was expressed in pET-16b vector with an 
N-terminal 10-histidine tag supplied with the vector to 
facilitate the affinity purification of the target protein. 
Figure 2 shows the high expression level and purity of 
the recombinant protein, which gave a strong band on 
SDS-PAGE. The protein was purified by one-step affin-
ity purification using a His·Bind® Resin Chromatogra-
phy Kit (Novagen). The molecular mass of the protein 

estimated by SDS-PAGE was ~ 32.0 kDa, roughly equal 
to the predicted molecular mass (32.1 kDa).

Biochemical characterization of rAXE
The optimal temperature for rAXE was 50 °C; its activity 
decreased around 20% at temperatures > 50  °C (Fig.  3a). 
The thermal stability assay showed that rAXE maintains 
its residual activity almost constantly throughout and 
after incubation at 45  °C for 120  min (Fig.  3b). Incuba-
tion at 55 °C for 20 min reduced its activity by more than 
50%. rAXE showed maximum activity at pH 8.0 (assayed 
at 50  °C) and exhibited less than 25% relative activity at 
pHs < 6.0 (Fig.  3c). Activity was drastically decreased 
above pH 8.0, and 23% relative activity was observed at 
pH 10.0. After 12  h incubation at 4  °C and pH 3.0–5.0, 
there was 0% remaining enzyme activity. Residual activi-
ties at pHs 7.0, 8.0, and 9.0 were > 40%; stability dra-
matically decreased at pHs > 9.0 (Fig. 3d). The maximum 
specific activity of rAXE towards p-NPA was recorded at 
pH 8.0 (assayed at 50 °C) as 40.08 U/mg.

Effect of metal ions and salt on rAXE activity
The effect of metal ions on rAXE activity was determined 
using the activity of the untreated enzyme as the control 
(100%). Relative activity was examined at two concen-
trations (1  mM and 5  mM) of each metal ion. Reaction 
mixtures containing 1  mM Ca2+, 1 or 5  mM Cu2+, and 
5 mM Fe2+ showed strong stimulatory effects on enzyme 
activity; 5 mM Ca2+, 5 mM Mg2+, both 1 mM and 5 mM 
Mn2+ or Zn2+ and EDTA showed inhibitory effects on 
enzyme activity (Fig.  4a). The effect of NaCl on rAXE 
activity and stability was examined; as shown in Fig. 4b, 
enzymatic activity was strongly stimulated at 0.05  M 
NaCl, whereas activity gradually decreased at higher con-
centrations (Fig.  4b). However, relative activity higher 
than 100% was recorded at NaCl concentrations between 

Table 1  Identity and  similarity comparisons of  the  AXE amino acid sequence with  its uncharacterized closest 
neighbor enzymes identified by NCBI BLAST, as well as characterized acetyl xylan esterases from  Bacillus pumilus [29], 
Flavobacterium johnsoniae UW101 [30], Butyrivibrio proteoclasticus B316 [31], Ruminococcus flavefaciens 17 [32], 
and Streptomyces lividans 1326 [33]

Organism Accession no. Identity (%) Similarity (%) Gap (%) Remarks

W. fucanilytica WP_068826614.1 55.9 70.9 6.0 Uncharacterized

W. fucanilytica ANW96467.1 54.9 68.7 10.4 Uncharacterized

M. antarctica WP_072877402.1 51.5 69.4 5.4 Uncharacterized

R. versicolor WP_109831252.1 51.2 66.1 5.4 Uncharacterized

B. pumilus CAB76451.2 14.9 27.7 49.8 Characterized

F. johnsoniae UW101 ABQ06890.1 14.1 24.01 43.05 Characterized

B. proteoclasticus B316 ADL35669.1 10.1 19.4 63.3 Characterized

R. flavefaciens 17 CAB55348.1 8.3 13.3 71.5 Characterized

S. lividans 1326 AAC06115.2 7.3 12.7 70.7 Characterized

Fig. 2  SDS-PAGE analysis of rAXE. M molecular weight marker, BI 
whole cell lysate before induction, AI whole cell lysate after induction 
(incubated at 20 °C for 16 h with 180 rpm agitation), P purified rAXE 
using His·Bind® Resin Chromatography Kit
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0.05 and 0.25 M. Incubation in NaCl for 12 h had no pos-
itive effect on enzyme activity, and the residual activity 
for all concentrations was < 100% relative activity.

Synergistic effect of rAXE
The synergistic effect of rAXE on the activity of a com-
mercially available xylanase was assayed (Fig.  5). 
The reaction mixture prepared with rAXE only (1.7 
U) showed no relative activity; xylanase only (5  U) 
showed ~ 70% relative activity. The reaction mixture con-
taining both xylanase and rAXE showed 29.47% higher 
relative activity compared to xylanase alone (a 1.41-fold 
increase).

Discussion
This study was conducted to characterize the acetyl 
xylan esterase gene from the marine bacterium O. 
pacifica, isolated from a seaweed sample [20]. This 
is the first report of such an enzyme from the genus 
Ochrovirga (family: Flavobacteriaceae), and further 
biochemical characterization of the expressed enzyme 
within an E. coli expression system was performed. 
Genomic DNA analysis of O. pacifica revealed the pres-
ence of the AXE gene, and NCBI conserved domain 

analysis [34] revealed the acetyl esterase domain within 
the amino acid sequence (aa 60–274). The acetyl ester-
ase domain belongs to the alpha/beta hydrolase super-
family. This superfamily consists of lipases, peroxidases, 
proteases, epoxide hydrolases, and dehalogenases, 
which are functionally diversified for hydrolyzing dif-
ferent substrates [35]. Several other nonspecific hits, 
such as alpha/beta hydrolase protein fold, were also 
associated with the amino acid sequence, which may 
have developed evolutionarily to hydrolyze substrates 
with different chemical and physicochemical proper-
ties. The highest sequence identity (55.9%) matched the 
uncharacterized alpha/beta hydrolase of W. fucanilytica 
(GenBank Accession No. WP_068826614.1), demon-
strating the uniqueness of the AXE gene of O. pacifica. 
A phylogenetic tree of the AXE amino acid sequence 
along with the closest matches identified by BLAST and 
five characterized acetyl xylan esterases reported previ-
ously showed that AXE from O. pacifica is positioned 
in a separate clade (Additional file 1: Fig. S1). The fam-
ily Flavobacteriaceae is well known for the degradation 
of macromolecules, such as complex carbohydrates 
[36]. Most species of the family grow on algal thalli and 
have the ability to degrade algal cells [37]. Razeq et al. 

Fig. 3  Effects of pH and temperature on rAXE activity. a Effect of temperature on relative enzyme activity (relative activity was calculated using 
activity at 50 °C as 100%). b Thermal stability assay (relative activity was calculated using activity of untreated enzyme as 100%). c Effect of pH on 
activity at 50 °C (relative activity was calculated using activity at pH 8.0 as 100%). d pH stability assay (relative activity was calculated using activity of 
enzyme treated with pH 8.0 buffer as 100%). Data are shown as mean ± standard deviation (sd), n = 3
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[30] have characterized and reported an acetyl xylan 
esterase encoded in the Flavobacterium johnsoniae 
genome (FjoAcXE), which is a member of same family. 
However, the phylogenetic relationship between AXE 
and FjoAcXE is not close (see Additional file 1).

The presence of the N-terminal signal sequence sug-
gests that the AXE enzyme may be secreted for extracel-
lular hydrolysis processes; expression for the experiment 
was done without the signal sequence. The optimum 
temperature of rAXE was 50 °C, and it maintained more 

Fig. 4  a Effect of various metal ions on the relative activity of rAXE. The enzyme reaction was performed with final concentrations of 1 mM and 
5 mM for each metal ion. The activity in the absence of a metal ion was taken as the control (100%). b Effect of NaCl on the relative activity and 
stability of rAXE. The activity at 0 M NaCl in the reaction mixture was taken as the control (100%). Data are presented as mean ± standard deviation 
(sd), n = 3
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than 80% of its residual activity after incubation for 2 h 
at 50  °C. In this experiment optimum temperature was 
examined within 25  °C to 55  °C range. Reason was sub-
strate converted to products rapidly in higher tempera-
tures. Previously characterized acetyl xylan esterases 
from different microorganisms [19, 38] showed optimal 
temperatures < 50  °C and lower thermal stability com-
pared to rAXE; this may be advantageous in industrial 
applications of rAXE. The optimal pH of rAXE at the 
optimal temperature was pH 8.0. Most fungal and rumen 
bacterial-derived acetyl xylan esterases show neutral 
optimal pHs [39, 40], whereas bacteria living in harsh 
conditions and marine environments show alkaline pHs 
of 8.0–9.5 [29, 41, 42]. Characteristics of the enzymes and 
proteins derived from the microbes are highly depended 
on their ecological conditions [43–45]. Naturally they use 
their enzymes to degrade the substrates in environment 
and play a major role in nutrient cycling [46]. At present 
there is an increasing attention on the marine microbial 
enzymes because of their good performances in hard 
conditions like high or low temperatures, pressure, pH 
and high salt concentrations [47, 48].

The effect of different metal ions on the activity of 
rAXE was evaluated. Strong stimulation was observed 
with the presence of 1 mM of Ca2+, 1 and 5 mM Cu2+, 
and 5 mM Fe2+ in the reaction mixture. Further studies 

of metal ion interactions with rAXE are recommended. 
According to Taylor et  al. [49], some acetyl xylan ester-
ases from microorganisms show special metal ion prefer-
ences that enhance their catalytic activities. Furthermore, 
5  mM Ca2+, 5  mM  Mg2+, and both 1 and 5  mM Mn2+ 
and Zn2+ showed inhibitory effects on enzyme activ-
ity; the inhibitory effect of Zn2+ on esterase has been 
reported by several authors [50, 51]. The effects of salt 
on rAXE activity and stability were tested and 0.05  M 
NaCl strongly stimulated rAXE activity. Most esterases 
derived from microorganisms are more salt tolerant than 
rAXE; enhanced activity has been demonstrated within 
0.0–4.0 M NaCl [52, 53]. According to Steiner and Lind-
skog [54], the stimulatory activity of salt occurs due to 
the increased chemical potential of p-NPA in aqueous 
solutions rather than participation in the enzyme-related 
catalytic steps.

The synergistic effect of xylanase and rAXE on beech-
wood xylan was investigated. The cooperative effect of 
rAXE and xylanase on xylan initiates with the de-ester-
ification of acetyl substitutes on side chains, making 
them more accessible to xylanase for hydrolysis of the 
glycosidic bonds [2]. Shorter polysaccharide fragments 
resulted from the increase in the substrate preference 
of rAXE attributable to xylanase activity [6]. Further-
more, decreased polymerization caused by xylanase may 

Fig. 5  Synergism of AXE with a commercially available xylanase on beechwood xylan as the substrate. The reaction mixtures were prepared in 
Eppendorf tubes containing 1% beechwood xylan in phosphate buffer (pH 8.0) and incubated over the time at 50 °C. Combination of rAXE and 
xylanase was included 1.7 U of rAXE and 5 U of commercially available endo-1,4-β-xylanase derived from A. niger. Only rAXE and xylanase contained 
reaction mixtures were included 1.7 U and 5 U respectively. Relative activity was determined with the activity of rAXE + xylanase at 120 min as 
100%. Data are given as means ± SD, n = 3
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increase the reaction rate by decreasing the viscosity of 
the reaction mixture, allowing more substrate-rAXE 
interactions [18]. In our study, the mixture of rAXE and 
xylanase exhibited a 1.41-fold increase in relative activity 
on beechwood xylan compared to xylanase alone. There-
fore, rAXE has good potential as an accessory enzyme for 
hydrolyzing xylan and hemicellulose.

Conclusion
The present study identified and biochemically character-
ized rAXE from the marine bacterium O. pacifica, which 
was isolated from a seaweed sample. This is the first 
report of such an enzyme from the genus Ochrovirga. 
The synergistic activity of rAXE with commercially avail-
able xylanase showed higher relative activity on beech-
wood xylan. Therefore, there is strong potential for the 
use of rAXE in industrial purposes as a de-esterification 
enzyme to hydrolyze xylan and hemicellulose-like com-
plex substrates.

Additional file

Additional file 1. Phylogenetic analysis of O. pacifica AXE along with the 
uncharacterized closest amino acid sequences identified by NCBI BLAST 
and several characterized acetyl xylan esterases. The neighbor-joining tree 
was constructed using the bootstrap method with 1000 replications.
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