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Abstract

Background: Physiological aggregation of a recombinant enzyme into enzymatically active inclusion bodies could
be an excellent strategy to obtain immobilized enzymes for industrial biotransformation processes. However, it is

not convenient to recycle "gelatinous masses” of protein inclusion bodies from one reaction cycle to another, as high
centrifugation forces are needed in large volumes. The magnetization of inclusion bodies is a smart solution for large-
scale applications, enabling an easier separation process using a magnetic field.

Results: Magnetically modified inclusion bodies of UDP-glucose pyrophosphorylase were recycled 50 times, in com-
parison, inclusion bodies of the same enzyme were inactivated during ten reaction cycles if they were recycled by
centrifugation. Inclusion bodies of sialic acid aldolase also showed good performance and operational stability after

the magnetization procedure.

Conclusions: It is demonstrated here that inclusion bodies can be easily magnetically modified by magnetic iron
oxide particles prepared by microwave-assisted synthesis from ferrous sulphate. The magnetic particles stabilize the

repetitive use of the inclusion bodies .
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Background

In the biotechnological industry, microbial enzymes are
widely used in various biotransformation processes. It
is often expensive to use the enzymes from their native
hosts; therefore, recombinant enzymes have become
a driving force in biotechnology [1]. In view of enzyme
recovery, recycling and the improvement of stability,
enzyme immobilization techniques were introduced to
biotransformation processes [2—4]. Usually, the scien-
tists exploring enzyme expression in prokaryotic hosts
are looking for conditions that increase the solubility
of the recombinant enzyme [5], and process engineer-
ing scientists explore various immobilization techniques
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that make the enzyme insoluble [2—4]. This paradox can
be eliminated when enzyme immobilization is integrated
into enzyme overexpression. The integration can be
called “in vivo enzyme immobilization” [6, 7]. Inclusion
bodies (IBs), which are formed during the overexpres-
sion of the enzyme in a prokaryotic host, such as E. coli,
can be purposely tailored by a fusion of the enzyme with
a “pull-down” tag [8]. There are several “pull-down” tags
that can be used to produce active enzymes in the form
of IBs. The cellulose-binding domain from Clostridium
cellulovorans was originally used as “pull-down” tag for
bioconversion processes [8—10]; however, many proteins
induce the formation of active inclusion bodies and can
be used as the fusion tag [11, 12]. For example, green flu-
orescent protein (GFP) has also been used as an N-ter-
minal “pull-down” tag [13], and even shorter synthetic
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peptides have already been designed for “pull-down” or
“in vivo enzyme immobilization” [14—16].

The in vivo immobilized enzymes can be directly
recovered by centrifugation and applied as carrier-free
immobilized enzymes for biocatalysis. The carrier-free
immobilized enzymes are particularly valuable when
the enzymes have low specific activity [17]. Otherwise,
high g-force centrifugation of large volumes is expensive
for scale-up processes. To simplify the separation, the
entrapment of IBs into alginate beads has been proposed
previously [7, 10]. However, the alginate gel generates a
diffusion barrier that limits its use in many biotransfor-
mations. The preparation and application of magneti-
cally modified IBs, which can be easily separated by a
magnetic separator, is described in this paper as a new
alternative for the convenient recovery of IBs from the
reaction mixture. The magnetic modification procedure
at low temperatures [18, 19] is used here and in this way
produced “magnetic IBs” that showed excellent opera-
tional stability. Three protein examples were magnetically
modified: GFP, sialic acid aldolase, and UDP-glucose
pyrophosphorylase. It is shown here that in the case of
IBs, the slow fixation process in the freezer is not needed
or can be substituted by gentle lyophilization. Previously,
glucose oxidase had to be crosslinked by glutaraldehyde
(Sweetzyme granules) and fixed on magnetic particles in
the freezer for a few days (e.g. 7 days) [18, 19].

Methods

Materials

Chemically competent Escherichia coli BL21(DE3)T1R
(CMC0014), CelLytic"™ B Cell Lysis Reagent, ferrous sul-
phate heptahydrate, KOH and other compounds were
supplied by Sigma-Aldrich (St. Louis, Missouri, USA).
GFP (FPbase: TurboGFP; GenBank: ASW25889), sialic
acid aldolase (SAA, UniProt: POA6L4; NCBI-GenelD:
947742) and UDP-glucose pyrophosphorylase (GalU,
UniProt: POAEP3; NCBI-GenelD: 945730) genes were
N-terminally fused with the cellulose-binding domain
from Clostridium cellulovorans by cloning into plasmid
pET-34b (Additional file 1).

Preparation of active inclusion bodies

Chemically competent cells (Escherichia coli BL21(DE3)
T1R) were transformed with the isolated plasmid and
grown on solid LB medium (1.5% agar, 1% peptone, 0.5%
yeast extract and 0.5% NaCl) supplemented with kana-
mycin (30 pg/mL). The selected colonies were transferred
to liquid LB medium with kanamycin (30 pg/mL), grown
for 24 h at 32 °C, and then inoculated into new medium.
After 4 h of cultivation at 37 °C, induction was started
with isopropyl B-p-1-thiogalactopyranoside (400 uM),
and cells were grown for 24 h at 20 °C. The cells were
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harvested by centrifugation (4500 g, 20 min, 4 °C, 100—
250 mL of cultivation broth) and lysed with ten volumes
of the non-ionic lytic detergent (CelLytic"). After centrif-
ugation of the lysate (20,000 g, 10 min, 4 °C), the debris
was washed three times with 10 volumes of 50 mM
Tris—HCI buffer, pH 7.8. The insoluble fraction (IBs) was
assayed for proteins and enzyme activity as described
below. Additional file 1: Figure S4 shows SDS-PAGE of
used enzymes in the form of inclusion bodies.

Preparation of magnetic iron oxides

Upon stirring, a solution of FeSO,7H,O (100 mL,
10 g/L) was adjusted to pH 12 by a dropwise addition of
1 M KOH. A brown precipitate of iron hydroxides was
formed. After dilution with 100 mL of distilled water
in 800-1000 mL beaker, the suspension was treated in a
microwave oven at maximum power (960 W) for 10 min.
After cooling to room temperature, the formed particles
of magnetic iron oxides were repeatedly washed with dis-
tilled water until neutral pH was reached; separation dur-
ing washing was performed using a permanent NdFeB
magnet.

Magnetic modification of active inclusion bodies

The prepared particles of magnetic iron oxides were
washed 3 times with 100 mM Tris buffer, pH 8, and sepa-
rated by a magnet. Tubes were filled with the particle
solution and the particles were sedimented by a NdFeB
magnet below the bottom of the tube; then, it was diluted
with the buffer (supernatant adjusted to four volumes of
particles). The particles were supplied with IBs solution
(the same Tris buffer, one-quarter volume of the sedi-
mented particles, GFP and SAA experiments —20 mg
protein/mL, GalU and final SAA experiments —4 mg
protein/mL) and the suspension was thoroughly mixed
with a pipette (up and down). As is described in the
original procedure [18], the suspensions were spread on
Petri dishes, the supernatant was carefully removed by
a pipette, the Petri dishes were placed into sealed plas-
tic bags with silica desiccant and then left in the freezer
for a longer time period to fix the magnetic particles on
the surface of enzyme particles (—20 °C, 3 weeks). In the
case of GalU and final SAA experiments, the sediments
were frozen directly in tubes (no desiccant) for only
24 h or they were quickly lyophilised (—10 °C, 1 mBar,
30-60 min, without “the final drying at super-zero tem-
peratures”). Additional file 1: Table S1 shows the specific
activities of GalU and final SAA. Comparing the specific
activities of free IBs and magnetized IBs, initial mix-
ing with the magnetic particles lowered the activity to
approximately 25%.
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Recycling of magnetically modified inclusion bodies

in the biotransformation process

After each reaction cycle, the particles were separated
by a magnet and supplied with a fresh reaction mixture:
SAA experiments, 50 mM ManNAc, 75 mM pyruvate,
50 mM Tris, pH 7.8; GalU experiments, 15 mM glucose-
1-phosphate, 10 mM UTP, 100 mM Tris, 30 mM MgCl,,
pH 8. The reactions were performed at 30 °C with shak-
ing at 250 rpm.

Capillary electrophoresis

The samples were diluted in buffer (100 mM Tris,
30 mM MgCl,, pH 8), cleared/degassed by centrifuga-
tion (14,000g, 5 min) and analysed by CE (see Additional
file 1). The CE was performed on a PrinCE Next/800 sys-
tem equipped with fused silica capillary 70/30/40. The
running buffer was 25 mM sodium tetraborate, pH 9.4.
The detector was set at 254 nm (UDP-glucose) or 210 nm
(sialic acid).

Protein content assays

The Total Protein Kit, Micro-Lowry, was used to deter-
mine protein concentrations (TP0200-1KT, Sigma-
Aldrich). The protein concentration in the IBs was
evaluated after their dissolution in 1% SDS.

Results and discussion

Magnetic modification of active inclusion bodies
Magnetically responsive biomaterials have been applied
in various fields, such as environmental nanotechnol-
ogy and wastewater treatment [20], tumour tissue visu-
alization and treatment [21], and gene therapy and tissue
engineering [22]. Different methods of magnetic particle
preparation or magnetic modification [19, 23] are used
to provide magnetically responsive materials for differ-
ent biomedical and environmental applications. Envi-
ronmental concepts are oriented towards low-cost and
easy-to-prepare procedures [24]. The same principle
applies to industrial enzyme biotransformations. Moreo-
ver, the procedures for magnetic enzyme immobilization
should be cheaper than protein isolation and purifica-
tion procedures employing magnetic materials [25]. As
a typical example of magnetic enzyme immobilization,
magnetic iron oxide-chitosan [26—28] or magnetic iron
oxide-aminosilane [29] supports are prepared first, and
then an enzyme is adsorbed or covalently bound if the
support is activated by glutaraldehyde [30].

Magnetic iron oxides can be prepared by various syn-
thetic procedures. One of them is based on a simple
preparation from the ferrous sulphate using micro-
wave irradiation at high pH [31]. Active IBs represent
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nanoparticles aggregated by hydrophobic interactions;
therefore carriers such as chitosan or aminosilane are not
needed. Like whole yeast cells [32], microalgae [33] or
even rye straw [34], IBs can be directly modified by mag-
netic iron oxide particles by mixing appropriate amounts
of magnetic iron oxide particles with IBs. It was shown
recently that the strong binding of magnetic particles to
the target biomaterial that is achieved by a complete dry-
ing at elevated temperatures [35] can also be performed
by freeze drying [18]. It was observed that commercially
immobilized glucose isomerase (Sweetzyme, NovoZyme
Corp., granule size 1-3 mm) magnetically modified at
—20 °C was stable in eight repeated reaction cycles with
only a negligible decrease in activity over time [18].

In this work, to recycle the active IBs by a magnet, IBs
of sialic acid aldolase (SAA-IBs) were chosen as a model
enzyme [10]. This enzyme is important for sialic acid syn-
thesis and has potential for various medical applications
[36, 37]. However, first, for the microscopic visualization
of the magnetic modification procedure, the magnetic
iron oxide particles were mixed with IBs of GFP, washed/
recycled by buffer/magnet ten times, and then placed in
the freezer (see “Methods” section). Microscopic obser-
vation after 3 weeks of storage and slow drying in the
freezer showed that magnetic particles at a ratio 3 and
more completely covered IBs so only black iron oxides
were observed; however, when 1 part of the magnetic
particle suspension was mixed with 1 part of the GFP-IB
suspension, the interaction was well visualized (Fig. 1).
Figure 1 depicts how large aggregates of IBs are put
together by the magnetic iron oxide particles. They were
even still compact after several wash cycles.

The size of IBs that are sphere-like or rod-like in shape
[38] is related to the dimensions of the host cell (0.2 to
1.2 pm); however, IBs are clustered into large amorphous
aggregates. The aggregation is assumed to be driven by
hydrophobic interactions because a generally accepted
view is that the formation of IBs is caused by a high local
concentration of nascent polypeptides emerging from
ribosomes during overexpression, and the cross-inter-
actions among polypeptides do not allow folding of the
chain into a regular form, where hydrophobic sequences
are oriented inside and hydrophilic sequences outside
the overexpressed protein. Surface-exposed hydrophobic
sequences are probably the driving force of the interac-
tions. Centrifugation of the cell lysate usually results in
the agglutination of IBs to large aggregates. These large
aggregates are agglutinated by the magnetic iron oxide
particles as shown in Fig. 1. In other words, if the inter-
action is strong enough, magnetic particles are even well
adsorbed on the surface of IBs aggregates (Fig. 1c).

Various forces were considered for protein adsorption
onto iron oxide minerals: electrostatic interactions (anion
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Fig. 1 Optical microscopy of magnetized inclusion bodies. a—c Inclusion bodies of GFP mixed with the magnetic particles in the ratio of 1:1. a
Fluorescent microscopy image, b and c light microscopy images. d SAA-IBs mixed with the magnetic particles in the ratio of 1:3

exchange), surface complexation (ligand exchange),
hydrophobic interactions, entropic effect, hydrogen
bonding, and cation bridging [39]. However, a preferred
mode is the surface complexation between protein
and iron oxide magnetic particles [39, 40], i.e., a ligand
exchange mechanism between surface coordinated
hydroxyl groups and water molecules from iron oxides
and the proteins. The observation that drying makes
the interaction stronger supports this mechanism. On
the other hand, in the case of IBs, one can also say that
hydrophobic interactions will play an important role.

Recycling magnetically modified inclusion bodies

in the biotransformation process

Mixing 3 parts of magnetic particles with 1 part of
the SAA-IBs suspension was chosen for the following
experiments to ensure that protein leakage into the
reaction mixture caused by SAA-IB solubilization will

be minimal. The excess of the magnetic particles would
physically re-immobilize the enzyme solubilized from
IBs during repeated conversions of N-acetyl-D-man-
nosamine (ManNAc) and pyruvate to sialic acid (neu-
raminic acid, Neu5Ac). It was described previously
that Fe;O, nanoparticles were able to directly adsorb
glucose oxidase (2 mg) when excess magnetic parti-
cles (100 mg) have been used [41]. For the possibility
of solubilization of IBs and the enzyme release, gluta-
raldehyde was used for crosslinking in one half of the
tubes. It was shown previously [10] that SAA-IBs are
still active after a short exposition to aggressive glu-
taraldehyde crosslinker, so two variants of magnetically
modified SAA-IBs were prepared for the comparison:
non-crosslinked (nSAA-IBs) and crosslinked (cSAA-
IBs). Both variants were easily settled at one side of
the plastic tube by a magnet, and the reaction mixture
was completely removed and replaced by a fresh one.
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The process is demonstrated in Fig. 2a. In the reaction,
the fixed magnetized SAA-IBs (4.3 mg of protein, par-
ticles from two Petri dishes—see materials and meth-
ods) were supplied with 1 mL of the reaction mixture
(50 mM ManNAc, 75 mM pyruvate, 50 mM Tris). The
time course of the first reaction cycle showed that
approximately 45% of the ManNAc was converted
to sialic acid during the first hour, followed by a slow
increase of sialic acid. Four hours were chosen as the
reaction interval of the biotransformation cycle (con-
version approximately 50%). Figure 2b demonstrates
that the biotransformation efficiency was not changed
markedly after 14 measured reaction cycles.

IBs represent the protein that is precipitated in
“crowded” cytosol conditions; therefore, one cannot
expect complete insolubility in many-fold diluted condi-
tions. Slow protein release was expected as mentioned
above. Measurement of the protein concentration in the
reaction mixtures after transferring the magnetized IBs
to a fresh reaction mixture showed that approximately
10 pg/mL was released in each cycle. After fourteen
cycles, from the original 4.3 mg of SAA-IBs that was mag-
netized in both cases, 0.12 mg (2.8%) and 0.11 mg (2.6%)
was released from nSAA-IBs and cSAA-IBs, respectively.
These values are not negligible. Therefore, in the follow-
ing experiments, the IBs solutions that were transformed
to the magnetic particles were set to five times lower pro-
tein concentrations (4 mg/mL). In light of nSAA-IBs and
cSAA-IBs comparison, the experiment showed that the
crosslinking of IBs is not needed in the presence of mag-
netic particles. The protein release was similar, probably
the magnetic particles re-adsorbed protein released from
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IBs, and the observed protein leakage was the result of
desorption from the magnetic particles.

In this primary study, we decided to focus in the bio-
transformation process itself. We did not characterize
the particles of magnetic iron oxides in terms of indi-
vidual sizes, and subsequently the particles that are the
result of the IBs—modified with the magnetic particles;
however, Additional file 1: Figure S3 illustrates the form
of magnetite nanoparticles from Fe’' ions in the native
state and after fourteen cycles in the biotransformation
process (nSAA-IBs).

Due to the better demonstration of the IBs magnetiza-
tion procedure, we switched to another enzyme: inclu-
sion bodies of UDP-glucose pyrophosphorylase (GalU).
This enzyme catalyses the reversible production of UDP-
glucose from Glucose-1-P and UTP, a central compound
in glyco-metabolism/glyco-engineering. Active IBs of
this enzyme have not been reported previously. In addi-
tion, the following experiments were set up to test how
the fixation process in the freezer is important because
gentle slow drying/fixation in the freezer is not eligible
for the scale-up procedure. Magnetized GalU-IBs were
frozen directly in the tubes, and one part was lyophi-
lized at conditions without “the final drying at super-zero
temperatures” In the reaction, the magnetized GalU-IBs
(100 uL of magnetic particles plus 30 pL of IBs, 0.12 mg
of protein) were supplied with 0.5 mL of the reaction
mixture (15 mM glucose-1-phosphate, 10 mM UTP,
100 mM Tris, 30 mM MgCl,). The results are depicted
in Fig. 3. Figure 3a compares lyophilized particles with
24 h frozen particles. There was no difference between
them; both type particles reached the maximum degree
of conversion in all ten cycles (60%, measured after 24 h
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of the reaction). After the first ten cycles, the particles
were then recycled after 1 hour of the reaction (degree
of conversion 30-40%). In comparing the recycling by a
magnet with recycling by centrifugation (14,000 rpm,
5 min), tubes with same amount of IBs but without iron
oxide particles were set up. Figure 3c shows how GalU-
IBs were inactivated during ten reaction cycles. In com-
parison, magnetically modified particles were recycled
fifty times and their activity increased (Fig. 3b, degree
of conversion from 30 to 50%). Contrary to free IBs, no
proteins were detected in the reaction mixtures after the
conversions.

In the final experiment, to demonstrate the perfor-
mance of magnetically modified IBs, 50 mL tubes were
filled with 600 pL of magnetic particles mixed with 200
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uL SAA-IBs (protein 4 mg/mL), lyophilized and filled
with 10 mL of the reaction mixture. In other words,
SAA-IBs were lowered five times and the volume of the
reaction mixture was increased ten times. At these con-
ditions, the biotransformation was completed after 48 h
(Additional file 1: Figure S2). The degree of conversion
after 24 h decreased from 51% to 42% during ten cycles,
which indicates inactivation; however, the trend after
48 h indicated that many other cycles should be able to
perform to the maximum degree of conversion (Fig. 4). It
was shown here that biotransformation by IBs adsorbed
on magnetic iron oxide particles could run with good
performance and operational stability.
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Fig. 4 Biotransformations of pyruvate and N-acetyl-o-mannosamine (ManNAc) to sialic acid. Inclusion bodies of sialic acid aldolase were lowered
five times and the volume of the reaction mixture was increased ten times. a Inclusion bodies of sialic acid aldolase (SAA-IBs) recycled by a magnet.
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Conclusion

In vivo enzyme immobilization integrates the immobili-
zation procedure into recombinant enzyme production.
The physiologically aggregated enzyme can be simply
separated from the host cell lysate, washed, and mixed
with microparticles consisting of magnetic iron oxides.
After gentle lyophilisation, IBs fixed with magnetic iron
oxide particles can be repeatedly used in a biotransfor-
mation process, and the separation of the magnetically
modified biocatalyst from the reaction mixture is easily
performed by a magnet. The magnetic modification of
active inclusion bodies is a cheap alternative to IBs sepa-
ration that can be used industrially on a large scale. SAA-
IBs that are entrapped in alginate beads and crosslinked
by glutaraldehyde have been effectively recycled previ-
ously [7, 10]; however, many enzymes are inactivated in
the presence of a crosslinker or high concentrations of
Ca?" ions. In view of this, the adsorption to magnetic
iron oxide particles is a gentler and more general method.

Additional file

Additional file 1: Figure S1. Capillary Electrophoresis, biotransformation
of Glc1P and UTP to UDP-Glc and pyrophosphate. Figure S2. Capillary
Electrophoresis, biotransformation of ManNAc and pyruvate to Sialic acid
(NeuAc). 600 plL of magnetic particles mixed with 200 pL SAA-IBs (protein
4 mg/mL), lyophilized and filled with 10 mL of the reaction mixture.
Figure S3. SEM image of native magnetic particles (A.) and SEM image of
magnetic particles plus non-crosslinked IBs of sialic acid aldolase (nNSAA-
IBs) after 14 repetitive biotransformations (first SAA experiment; B.). Figure
S4. SDS-PAGE of used enzymes in the form of inclusion bodies. GalU and
SAA enzymes are N-terminally fused with 20 kDa CBDclos - pulldown
domain. Table S1. Specific activities of used enzymes.
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