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Abstract 

Background: Scheffersomyces stipitis is an important yeast species in the field of biorenewables due to its desired 
capacity for xylose utilization. It has been recognized that redox balance plays a critical role in S. stipitis due to the 
different cofactor preferences in xylose assimilation pathway. However, there has not been any systems level under-
standing on how the shift in redox balance contributes to the overall metabolic shift in S. stipitis to cope with reduced 
oxygen uptake. Genome-scale metabolic network models (GEMs) offer the opportunity to gain such systems level 
understanding; however, currently the two published GEMs for S. stipitis cannot be used for this purpose, as neither 
of them is able to capture the strain’s fermentative metabolism reasonably well due to their poor prediction of xylitol 
production, a key by-product under oxygen limited conditions.

Results: A system identification-based (SID-based) framework that we previously developed for GEM validation is 
expanded and applied to refine a published GEM for S. stipitis, iBB814. After the modified GEM, named iDH814, was 
validated using literature data, it is used to obtain genome-scale understanding on how redox cofactor shifts when 
cells respond to reduced oxygen supply. The SID-based framework for GEM analysis was applied to examine how the 
environmental perturbation (i.e., reduced oxygen supply) propagates through the metabolic network, and key reac-
tions that contribute to the shifts of redox and metabolic state were identified. Finally, the findings obtained through 
GEM analysis were validated using transcriptomic data.

Conclusions: iDH814, the modified model, was shown to offer significantly improved performance in terms of 
matching available experimental results and better capturing available knowledge on the organism. More impor-
tantly, our analysis based on iDH814 provides the first genome-scale understanding on how redox balance in S. stipitis 
was shifted as a result of reduced oxygen supply. The systems level analysis identified the key contributors to the 
overall metabolic state shift, which were validated using transcriptomic data. The analysis confirmed that S. stipitis 
uses a concerted approach to cope with the stress associated with reduced oxygen supply, and the shift of reducing 
power from NADPH to NADH seems to be the center theme that directs the overall shift in metabolic states.
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Background
Scheffersomyces stipitis has been recognized as an impor-
tant yeast species in the field of biorenewables due to its 
desired capacity for utilizing xylose [1], the second most 
abundant sugar in lignocellulosic biomass. Its enzymes 
for xylose assimilation have been used to engineer Sac-
charomyces cerevisiae for both glucose and xylose conver-
sion to produce ethanol [2, 3]. In addition, CRISPR-based 
genetic tools have recently been developed for S. stipitis, 
making it a potential platform stain for producing various 
compounds derived from the shikimate pathway [4].

For biological organisms, cofactor balances play criti-
cal roles in maintaining intracellular redox hemostasis, 
which has been recognized to be a prerequisite for robust 
growth and metabolism [5]. This is especially the case for 
S. stipitis, because the first two reactions in xylose assimi-
lation pathway, i.e., xylose reductase (XR) and xylitol 
dehydrogenase (XDH), prefer different cofactors. XR 
prefers NADPH while XDH strictly depends on  NAD+, 
which leads to redox imbalance. It has been suggested 
that a major cause for the limited growth performance 
and ethanol biosynthetic capacity of S. stipitis with xylose 
as substrate is the redox bottleneck, rather than enzyme 
activity deficiency that hinders specific metabolic path-
ways [6, 7]. It is well-recognized that the cellular redox 
balance is sustained through an intricate network with 
multiple redox reactions. However, currently there has 
not been a systems level analysis nor understanding on 
how different metabolic pathways involving production/
consumption of cofactors shift in a coherent fashion in 
response to reduced oxygen supply to produce ethanol.

Genome‑scale metabolic models (GEMs) for S. Stipitis
To gain genome-wide understanding on S. stipitis’ cellu-
lar metabolism, which is the foundation of various appli-
cations, two genome-scale metabolic models (GEMs), 
iSS884 [8] and iBB814 [9], have been reconstructed based 
on the sequenced genome of S. stipitis [1]. A GEM is a 
comprehensive functional database of the organism’s 
cellular metabolism [10, 11], which consists of a set of 
metabolites, metabolic reactions (i.e., stoichiometric 
matrix), and constraints. GEMs can be used to conduct 
simulations/computations to answer various questions 
about the capabilities of the organism and its likely phe-
notypic states. GEMs, especially those of model organ-
isms Escherichia coli and Saccharomyces cerevisiae, have 
been successfully utilized in many applications, including 
metabolic engineering, model-driven discovery, predic-
tion of cellular phenotypes, and others [12, 13].

Similar to models developed in various science and 
engineering fields, the quality of a GEM determines the 
successfulness of its applications. Therefore, model vali-
dation plays an important role in GEM development. 

Besides assessing its size and connectivity, the current 
standard approach for GEM validation is to compare 
model predictions with experimental data under differ-
ent conditions [11]. Most often the experimental data 
consist of measured cross-membrane fluxes, i.e., vari-
ous substrate uptake rates, product excretion rates, and 
cell growth rate. With the recent advancement of “omics” 
technologies, gene-expression profiles, gene deletion 
data, and proteomic profiles are also used for model 
validations. Such a validation approach is deemed as the 
gold standard for evaluating the quality of a GEM. We 
term these approaches “point-matching” approaches 
because each experimental condition represents a single 
(although potentially high dimensional) point in the phe-
notypic space. For well-characterized organisms, point-
matching approaches work well, because their metabolic 
network structures have been well-studied and well-
defined. However, given the fact that a GEM, especially 
a less studied one, is severely underdetermined (i.e., large 
degree of freedom), matching numerical experimental 
data over a few limited conditions does not necessarily 
indicate a high-quality GEM and can result in very mis-
leading conclusions. This was clearly demonstrated in 
our recent study on the evaluation of the two GEMs of 
S. stipitis [14]. In that study, although one model (iSS884) 
consistently showed much better agreement with experi-
mental measurements than the other model (iBB814) 
across multiple data sets in terms of product secretion 
rates, its prediction for several mutant strains are incor-
rect. Such a lack of predictability suggests that iSS884 
contains internal errors.

System identification‑based GEM validation
To address the shortcomings of point-matching valida-
tion approaches, we proposed a system identification 
(SID) based framework for GEM validation [14]. In the 
SID framework, biological knowledge embedded in a 
GEM is first extracted from a series of designed in sil-
ico experiments through multivariate analysis methods 
such as principal component analysis (PCA); next, the 
extracted knowledge, such as how cells respond under 
a given stimulus, is visualized and compared with the 
existing knowledge for model validation and analysis. 
We term the proposed approach “knowledge-matching” 
as the simulation results are not directly compared with 
experimental data; instead, the knowledge captured 
by the model is compared with available knowledge. 
Although rooted in simulations, the SID-based approach 
is more of a qualitative validation, instead of a quantita-
tive approach, and offers additional robustness against 
measurement errors. In [14], through the knowledge-
matching based validation, we have shown that although 
iSS884 has much better agreement with experimentally 
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measured cross-membrane fluxes, it contains some sig-
nificant errors. On the other hand, although iBB814 
shows poorer performance in quantitative point-match-
ing validations, it captures the knowledge that aligns 
better with existing knowledge on S. stipitis [14]. In this 
work, built upon our previous work on the GEM com-
parison and validation, we present iDH814, an improved 
GEM for Scheffersomyces stipitis.

Need of an improved GEM for S. stipitis
For any microorganism, obtaining a high-quality GEM 
is challenging and time consuming due to the scale 
and complexity involved at genome-scale [13]. The still 
advancing GEMs of Escherichia coli (since 2000) and 
Saccharomyces cerevisiae (since 2003) suggest that the 
development of the initial version of a GEM is a ground-
breaking start; after which, significantly more efforts are 
needed to validate and refine the GEMs [13, 15]. Being 
the first GEMs of S. stipitis, iSS884 and iBB814 repre-
sent significant steps forward in gaining a genome-scale 
understanding of the cellular metabolism of S. stipi-
tis; and at the same time, it is natural that both models 
have certain limitations. For example, the prediction of 
xylitol production from both GEMs are quite different 
from the experimental observations. For iSS884, xylitol 
is not produced under any condition; while for iBB814, 
xylitol is only produced under conditions that are almost 
completely anaerobic, where no cell growth is predicted. 
Since xylitol is one of the major by-products under oxy-
gen-limited conditions as observed in wet lab experi-
ments, it is essential that the modified GEM can predict 
the production of xylitol under oxygen-limited condi-
tions, before it is utilized to gain systems level under-
standing of S. stipitis’ fermentative metabolism.

Currently, GEM refinement is typically accomplished 
through trial-and-error by modifying different reactions 
in the model and examining whether model predictions 
improve. This process relies heavily on the modeler’s 
knowledge and capability to sort out clues from various 
simulation results. Therefore, GEM refinement is usu-
ally labor intensive and time consuming [13, 15]. To help 
address this challenge, this work expands our proposed 
SID framework to guide GEM refinement and uses the 
development of iDH814 to illustrate how the SID frame-
work can help identify the root causes of erroneous 
model behaviors; and thus, expedite the GEM refinement 
process.

Materials and methods
Two GEMs of S. stipitis: iBB814 and iDH814
iBB814 [9] was constructed manually by following a 
published protocol [16]. The improved model, iDH814, 
was developed by using iBB814 as the reference model, 

and the model refinement was guided by the SID-based 
framework. Table 1 lists these models’ basic information.

The SID‑based framework for GEM refinement
For GEM refinement, the biggest challenge is to identify 
the root cause of an erroneous model behavior. Because 
of the complex interconnectivity in a GEM, many times 
seemingly unrelated reactions located far away from the 
“problematic” reactions (i.e., reactions that are not car-
ried out in the expected way) play a key role in changing 
model behavior, and the point-matching validation does 
not provide information on such “hidden” relations. In 
this section, we present how the SID-based framework 
can be applied to identify candidate root causes for a par-
ticular model faulty behavior, and in doing so, expedite 
GEM refinement. Specifically, we use the refinement of 
iBB814 for one particular error as an example to illus-
trate the following four steps in the proposed SID-guided 
GEM refinement as shown in Fig. 1.

(1) Identify the erroneous model behavior: one of the 
identified errors in iBB814 is that the oxidative 
branch of pentose phosphate pathway (oxPPP) is off 
under aerobic conditions (Fig. 1a). This is contrary 
to the common knowledge for S. stipitis (and other 
microorganisms), as it is well accepted that oxPPP 
should be active under aerobic conditions to gener-
ate reducing equivalents needed for cell synthesis.

(2) Conduct in silico experiments by forcing desired 
model behavior (through, e.g., applying additional 
constraints) to identify the key reactions that con-
tribute to this erroneous model behavior: a series 
of in silico experiments were conducted by forcing 
proportionally increasing flux through oxPPP with 
increasing  O2 uptake under aerobic conditions.

(3) Apply SID to identify which reactions respond 
most significantly to the forced change: Principal 

Table 1 Basic Information for  two P. stipitis GEMs iBB814 
and iDH814

Specification iBB814 iDH814

Reactions 1371 1380

Cytosol 751 759

Mitochondria 125 126

Transport 495 495

Metabolites 971 972

genes 814 814

Percent of genome (%) 13.6 13.6

Compartment Cytosol, exchange, 
mitochondria

Cytosol, 
exchange, 
mitochondria
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component analysis (PCA) identifies key reactions 
based on the magnitude of principal component 
(PC) loadings (Fig.  1b). Seven reactions that had 
the largest loadings were identified as candidates 
for further examination. Figure 1b shows that these 

seven reactions spread across a wide range of reac-
tion pathways, including tricarboxylic acid cycle 
(TCA), glycolysis, electron transport chain (ETC) 
and pyruvate metabolism, and may not be easily 
identified through a trial-and-error approach.
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(4) Determine which candidate reactions and/or their 
constraints should be modified and/or what new 
reactions should be added: careful examination 
of the seven reactions showed that one reaction, 
malate oxidation to oxaloacetate, was carried out 
in the opposite direction as suggested by the litera-
ture. By increasing the lower bound of the malate 
oxidation reaction from − 1000  mmol/gCDW/h 
to 0 mmol/gCDW/h, oxPPP becomes active under 
aerobic conditions (Fig. 1c).

This example shows that the malate oxidation reaction, 
the root cause of the erroneous model behavior, i.e. inac-
tive oxPPP under aerobic condition, is located quite away 
from oxPPP pathway. Without the guidance of the SID 
framework, it could be very difficult to quickly identify 
this source of error. However, with the SID-based analy-
sis, the overall network response provides key informa-
tion to help quickly identify the root cause of the error.

Transcriptomic data acquisition and analysis
Scheffersomyces stipitis CBS 5773 was obtained from 
ATCC. The frozen stock and culture media were the same 
as in Liang et al. [17]. All experiments were conducted in 
a BioFlo 115 with 2 L working volume. After inoculation, 
the cells were cultured under batch mode until biomass 
reached 6  g/L and switched to continuous mode. Once 
a controlled chemostat of aerobic growth was achieved 
and maintained, two samples were collected 10  min 
apart. Next, the oxygen supply was immediately and sig-
nificantly reduced to induce oxygen-limited fermenta-
tion, and the dilution rate was simultaneously adjusted 
to maintain a relatively constant cell density. After the 
cells were maintained at the oxygen-limited chemostat 
for 24 h, two more samples were collected 10 min apart 
for the oxygen-limited chemostat. The experiment was 
repeated for two times.

Each cell sample was centrifuged for 5  min at 
10,000  rpm at room temperature. After centrifugation, 
the samples were decanted and the remaining cell pellets 
were immediately submerged into liquid nitrogen. The 
frozen cell samples were stored in a − 80 °C freezer until 
all cell samples from both trials were collected. The fro-
zen cell samples were shipped to the University of Wis-
consin-Madison Biotechnology Center, which conducted 
the RNA extraction, and analysed the samples through 
Illumina Next-Generation Sequencing. The data set con-
sists of raw count data, fragments per kilobase per mil-
lion reads (FPKM), and transcripts per million (TPM). 
The raw reads were aligned to the CBS6054 genome 
using STAR aligner, and the aligned reads were quanti-
fied using RSEM [18, 19]. After alignment, each sample 
contains 5966 gene expression levels.

The gene-to-protein-to-reaction (GPR) rules provided 
in the GEM were used to calculate the reaction expres-
sion values (protein expression values) for different path-
ways. For reactions catalyzed by multiple isozymes, we 
use the sum of the expressions for the associated genes. 
If a protein consists of subunits, the protein expression 
is determined by considering the minimum expression of 
the subunits. These rules were also used in [20].

Results and discussion
In this section, we first provide detailed information on 
the differences between iBB814 (the base model) and 
iDH814 (the modified model) and evaluate the quality of 
iDH814. Specifically, we first subject iDH814 to pheno-
type phase plane (PhPP) Analysis and provide a detailed 
analysis along the line of optimality where cell growth is 
optimal; then we evaluate the model through the conven-
tional point-matching approach by comparing the model 
predictions with published experimental results. Once 
validated, we use published experimental data to guide 
the design of in silico experiments and apply the SID-
based framework to understand how cellular metabolism 
shift in response to reduced oxygen supply. In particular, 
we thoroughly examined the cellular redox cofactor con-
sumption and production to obtain genome-scale under-
standing on the redox shift that contributes to the overall 
metabolic shift. Finally, the findings obtained through 
GEM analysis were validated using transcriptomic data 
collected on S. stipitis under aerobic growth and oxygen-
limited fermentation.

The modified GEM iDH814
Following the procedure illustrated in Fig.  1, as well as 
integrating available knowledge on S. stipitis, we obtained 
a modified GEM, iDH814, based on iBB814. In summary, 
starting with iBB814, we modified 13 reactions, deleted 
10 reactions and added 19 reactions to obtain iDH814. 
Additional file  1: Table  S1, Additional file  2: Table  S2, 
Additional file 3: Table S3 list the detailed reactions that 
have been modified, removed and added to iBB814 to 
obtain iDH814. The model files are provided as Addi-
tional file 4: Table S4 and Additional file 5: Table S5.

Overall model behavior through phenotype phase plane 
analysis
One major application of GEMs is to predict differ-
ent growth phenotypes (e.g., how fast cells grow, what 
products are excreted) under various genetic and envi-
ronmental conditions. Developed by the Palsson lab, 
phenotype phase plane (PhPP) analysis is a power-
ful tool that utilizes flux balance analysis (FBA) with 
a GEM to provide a global perspective on the geno-
type–phenotype relationship, and to help characterize 
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different metabolic phenotypes [21]. Here we compare 
iBB814 and iDH814 through PhPP analysis, where 
Fig.  2 compares the two models for their predictions 
on the cell growth,  CO2, ethanol, and xylitol produc-
tion over a wide range of xylose and oxygen uptake 
rates. Figure 2 indicates that, although the two models 
follow similar trends in terms of cell growth rate and 
various product secretion rates, when culture condi-
tion changes, they do contain some key differences. 
For example, iDH814 predicts higher growth rates and 
less  CO2 production than iBB814, while ethanol secre-
tion is predicted over a much narrower range of condi-
tions compared to iBB814. More importantly, Fig.  2g, 
h clearly show that the xylitol production pattern from 
iDH814 agrees with experimental observations, i.e., 
the peak xylitol production occurs under oxygen lim-
ited condition, instead of anaerobic condition where 
the cell cannot grow at all; and xylitol is produced at 
much wider range where cell growth is feasible, which 
also agrees with experimental observations.

Model comparison through analysis along line of optimality
Figure  3 shows the 2D PhPP plots of the two GEMs, 
which is obtained through projecting Fig. 2a, b onto the 
plane defined by the xylose and oxygen uptake rates. The 
different colors/shades indicate different phenotypes. The 
straight lines marked on the plots are the line of optimal-
ity (LO) determined by each model. The LO represents 
the optimal relationship between the carbon and oxy-
gen uptake rates for maximum cell growth. It has been 
shown that for well-defined GEMs, the model predicted 
LO agrees very well with experimental results [21, 22]. 
Therefore, a necessary condition for a high-quality GEM 
would be that the model performs well along the LO. 
Hence, as one of the first steps for examining the two 
models in detail, we performed SID-based analysis along 
the LO, and compared the knowledge captured by the 
two models.

Along the LO, since carbon and oxygen uptake rates 
increase proportionally at the fixed optimal ratio, it 
is expected that all activated pathways should carry 

Fig. 2 3D phenotype phase planes for the two GEMs. a Growth PhPP for iBB814, b growth PhPP for iDH814, c  CO2 production PhPP for iBB814, d 
 CO2 production PhPP for iDH814, e ethanol production PhPP for iBB814, f ethanol production PhPP for iDH814, g xylitol production PhPP for iBB814, 
h xylitol production PhPP for iDH814. Uptake and flux values given in mmol/gCDW/h. Growth rate given in  h−1
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proportionally increasing fluxes to achieve increased 
maximum cell growth. Therefore, when SID-extracted 
information along the LO is visualized, only blue 
colored (upregulating flux) and black colored (inactive 
reaction) reaction arrows are expected. Figure  4 com-
pares the knowledge captured by each model along 
their corresponding LO.

In this analysis, the LO is determined by changing 
the xylose uptake rate and allowing the oxygen uptake 
rate to be determined by FBA with maximizing cell 
growth as the objective. Figure 4a shows that the result 
from iBB814 is mostly as expected, except the oxidative 
branch of PPP is inactive. This indicates that the knowl-
edge captured by iBB814 is mostly correct, at least for 
aerobic conditions.

Figure 4b indicates that along the LO, the knowledge 
captured by iDH814 fully agrees with the expected 
behavior. The loadings shown in Fig. 4 indicate how the 
flux through each reaction changes corresponding to 
the change in xylose uptake rate. The different loading 
values for the  O2 uptake reaction indicate the differ-
ent slopes of the corresponding LO, as shown in Fig. 3; 
more specifically, to assimilate 1 mol of xylose for opti-
mal growth, iBB814 requires 1.987 mol of  O2, whereas 
iDH814 only requires 1.496 mol of  O2. The larger load-
ing for the  CO2 exchange reaction in iBB814 indicates 
that it produces more  CO2 than iDH814, which agrees 
with what is revealed in PhPP analysis, i.e., Fig.  2c, d. 
Correspondingly, the smaller loading for cell growth 
rate in iBB814, indicates the smaller increase in cell 

growth rate when moving along the LO compared to 
iDH814, which is also confirmed by Fig. 2a, b.

Conventional point‑matching with experimental data
It is worth noting that iDH814 was developed through 
the “knowledge-matching” approach only, without any 
attempt to fit available experimental data; in addition, 
the knowledge utilized to guide the model refinement is 
general to many different microorganisms, such as the 
example shown in Fig. 1. To further evaluate the modi-
fied model for its quantitative prediction performance, 
several published experimental results were used to eval-
uate the model through the “point-matching” approach. 
The results predicted by iDH814 were compared to the 
results by iSS884 and iBB814. Here we included the 
results from iSS884 because it performed much better 
than iBB814 in point-matching validations [14].

To provide a fair comparison, we used the same data-
sets that were used in Damiani et  al. [14] for iSS884 
and iBB814 evaluation. One data set was taken from 
Caspeta et  al. [8], and the other from Li [23]. Table  2 
lists the model prediction errors. For the three GEMs, 
the model input (i.e., xylose and oxygen pickup fluxes) 
were set to the experimental values, and model pre-
dictions (i.e., biomass, ethanol, and  CO2 fluxes) were 
compared with experimental values at seven different 
conditions. Table 2 clearly shows that iDH814 provides 
the best quantitative validation performance, although 
the model was derived purely based on a knowledge-
matching approach.

Fig. 3 2D phenotype phase plots with LO indicated by red line for a iBB814 and b iDH814. Uptake values given in mmol/gCDW/h
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Using iDH814 to understand S. stipitis’ fermentative 
metabolism
With iDH814 validated through both knowledge-match-
ing and point-matching approaches, we apply the SID-
based framework to study the fermentative phenotype 
predicted by the GEM. The goal is to obtain system-level 
understanding on the strain’s fermentative metabolism.

Further validation of iDH814 for xylitol production
Xylitol has been shown to be a major by-product of S. 
stipitis under fermentation. We have shown that iDH814 
is able to predict xylitol production in a reasonable way, 
here we compared its prediction with experimental data 
available in literature on xylitol production [24].

As noted previously, because of the different redox 
cofactor preferences of XR and XDH, when xylose is 
converted to xylulose in S. stipitis, a redox imbalance 
is resulted and excess amount of NADH is produced. 
Since both routes of XR reactions that consume NADH 
and NADPH are included in the GEMs, without fur-
ther constraints, the NADH-dependent route is always 

activated by FBA, as it will generate faster growth rate 
due to the balanced redox. To address this limitation, 
for the simulations conducted in this section, we added 
a constraint on the flux ratio between NADPH-depend-
ent and NADH-dependent XR, to reflect the available 
knowledge on the XR cofactor preference [25].

Table  3 compares the model predictions with 
reported experimental values. Since in Farias et al. [24], 
the oxygen uptake rate was not reported for the experi-
ments, the comparison was conducted by matching the 
model predicted ethanol yield with the reported value 
through tuning oxygen uptake flux and XR ratio; then, 
the model predicted xylitol yields were compared with 
the reported experimental value, which show excellent 
agreement.

Table  3 shows that to match the experimental 
reported ethanol yield, which monotonically increases 
from condition  1 to condition  4, the model requires 
monotonically decreasing oxygen uptake rates and con-
currently shifting the XR’s cofactor preference from 
NADPH to NADH. Such trends agree with available 
knowledge: when oxygen supply is abundant, the excess 

Fig. 4 PCA loading values visualized on central carbon metabolic network maps for a iBB814 and b iDH814 along the LO
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NADH produced through XR-XDH reaction pair can 
be shuttled into mitochondria where they enter ETC 
to produce ATP with oxygen as the electron acceptor; 
when less oxygen is available, then less NADH can be 
processed via ETC. Therefore, it is reasonable that XR 
cofactor preference shifts toward NADH to reduce the 
demand on oxygen for NADH consumption.

Analysis of the cellular metabolic shift with reduced oxygen 
at genome‑scale
To gain a better understanding on how the cellular redox 
balance shifts at genome-scale when oxygen uptake rate 
(OUR) decreases, we applied the SID-based framework 
to investigate the cellular response to the change in 
OUR using iDH814. As mentioned before, first a series 
of in silico experiments should be designed and carried 
out to help reveal how the cellular redox balance shifts 
when OUR decreases. Because iDH814 does not contain 
the gene regulatory mechanism on cofactor utilization, 
in silico experiments were carefully designed to reflect 

what is going on within the cell by integrating experi-
mental results. In Fig. 5, we plotted the ethanol yield and 
the model fitted XR cofactor preference correspond-
ing to OUR for conditions  1–3. Figure  5 shows the lin-
ear correlations between the XR cofactor preference and 
OUR, as well as between ethanol yield and OUR. These 
linear relationships suggest that the three conditions are 
located within the same phenotype phase [26]. Based 
on Fig.  5, we designed a series of in silico experiments 
corresponding to conditions that are located along the 
straight line as indicated in Fig. 5. Specifically, for these 
in silico experiments, as OUR was reduced linearly from 
2.33 to 1.42  mmol/gDCW/h, the XR cofactor prefer-
ence ratio (NADPH:NADH) was decreased linearly from 
0.93 to 0.10, while keeping a constant xylose uptake rate 
(5 mmol/gDCW/h).

Next, PCA was applied to analyze the resulting flux dis-
tribution matrix. One principal component (PC) captured 
100% of the variance, which confirms that conditions 
along the linear segment shown in Fig. 5 indeed belong to 
the same phenotype. The PC loadings were then visual-
ized against the metabolic network map to better under-
stand the intracellular metabolic responses predicted 
by the model, as shown in Fig. 6. In Fig. 6, blue reaction 
arrows indicate that the reaction fluxes are upregulated, 
red down regulated, and black no change in flux through 
the reaction. Figure  6 shows that corresponding to the 
reduced OUR and shift in XR cofactor preference, PPP, 
TCA and ETC pathways are all down regulated, while 
glycolysis and ethanol production are upregulated. Such 
responses agree with available understanding: when XR 
cofactor preference shifts toward NADH, less NADPH is 
needed for xylose reduction, which explains the reduced 
flux through oxPPP, the major route for cytosolic NADPH 
production. As a result of the decrease in carbon flux 
through oxPPP, the carbon is rerouted through glycolysis 
and eventually converted to ethanol which is secreted by 
the cell. In addition to an increase in ethanol yield corre-
sponding to reduced OUR, which is observed in experi-
ments, Fig. 6 confirms that xylitol yield also decreases as 
noted by the negative loading value for the xylitol secre-
tion reaction. Regarding NADH production and con-
sumption, Fig. 6 shows that as OUR decreases, the ATP 
production through ETC decreases (due to reduced oxy-
gen availability), indicating that less amount of NADH 
can be oxidized through this route. To compensate for 
this, as XR cofactor preference shifts toward NADH, 
less amount of excess NADH is produced through XR-
XDH pair; hence, less amount of NADH should be shut-
tled into mitochondria for ATP production. Because the 
inner membrane of the mitochondria is impermeable to 
NADH [27], electron shuttles, metabolic pathways that 
facilitate the transfer of electrons (in the form of NADH) 

Table 2 Point-matching validation of three GEMs

a Units C/O flux: mmol/(gCDW/h). In [8], xylose is the substrate. In [23], xylose is 
the substrate for the first two conditions and glucose for the last two conditions. 
Since NADPH dependent glutamate dehydrogenase (GDH3) is repressed by 
glucose, the corresponding reaction was disabled for the two cases where 
glucose is the substrate
b err% =

∣

∣

∣

Pred.−Exp.
Exp.

∣

∣

∣
∗ 100% . When the experimental value is zero, absolute 

error is given (marked with 1). Better prediction values (i.e., smaller errors) are 
shown in italics

Data source Exp. cond.a Product err %b

iSS884 iBB814 iDH814

Caspeta et al. [8] O: 0.24
C: 3.11

EtOH 29.9 39.1 26.7

CO2 11.8 16 7.8

Cell 32.1 66.1 31.8

O: 0.35
C: 3.03

EtOH 2.3 6.6 0.29

CO2 22.7 28.5 21.4

Cell 24 63.7 24

O: 0.75
C: 2.55

EtOH 2.5 16 3.6

CO2 26.6 38.8 27.1

Cell 40.7 75.7 49.9

Li [23] O: 1.64
C: 4.10

EtOH 11.1 36.5 1.0

CO2 37 55 24.1

Cell 47 30.3 24.2

O: 6.23
C: 4.69

EtOH 0.171 2.721 0.81

CO2 12.2 18.9 4.3

Cell 26.6 40.4 2.5

O: 1.33
C: 3.28

EtOH 6.5 14.5 7.4

CO2 6.2 6.1 2.2

Cell 18.2 63.2 22.2

O: 6.00
C: 4.32

EtOH 0 2.31 0

CO2 10.5 21.3 9.7

Cell 12.4 47 5.5
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produced in the cytosol to the electron transport chain 
in mitochondria, are needed. It has been reported that in 
Saccharomyces cerevisiae, the two major electron shuttle 
pathways are external NADH dehydrogenase (NADHDH) 
and the glycerol-3-phosphate (GLYC3P) shuttles [28]. 
Our analysis results show that S. stipitis also primarily 
utilizes the GLYC3P shuttle and/or the NADHDH shut-
tle. As revealed by Fig. 6, such reduction in excess NADH 
was indeed reflected in the down regulation of the two 
electron shuttles: GLYC3P shuttle (highlighted in blue 
box) and NADHDH shuttle (highlighted in green box). It 
should be noted that the use of GLYC3P and NADHDH 
shuttles by iDH814 were obtained as alternative optimal 
solutions of FBA, indicating both shuttles could be in 
operation at the same time.

Analysis of the cellular redox shift with reduced oxygen 
at genome‑scale
It has been well recognized that redox balance is one 
of the prerequisites for robust growth and metabolism, 

and the redox imbalance caused by xylose assimilation 
pathway in S. stipitis has been suggested as a major 
cause for the limited growth performance and ethanol 
biosynthesis capacity of S. stipitis. Since cellular redox 
balance is sustained through an intricate network with 
multiple redox reactions, a genome-scale understand-
ing on how cellular redox shift with reduced OUR will 
provide valuable insights for mutant design, especially 
for redox cofactor engineering. In this section, we 
use the modified model iDH814 to gain system-level 
understanding on how the key contributing reactions 
to the redox shift respond in a coherent fashion to the 
reduced oxygen supply and produce ethanol.

Based on the in silico experimental results obtained 
in the previous section, we tabulated the total NADH, 
NADPH production/consumption in cytosol and the total 
Q6H2 production/consumption in mitochondria predicted 
by the GEM when the cells transition from condition 1 to 
condition 3. All reactions that contribute to the redox shift 
are listed in Additional file 6: Table S6 and Additional file 7: 

Table 3 Comparison of iDH814 xylitol results to experimental data

YE/S is the ethanol yield, where xylose is the substrate (S). Xylose reductase (XR) redox ratio and oxygen uptake rate (OUR) were varied. Minimized the error between 
ethanol yield of experiment and prediction from iDH814, then examined the xylitol productions from experiments and those predicted by iDH814

Case YE/S experiment Xylitol experimental (mmol/
gCDW/h)

Xylitol prediction (mmol/
gCDW/h)

Ratio of XR NADPH/
NADH

OUR

1 0.328 0.1408 0.1408 0.94 2.33

2 0.358 0.0934 0.0935 0.207 1.64

3 0.376 0.0115 0.0116 0.11 1.42

4 0.437 0.0172 0.0173 0.11 0.50

Fig. 5 Experimental ethanol production and NADPH stoichiometric coefficient in XR vs OUR. As can be seen, the linear fits for XRratio and ethanol 
production indicate that the three points are in the same phenotypic phase
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Table S7, for NADH and NADPH involved reactions, cor-
respondingly. As shown in Table 4, as cells transition from 
condition 1 to condition 3 due to reduced OUR, the total 
production/consumption of cytosolic NADH slightly 
increased by 6% (0.67 mmol/gDCW/h), while the total pro-
duction/consumption of cytosolic NADPH decreased sig-
nificantly by 46% (1.138 mmol/gDCW/h).

The detailed flux information provided in Additional 
file  6: Table  S6 and Additional file  7: Table  S7 indicates 

that there are only a few reactions that contribute sig-
nificantly to the shift of redox balance, which are listed in 
Table  5. The major contributing reactions to redox bal-
ance are also shown in Fig. 6. Besides the reactions con-
tained in central carbon metabolic network that consume/
produce NADH/NADPH, the rest of the major contribu-
tors are all part of the three electron shuttle systems: two 
shuttle systems for NADH (i.e., NADHDH and GLYC3P, 
shown in green and blue boxes respectively), and one 

Fig. 6 Visualization of the metabolic network response induced by the reduced oxygen uptake
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shuttle system for combined NADH/NADPH (termed 
glutamate (GLU) shuttle, shown in red box in Fig. 6).

Figure 6 shows that due to the reduced amount of oxy-
gen available as an electron acceptor in the mitochondria, 
the amount of NADH that is transported into the mito-
chondria was reduced significantly (65.7% decrease of 
shuttle flux compared to condition 1), which is expected. 
In addition, it was somewhat surprising to see the dra-
matic increase (126% increase compared to condition 1) of 
flux through the GLU shuttle. However, a closer look at the 
GLU shuttle reveals that the shuttle consumes 1 NADH 
and 1 NADPH in cytosol, but produces 2 NADH in the 
mitochondria, which suggests that the GLU-shuttle effec-
tively serves as an NAD(P)+ transhydrogenase that con-
verts cytosolic NADPH into mitochondrial NADH, which 
helps balance the significant shift from NADPH to NADH.

Regarding the redox shifts in the mitochondria, in 
Table 4 we have only listed the production and consump-
tion of Q6H2, since the final output of each electron shut-
tle that is active in iDH814 is Q6H2, which subsequently 

enters the ETC for ATP production. As shown in Table 4, 
the decrease of Q6H2 production/consumption in the 
mitochondria is 1.79 mmol/gDCW/h, which accounts for 
98% of the reduced oxygen supply (OUR decreased from 
2.33 to 1.42  mmol/gDCW/h, representing decrease of 
1.82 mmol/gDCW/h electron acceptors).

This analysis suggests that to cope with the stress 
caused by reduced oxygen supply, cells rely on increased 
production of NADH, as well as converting cytosolic 
NADPH to mitochondrial NADH to achieve the drastic 
shift from NADPH to NADH as the reducing factor.

Validation of the GEM‑based analysis using transcriptomic 
data
In this section, we use transcriptomic data collected 
under aerobic growth and oxygen-limited conditions 
to validate the findings we obtained through GEM 
based analysis. Although the relationship between gene 
expression levels and the metabolic flux through the 
corresponding enzymatic reaction is not direct, tran-
scriptomic data obtained through RNA-Seq analysis 
offers an opportunity to help gain genome-wide under-
standing on how an organism responds to environmen-
tal/genetic perturbations. It has been assumed that 
the trend of significant gene-regulation should align 
with flux changes, i.e., significant up-regulations would 
result in increased fluxes, while significant down-regu-
lations would result in decreased fluxes [20]. Therefore, 
we compared the direction of changes in GEM pre-
dicted flux when oxygen uptake rate is reduced, with 
the direction of changes in measured gene expression 

Table 4 Summary of  the  balance of  cytosolic electron 
carriers

Metabolite Process Cond 1 Cond 3 Cond 3 − Cond 1

NADH Produced 11.77 12.44 0.67

Consumed 11.77 12.44 0.67

NADPH Produced 3.96 2.13 − 1.83

Consumed 3.96 2.13 − 1.83

Q6H2 Produced 4.42 2.63 − 1.79

Consumed 4.42 2.63 − 1.79

Table 5 Reactions that contribute significantly to shift in redox balance

a Flux change values given in mmol/gCDW/h
b The gene for xylose reductase is the same for both the NAD and NADP dependent routes

Role Reaction Reaction equation Flux  changea Match 
TPM 
trend

NADH production GAPD −1 nad[c] +−1 pi[c] +−1 g3p[c] ⟷ 1 h[c]+1 nadh[c]+1 13dpg[c] 0.585 Yes

XDH −1 h[c] +−1 nadh[c] +−1 xylu-D[c] ⟷ 1 nad[c]+1 xylt[c] 0.112 Yes

NADH consumption ALCDH −1 etoh[c] +−1 nad[c] ⟷ 1 h[c]+1 acald[c]+1 nadh[c] 0.746 Yes

NADHDH −1 h[c] +−1 nadh[c] +−1 q6[m] ⟶ 1 nad[c]+1 q6h2[m] − 2.294 Yes

XYLR1 −1 h[c] +−1 nadh[c] +−1 xyl-D[c] ⟶ 1 nad[c]+1 xylt[c] 1.950 N/Ab

PYRC −1 h[c] +−1 nadh[c] +−1 glu-L[c] ⟷ 2 h2o[c]+1 nad[c]+1 1pyr5c[c] 0.282 No

NADPH production G6PDH −1 nadp[c] +−1 g6p[c] ⟶ 1 h[c]+1 nadph[c]+1 6pgl[c] − 0.892 Yes

GND −1 nadp[c] +−1 6pgc[c] ⟶ 1 nadph[c]+1 co2[c]+1 ru5p-D[c] − 0.892 Yes

NADPH consumption XYLR2 −1 h[c] +−1 nadph[c] +−1 xyl-D[c] ⟶ 1 nadp[c]+1 xylt[c] − 1.950 N/Ab

P5CR −2 h[c] +−1 nadph[c] +−1 1pyr5c[c] ⟶ 1 nadp[c]+1 pro-L[c] 0.282 No

Q6H2 production NADHDH −1 h[c] +−1 nadh[c] +−1 q6[m] ⟶ 1 nad[c]+1 q6h2[m] − 2.294 Yes

Q6H2 consumption CYOR_u6m −2 h[m] +−1 q6h2[m] +−2 ficytc[m] ⟶ 4 h[c]+1 q6[m]+2 focytc[m] − 1.788 Yes

ATP production ATPSm −1 adp[m] +−1 pi[m] +−4 h[c] ⟶ 1 atp[m]+1 h2o[m]+4 h[m] − 1.793 Yes
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levels to validate the findings obtained from the GEM-
based analysis.

Table  6 lists the comparison result for the flux and 
gene expression level changes (from two trials) for the 
central carbon network (CCN), and the genome-wide 
comparison is given in Additional file  8: Table  S8 and 
Additional file 9: Table S9. Table 6 only includes reactions 
that carry fluxes and there are 17 reactions in CCN that 
do not carry flux. In addition, Table  6 does not include 
the exchange or transport reactions. Finally, the xylose 
reductase reactions were not included, because the same 
enzyme can either utilized NADH or NADPH and there 
is no way to distinguish the two routes. In Table  6, the 
gene expression levels that showed larger than 10% of 
changes relative to their expression levels under aero-
bic growth are denoted by “+” or “−” for increase and 
decrease, respectively; while the ones show less than 10% 
of changes, either increase or decrease, are denoted by 
“o”.

From Table 6 it can be seen that 76% (Trial I) and 80% 
(Trial II) of reaction flux changes agree with transcrip-
tomic level changes which include all key contributors 

identified by the SID-based analysis, indicating high 
quality prediction by iDH814. Specifically, iDH814 pre-
dicts reduced fluxes for both of the two NADH shut-
tles (i.e., the NADHDH and GLYC3P shuttles), together 
with increased ethanol production to cope with reduced 
oxygen supply. The reduced fluxes through both NADH 
shuttles were confirmed by the transcriptomic data as 
genes associated with both NADH shuttles show reduced 
expression levels. It is worth noting that it has been 
reported inhibiting NADHDH shuttle can increase etha-
nol production as suggested by the SID-based analysis; 
however, the inhibition only resulted in 18% of increase in 
ethanol production, and such less than expected increase 
can be explained by the operation of the GLYC3P shuttle, 
which was not considered in [29].

In addition, the last column of Table  6 indicates 
whether the change predicted by iDH814 agrees with 
gene expression data, which clearly shows that all key 
contributors identified by iDH814 based analysis are sup-
ported by transcriptomic data, except few related to GLU 
shuttle. Although one could argue that the discrepancy in 
the NADPH shuttle could be explained by translational 

Table 6 GEM predicted flux changes vs. experimental gene expression level changes

Reaction Flux change TPM change 
(trial I)

TPM change 
(trial II)

Reaction Flux change TPM change 
(trial I)

TPM 
change 
(trial II)

GAPD + + + TKT1 − − −
PGK + + + G6PI − − −
PGM + + + G6PDH − − −
ENO + + + PGL − − −
PYK + + + GND − − −
ATPSm − o − NADH2-u6t + + o

ATPtm-H − + + GLUD2 − − −
PYRDC + + + RPE + − −
ALCDH + + + ACS1 − − −
XYLUR + + + ALDDH1 − − −
XYLK + + + PDHm − − −
CYOR_u6m − o − PC − o −
SUCCDH1m − o − ASPGLU2 m + − −
G3PD1* − − − PYRC + − −
NADHDH* − − − P5CR + − −
G3PDm − o − PRO1 m + − −
RPI − − − PYRCm + − −
FBA + − + ACONHm − − −
PFK + + + CITSm − − −
TPI + + + ICDH1m − − −
TKT2 − − − FUMm − − −
TALA − + + MDHm − − −
CYOOm − + + SUCCDHpm − − −
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control and/or post translational modification, we think 
it is more likely due to the potential error contained in 
the model and/or lack of the key regulatory mechanisms.

Conclusion
In this work, we expanded our previously developed SID-
based framework for GEM validation to GEM refinement 
and demonstrated its effectiveness through developing 
an improved GEM for Scheffersomyces stipitis. Through 
designed in silico experiments, the SID-based framework 
can identify candidate reactions to examine in order to 
correct erroneous prediction behaviors, and thus, expe-
dite the GEM refinement process. Based on our previous 
results of GEM evaluation for S. stipitis, we applied SID-
based framework on a previously published GEM model 
iBB814 to derive an improved GEM, iDH814. Through a 
series of examinations and comparison experiments, we 
showed that iDH814 offers improved performance in 
both traditional point-matching validations and the pro-
posed knowledge-matching validations, although iDH814 
was developed solely based on knowledge-matching.

With the modified GEM iDH814 being capable of pro-
ducing xylitol, we designed and performed additional in 
silico experiments to gain a more in-depth understand-
ing of how S. stipitis adjusts its cellular metabolism in 
response to a decrease in OUR through ethanol produc-
tion. To compensate for the limitation that iDH814 (or all 
existing GEMs of S. stipitis) does not contain a gene-reg-
ulatory mechanism to adjust XR cofactor preference, we 
used experimental data to derive additional constraints 
in order to reflect what happens in cellular metabolism 
when OUR decreases. The systems level analysis obtained 
through the SID-based framework identified the key reac-
tions contributed to the metabolic shift trigger by reduced 
oxygen supply. In addition, the intricate network of redox 
reactions involved in the metabolic shift were identified as 
well. These findings offer key insight to the mutant design 
for cofactor engineering. Finally, the iDH814 predicted 
flux changes were validated by transcriptomic data, which 
showed 75–80% agreement between predicted changes by 
iDH814 and transcriptomic data.

The analysis results confirmed that S. stipitis uses a 
concerted approach to cope with the stress associated 
with reduced oxygen supply, and the shift of reducing 
power from NADPH to NADH seems to be the center 
theme that organizes the overall shift in metabolic states. 
It is worth noting that although the SID-based frame-
work can only reveal correlations amongst the changes 
that happen to different pathways, we could derive cer-
tain causal relationships among them by integrating 
available information (such as introduced perturbation) 
and existing knowledge to derive testable hypotheses on 
causal relationships.
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