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Abstract 

Amylase plays an important role in biotechnology industries, and Gram-positive bacterium Bacillus subtilis is a major 
host to produce heterogeneous α-amylases. However, the secretion stress limits the high yield of α-amylase in B. 
subtilis although huge efforts have been made to address this secretion bottleneck. In this question-oriented review, 
every effort is made to answer the following questions, which look simple but are long-standing, through reviewing 
of literature: (1) Does α-amylase need a specific and dedicated chaperone? (2) What signal sequence does CsaA rec-
ognize? (3) Does CsaA require ATP for its operation? (4) Does an unfolded α-amylase is less soluble than a folded one? 
(5) Does α-amylase aggregate before transporting through Sec secretion system? (6) Is α-amylase sufficient stable to 
prevent itself from misfolding? (7) Does α-amylase need more disulfide bonds to be stabilized? (8) Which secretion 
system does PrsA pass through? (9) Is PrsA ATP-dependent? (10) Is PrsA reused after folding of α-amylase? (11) What 
is the fate of PrsA? (12) Is trigger factor (TF) ATP-dependent? The literature review suggests that not only the most of 
those questions are still open to answers but also it is necessary to calculate ATP budget in order to better understand 
how B. subtilis uses its energy for production and secretion.
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Background
Amylase, especially α-amylase, is an important biological 
product with its wide applications in clinical practice [1, 
2] and in industry [3, 4]. For this reason, bacteria are con-
sidered as an important cell factory to produce α-amylase 
[5], especially a Gram-positive bacterium, Bacillus subti-
lis, because of its high yield of designed proteins [6, 7], 
its free of endotoxins, and its simplicity in terms of a few 
hundreds of proteins making up a viable cell [8].

Although B. subtilis frequently serves as a model bac-
terium to enrich our knowledge on how different mech-
anisms work in bacteria [9], it does produce desired 
products economically and profitably, such as riboflavin 
[10–12], branched-chain amino acids [13], amylase [14], 
etc.

To increase the production of α-amylase in B. subtilis, 
heterologous α-amylases are introduced into B. subtilis, 
for instances, AmyL comes from B. licheniformis [15], 

AmyM and AmyS come from Geobacillus stearother-
mophilus [14], and AmyQ comes from B. amyloliquefa-
ciens [16]. These introductions are necessary because, 
for example, B. amyloliquefaciens demonstrates a strong 
ability in secretion but a weak ability in production, 
whereas B. subtilis does oppositely, and B. amylolique-
faciens has a bigger growth rate with larger cell density 
than B. licheniformis [17]. But most importantly, B. subti-
lis is used because its genetics is well known [8] and there 
are many molecular tools to manipulate it [8, 18].

However, incompatibility between α-amylase produc-
tion and secretion is observed, and becomes the bottle-
neck in industrial production of α-amylase, and is termed 
as the secretion stress [19]. Primarily the secretion 
stress goes through three steps, the overproduction and 
hyper-secretion of α-amylases upregulate the secretion 
stress-responsive CssR–CssS regulatory system, then the 
CssR–CssS regulatory system upregulates HtrA and HtrB 
proteases [14, 19], and the proteases in turn degrade the 
secreted α-amylases via the Sec secretion system. Their 
consequence is the loss of secreted α-amylases. Hence, 
this bottleneck is mainly related to three systems (i) Sec 
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secretion system, (ii) CssR–CssS regulatory system, and 
(iii) HtrA and HtrB system.

So far, numerous investigations have been carried out 
to address this bottleneck from different angles not only 
because these three systems themselves are composed of 
many components but also because these components 
are involved in many processes. These studies are per-
formed at signal peptide level [20–22], at chaperone level 
[23–25], at protease level [26, 27], at folding level [28, 29], 
at promoter level [30–33], at DNA level [34], at transcrip-
tome level [35, 36], at secretion system level [37], at stress 
response level [38, 39], at fermentation level [14], etc.

Collectively, the bottleneck has been studied in great 
details although unsolved problems are still there. For 
example, it has been reported that overexpression of 
secretion systems is time-consuming and not efficient in 
B. subtilis for α-amylase production [15, 40]. Since the 
secretion stress looks like a chain reaction, that is, it first 
begins from Sec secretion system and ends up to HtrA 
and HtrB system. Sec secretion system draws a consid-
erable attention [15] although the other secretion sys-
tems also appear on radar screen [37]. Probably, the most 
efficient and effective way to deal with the bottleneck 
should start with Sec secretion system since it performs 
well before the initiation of secretion stress. Moreover, 
α-amylase is a secretory protein whose secretion pro-
cess should tightly relate to each step of secretion in B. 
subtilis.

At this point, questions come out and require answers 
and further studies in light of α-amylase secretion and 
production. In particular, the following long-standing 
questions have yet to be answered. (1) Does α-amylase 
need a specific and dedicated chaperone? (2) What signal 
sequence does CsaA recognize? (3) Does CsaA require 
ATP for its operation? (4) Does an unfolded α-amylase is 
less soluble than a folded one? (5) Does α-amylase aggre-
gate before transporting through Sec secretion system? 
(6) Is α-amylase sufficient stable to prevent itself from 
misfolding? (7) Does α-amylase need more disulfide 
bonds to be stabilized? (8) Which secretion system does 
PrsA pass through? (9) Is PrsA ATP-dependent? (10) Is 
PrsA reused after folding of α-amylase? (11) What is the 
fate of PrsA? (12) Is trigger factor (TF) ATP-dependent? 
Thus, attempting to answer these questions through 
reviewing of literature is designed as the aim of this ques-
tion-oriented review.

Chaperone for α‑amylase
Gram-positive bacteria have a single cytoplasmic mem-
brane and it is generally considered that they have 
six secretion systems: (i) the Sec secretion system for 
unfolded proteins [29, 41, 42], (ii) the twin-arginine 
translocation (Tat) secretion system for folded proteins 

[43], (iii) the fimbrillin-protein exporter (FPE) for the 
proteins that form pilin-like structures [44], (iv) the fla-
gella export apparatus (FEA) for the proteins that form 
the flagella hook, filament, and cap [45], (v) the timed 
holin pore for the fully folded endolysin that degrades 
the cell wall during the phage lytic cycle [46], and (vi) the 
ESAT-6/WXG100 secretion system (WSS) for the pro-
teins that contain a WXG motif [47] including virulence 
factors in some pathogenic bacteria [48, 49].

Main commercial production of amylases is produced 
by Bacillus species including B. acerans, B. acidocaldar-
ius, B. amyloliquefaciens, B. licheniformis, B. stearother-
mophilus, B. subtilis and Bifidobacterium bifidum [50]. 
For protein secretion, B. subtilis uses four pathways: Sec-
SRP (signal recognition particle) pathway, Tat pathway, 
ABC transporters and pseudopilin export pathway [51], 
based on the studies on signal peptides [52]. The major-
ity of produced α-amylases is secreted through Sec-SRP 
pathway, and the rest passes through Tat pathway and 
ABC (ATP-binding cassette) transporters.

The SRP, which is the ribosome-associated RNA–pro-
tein complex and defined as the only secretion-specific 
chaperone Ffh protein [53], binds to hydrophobic signal-
anchor or signal sequence in nascent chains and targets 
them to the Sec translocon via interaction with its mem-
brane receptor FtsY [54]. On the other hand, TF is also a 
cytosolic ribosome-bound protein [55].

In B. subtilis, CsaA could be a replacement of SecB to 
export preproteins, i.e. PrePhoB and ProOmpA [56, 57]. 
As a matter of fact, the existence of CsaA is not limited 
to B. subtilis because not only Gram-positive bacte-
ria have SecB-like sequences [58] but also most archaea 
have homologues of CsaA [20, 59]. Thus, the question is 
whether CsaA can work as a specific and dedicated chap-
erone to carry α-amylase precursor to SecA in B. subti-
lis. The answer probably is not as shown by Müller et al. 
[56] that the export of most proteins remained unaffected 
when repressing the expression of the CsaA gene while 
only the export of two proteins, 19 and 36 kDa, was sig-
nificantly reduced upon CsaA depletion, while α-amylase 
is about 69  kDa mass weight [29]. Furthermore, CsaA 
was found not to bind to the conserved SecB-binding 
domain in SecA [56]. So it would be hard to conclude 
that CsaA carries α-amylase precursors to SecA with the 
same efficiency. Interestingly, Thermus thermophilus, a 
Gram-negative eubacterium, has both SecB and CsaA 
[60], therefore it would be great enlightening to analyze 
how SecB and CsaA work in this species. Moreover, it is 
unclear whether CsaA recognizes signal peptides because 
CsaA is indifferent to YvaY precursor and mature YvaY 
[61].

SecA usually binds to preproteins with mildly hydro-
phobic signal sequences [62], so it was suggested 
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that SecA could serve as chaperone in B. subtilis [63] 
because the level of cytosolic SecA in B. subtilis is rela-
tively high [64]. Interestingly, it was found that sodium 
azide, an ATPase inhibitor on SecA, had no influence on 
α-amylase secretion in B. amyloliquefaciens as early as in 
1975 [65]. This suggests that either α-amylase does not 
go through Sec secretion system in B. amyloliquefaciens 
because sodium azide inhibits the secretion of cytotoxin 
in B. cereus [66], or SecA does not serve as chaperone to 
bind α-amylase.

Preprotein translocation is a process requiring energy 
provided by the peripheral membrane-associated ATPase 
SecA, whose cycling repeats from ATP binding to hydrol-
ysis to initiate the stage of further translocation process 
[20]. Thus, we may wonder whether the overproduc-
tion of α-amylase exhausts the ATP source in B. subtilis 
whose ATP-dependent SecA, DnaK and GroEL cannot 
work well for secretion. Also, it is not clear whether TF 
is dependent upon ATP? As the major function of TF, 
DnaK and GroEL is to fold proteins, it is likely that they 
do not work for Sec secretion system because Sec secre-
tion system requires unfolded proteins with signal pep-
tides [20, 67]. As a whole, it is unlikely that α-amylase has 
a specific and dedicated chaperone.

Binding of signal peptide
In fact, α-amylase secretion is not limited to Sec secre-
tion system. For example, Corynebacterium glutamicum 
R is also a Gram-positive bacterium producing heterol-
ogous proteins such as amylase [68], nuclease, protease 
[69], transglutaminase [70], epidermal growth factor 
[71], protein glutaminase [72], etc. A screening of secre-
tory proteins on its genome shows that 108 of 405 can-
didate signal peptides are able to heterologously secrete 
an active-form α-amylase derived from G. stearothermo-
philus, including 98 Sec-type and 10 Tat-type peptides 
[73]. For these 98 Sec-type α-amylases in C. glutamicum 
R, their average length of signal peptides is 36.6 residues 
and longer than those of 166 Sec-type proteins in B. sub-
tilis [20], which have 28 residues ranging from 19 to 44 
residues. In B. subtilis, about 300 endogenous proteins 
including α-amylase are secreted through Sec system 
[74], and AmyE has 36 residues, MFAKRFKTSLLPLF-
AGFLLLFHLVLAGPAAASAETA [20]. Although the 
average length of signal peptides is about 35 residues for 
10 Tat-type α-amylases in C. glutamicum R, AmyX in B. 
subtilis has 30 residues, MVSIRRSFEAYVDDMNIIT-
VLIPAEQKEIM [20]. Therefore, these findings suggest 
that some α-amylases, like AmyX, are in the folded form 
before reaching secretion system because Sec secrets 
unfolded protein with signal peptide [20, 67] whereas Tat 
secrets folded protein with signal peptide [75, 76]. Of the 
identified extracellular proteins, about 80 proteins pass 

through the Sec secretion system [77], fewer proteins 
such as PhoD and YwbN pass through Tat system [78], 
and the rest proteins may pass through ABC transporters 
[52].

PrsA, which is a post-translocation chaperone [79, 80], 
helps the folding of proteins secreted from Sec secretion 
system [28, 29]. It is vital [23, 81] and is closely related to 
α-amylase production because its overproduction leads 
to the increase of α-amylase production in B. stearother-
mophilus [15, 23, 82, 83], but also leads to the increase 
in the production of proteases [23]. Curiously, the com-
petition between α-amylase and PrsA has not been seen 
through secretion systems because PrsA as a lipoprotein 
should pass through either Sec or Tat secretion systems 
[20]. As a lipoprotein, PrsA needs signal peptide pepti-
dase II to cut its signal peptides, and then moves across 
the membrane [20]. This is very intriguing because the 
signal peptides are generally applied to secretory proteins 
whereas chaperones are not subject to the classification 
of signal peptides.

The amount of proteins being synthesized in ribosomes 
would be proportional to occupied ribosomes, which 
could trigger the involvement of SRP and TF, however 
the results from the synthesis of α-amylase from Pyro-
coccus furiosus-F30 did not show many occupations [17]. 
Therefore it is not very clear what type of signal peptides 
for these two ribosome-bound chaperones.

Currently, the signal peptide sequences are classified 
into four types according to the sequence that is recog-
nized by signal peptide peptidase [20], and consequently 
each type of signal peptides controls a preprotein to 
direct a specific secretion system. So at this point, we 
could not answer the question of what signal peptide 
sequence CsaA can recognize? Along this line, it is highly 
likely that α-amylase does not need a dedicated chaper-
one because our current knowledge so far suggests that 
each chaperone works for a specific secretion system 
whereas α-amylase can go through different secretion 
systems. Of course, the non-classical secretion systems 
constantly get attention, which do not need the signal 
peptides [37].

Folding of α‑amylase
It is no doubt that the rate of protein folding is a deter-
minant factor for production of α-amylase [84], and so 
far the PrsA’s role in folding of α-amylase gets special 
attention. If we consider the possibility that a part of 
α-amylases has already folded before reaching Tat sys-
tem, then folding activity should extend into cytosolic 
compartment, where even Sec secretion system is influ-
enced by the capacity of preventing premature folding, 
aggregation or degradation of preproteins [85], i.e., PrsA 
works on the trans side of the cytoplasmic membrane but 
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is anchored, whereas the rest of chaperones works on the 
cis side of the cytoplasmic membrane but are free.

The involvement of PrsA in α-amylase folding was 
known a longtime ago [23, 81, 86]. As PrsA is a 33-kDa 
lipoprotein enriched with lysine, and its N-terminal 
cysteine attaches cytoplasmic membrane with a thiol-
linked diacylglycerol [87, 88], the questions raised here 
are whether PrsA is reused after finishing the folding 
of an α-amylase, and what is the fate of PrsA? Since the 
peptidoglycan has about 1300 disaccharides with about 
20% of cross-linked peptide chains in B. subtilis [89], 
its permeability is limited to 25  kDa globular proteins 
[90]. Naturally, α-amylase is too large to go through the 
porous-structured cell wall with its 69 kDa mass weight 
[29]. The numbers of PrsA are 2 × 104 per wild-type cell 
and 2 × 105 per enhanced secretion cell [79]. Now, it is 
not aware whether PrsA needs ATP, therefore it is hard 
to know how folded proteins are released from PrsA 
because the binding of chaperone with the hydrophobic 
peptide segments of substrates is controlled by ATP bind-
ing and hydrolysis [91]. Likely, PrsA may have no need to 
reuse itself considering such a large number of PrsA in B. 
subtilis. As PrsA is anchored on cytoplasmic membrane, 
thus its distance to Sec secretion system should be sig-
nificant otherwise there is no need to have so many PrsA.

Except for the role of PrsA in folding of α-amylase, 
another question raised here is whether there are factors 
with antifolding activity, which could lead to the accumu-
lation of unfolded and misfolded α-amylase. This could 
be possible, because the cell wall with net negative charge 
influences protein folding [82], which is essentially not 
limited to α-amylase but also to other heterogeneous 
proteins like levansucrase [92, 93]. Yet, calcium also plays 
a role in folding of α-amylase [93]. Bacillus species can 
improve α-amylase yield by inactivating the dlt operon, 
which results in the absence of alanylation of teichoic 
acids [82]. Consequently, the negative charges increase 
at cell membrane leading to a higher affinity for cations, 
which favorite the stability of secreted proteins and cata-
lyze their folding.

Nonetheless, either PrsA or calcium is relevant to trans 
side where the folding requires Skp, SurA, and PpiD, 
while TF, DnaK (HSP70) and GroEL (HSP60) to work in 
cis side. If we consider that most α-amylases should be 
folded on trans side, not much attention may need to pay 
the folding process in cis side, although TF is the first 
chaperone to interact with most newly synthesized pro-
teins co-translationally [94], and can delay the co-transla-
tional folding of large proteins [95–97].

DnaK also functions in stabilizing proteins for sub-
sequent folding by GroEL. It is widely reported that a 
poorly folded protein forms inclusion bodies and is a very 
common phenomenon when protein folding systems are 

saturated. α-Amylases enable to aggregate before trans-
porting through Sec secretion system. Also, unfolded 
α-amylase is less soluble than folded one because we find 
α-amylase precursor (accession number H9BPX5) poorly 
soluble when using CamSol [98] to compute its solubility 
(Fig. 1).

Although PrsA serves as a post-translocation chaper-
one to help the folding of secreted proteins and similar 
chaperones, peptidyl-prolyl cis/trans isomerase, exist in 
Gram-negative bacteria [99, 100], it seems that B. subti-
lis lacks the enzymes involving in disulfide bonds because 
PrsA is the only chaperone outside the cytoplasmic 
membrane [79]. In addition, their native disulfide bond-
forming enzymes may have limited ability to form more 
disulfide bonds during the overproduction of heterolo-
gous proteins [101]. So a question raised here is whether 
α-amylase needs more disulfide bonds to be stabilized? 
Indeed, if we pick up randomly several α-amylases from 
B. subtilis, then we can find that not many cysteines in 
them. For example, each of A7DWA9, B8Y1H0, P00691, 
C0KWE6, G4F096 and G4NTU0 has one cysteine, each 
of G4PC62 and G4P8H4 has 2 cysteines, G4P133 has 3 
cysteines, each of G4NTS1 and G4PA17 has 4 cysteines, 
G4P139 has 5 cysteines, and each of Q9R9H8, O06988 
and G4P8I0 has 6 cysteines. As α-amylase lacks cysteins, 
which could form disulfide bonds to stabilize itself as 
other secreted proteins [102], so this could be a reason 
why there are misfolded α-amylase to be cleared by pro-
teases. This is plausible because genes trxA and trxB, 
which prevent preproteins from oxidizing and to form 
disulfide bonds [103], are not active during overproduc-
tion in B. subtilis. The effectiveness of acylated homoser-
ine lactone (AHL) with unsaturated C18 side chains was 
dependent on the number of double bonds in the acyl 
side chain [104]. In fact, not many secreted proteins in 
B. subtilis contain disulfide bonds [105]. Thus one may 
wonder whether the increase in thiol-disulfide oxidore-
ductase could be a way to stabilize α-amylase to reduce 
misfolded α-amylase. Indeed, it was showed that human 
interleukin-3 [106] and protease, both with a single 
disulfide bond, could be stable and efficiently secreted 
in B. subtilis [107]. On the contrary, it was showed in the 
past that human serum albumin and the human pancre-
atic α-amylase with several disulfide bonds were poorly 
secreted in B. subtilis [105, 108]. Clearly, more studies are 
needed in this regard.

Conclusions
In this question-oriented review, we attempted to find 
the answers to 12 questions that we conceived during 
our study through reviewing of literature. The answers 
to these questions are not only important to biotechnol-
ogy industry but also meaningful to theoretical studies 
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in microbiology. At this point, we can briefly summarize 
our answers as follows:

	(1)	 Does α-amylase need a specific and dedicated chap-
erone? No.

	(2)	 What signal sequence does CsaA recognize? 
Unknown.

	(3)	 Does CsaA require ATP for its operation? Unknown.
	(4)	 Does an unfolded α-amylase is less soluble than a 

folded one? Yes.
	(5)	 Does α-amylase aggregate before transporting 

through Sec secretion system? Yes.
	(6)	 Is α-amylase sufficient stable to prevent itself from 

misfolding? No.
	(7)	 Does α-amylase need more disulfide bonds to be sta-

bilized? Yes.
	(8)	 Which secretion system does PrsA pass through? 

Unknown.
	(9)	 Is PrsA ATP-dependent? Unknown.
	(10)	 Is PrsA reused after folding of α-amylase? Unknown.
	(11)	 What is the fate of PrsA? Unknown.
	(12)	 Is TF ATP-dependent? Unknown.

So an important implication is that can we develop 
models to better understand the expenditure of ATP in B. 
subtilis and what is the best 3D structure for α-amylase in 
order that it is stable and can be secreted smoothly with-
out aggregation?

Hopefully our review can provide some clues to solve 
these pressing problems and advance our knowledge 
in this field. Indeed, many long-standing questions are 
eagerly waiting for their answers and inconsistent results 
remain to be addressed, and they are not obstacles for the 
development, but inspire the new endeavors. No doubt, 
the advance of modern technologies would bring the new 
prospective to overcome the bottleneck in the secretion 
of α-amylase and enhance productivity of heterogeneous 
proteins in B. subtilis.
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Fig. 1  Intrinsic solubility score obtained from CamSol for α-amylase precursor, where a residue is less soluble when its score is less than unity (not 
deep blue)
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