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Abstract

Background: Measurement of mitochondrial ATP synthesis is a critical way to compare cellular energetic performance.
However, fractionation of mitochondria requires large amounts of cells, lengthy purification procedures, and an extreme
caution to avoid damaging intact mitochondria, making it the highest barrier to high-throughput studies of
mitochondrial function. To evaluate 45 genes involved in oxidative phosphorylation in Saccharomyces cerevisiae,
we aimed to develop a simple and rapid method to measure mitochondrial ATP synthesis.

Results: To obtain functional mitochondria, S. cerevisiae cells were lysed with zymolyase followed by two-step,
low- then high-speed centrifugation. Using a firefly luciferin-luciferase assay, the ATP synthetic activity of the
mitochondria was determined. Decreasing the ATP synthesis in the presence of mitochondrial inhibitors confirmed
functionality of the isolated crude mitochondria. Deletion of genes encoding mitochondrial ATP synthesis-related
protein showed their dependency on the oxidative phosphorylation in S. cerevisiae.

Conclusions: Compared with conventional procedures, this measurement method for S. cerevisiae Mitochondrial
ATP Synthetic activity in High-throughput (MASH method) is simple and requires a small amount of cells, making
it suitable for high-throughput analyses. To our knowledge, this is the first report on a rapid purification process
for yeast mitochondria suitable for high-throughput screening.
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Background
Mitochondria are central organelles controlling the life
and death of the cell. They participate in key metabolic
reactions, synthesize the majority of ATP in a cell, and
regulate a number of signaling cascades, including apop-
tosis [1]. ATP synthesis is vital for various biological re-
actions. Many studies have measured ATP content or
qualitative changes in total cellular ATP production, but
few have quantified ATP production from oxidative
phosphorylation of isolated mitochondria [2].
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Owing to the ease of genetic manipulation and its im-
portance for bio-industry, the budding yeast Saccharo-
myces cerevisiae is an ideal organism for the study of
many basic cellular mechanisms in eukaryotic cells.
Their organelles can be rapidly enriched in sufficient
quantities for the analysis of specific functions such as
metabolite or protein transport. Therefore, S. cerevisiase
is a valuable model cell for studying the molecular and
cellular mechanisms underlying the essential biological
functions of mitochondria. However, mitochondrial pro-
teins have many subunits, the functions of which are still
largely unknown because a method for easy mutational
analysis and sensitive assay development is still lacking
[3]. One of the biggest problems is that the fractionation
of mitochondria requires large amounts of cells, long
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procedures, and an extreme caution to avoid damaging
intact mitochondria [4,5]. In general, to obtain intact
mitochondria, the contents of yeast cells are made ac-
cessible by a combination of enzymatic digestion of the
cell wall and physical disruption of the resulting sphero-
plasts [6]. To separate the cellular contents by their vari-
able densities, differential centrifugation, which allows
for the separation of the constituents of cells based on
their different sedimentation properties, is employed to
isolate an enriched mitochondrial fraction and is the
most common strategy used to obtain crude mito-
chondria [7]. Crude preparations of mitochondria are
contaminated by other organelles such as lysosomes,
peroxisomes, tubular Golgi membranes, and, to some
extent, small amounts of endoplasmic reticulum. To
achieve mitochondria with higher purity, additional
time- and labor- consuming purification steps using
sucrose density centrifugation are needed. Recently,
Frezza et al. described a step-by-step method to isolate
mitochondria from mouse liver, muscle, and cultured filro-
blasts using modified differential centrifugation steps and
a modified sugar concentration for the osmolyte in the
isolation buffer [4]. Based on this technique and protocol
for purification of mitochondria from yeast cells [5], we
Figure 1 Schematic illustration of the MASH method. (A) S. cerevisiae cells
(B) The protoplasts were subjected to low-speed centrifugation (2,500 × g)
speed centrifugation (20,000 × g) with 0.7 M sorbitol. Large circles stand for
for the crude mitochondria, the large open-circles stand for microsomes.
modified this general mitochondria extraction method to
quickly obtain crude, but functional mitochondria from
yeast cells. The method we developed includes only sev-
eral steps of differential centrifugation and no sucrose
density gradient is needed, which is more suitable for
high-throughput screening than the conventional method
(Figure 1). By using this method, we evaluated 45 genes
involved in oxidative phosphorylation for mitochondrial
ATP synthesis in S. cerevisiae.

Results and discussion
Preparation of crude mitochondria by the MASH method
In the conventional method of mitochondrial purification,
yeast cells are subjected to mechanical homogenization or
detergent treatment followed by differential centrifugation
because the variable density of the organelles will allow
separation of the mitochondria from the remaining cellu-
lar structures. In the “measurement method for Mitochon-
drial ATP Synthetic activity in High-throughput” (MASH
method) used in the present study, yeast cell walls were
lysed with zymolyase (1.2 mg g−1 wet cells) at 37°C for 1 h.
Zymolyase is an enzyme prepared from Arthrobacter
luteus that effectively lyses yeast cell wall. The lysis of the
cell wall and the formation of the protoplast were verified
were lysed with zymolyase at 37°C for 1 h to obtain protoplasts.
with 1.2 M sorbitol. (C) Crude mitochondria were obtained by high-
nuclei, cell debris, and unbroken cells. The small closed-circles stand
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Figure 2 The effect of inhibitors on mitochondrial ATP synthesis in
S. cerevisiae. Inhibitors of the mitochondrial respiratory chain:
antimycin A, CCCP, and DCCD. To confirm the functionality of
mitochondria, 0.1 mM antimycin A, 0.5 mM CCCP, and 0.1 mM
DCCD were incubated with the crude mitochondria for 5 min
before being subjected to ATP assay. The activities were shown
in the relative values (%) compared with the value without
inhibitor of respiratory chain as the control.
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under a microscope. The crude mitochondria solution
was obtained by a two-step, low- (2,500 × g) then high-
(20,000 × g) speed centrifugation with 1.2 M and 0.7 M
sorbitol, respectively (Figure 1). Although this suspension
is enriched in mitochondria, it may also contain other or-
ganelles such as the endoplasmic reticulum, Golgi, and
vacuoles. To get more pure mitochondria, this crude
mitochondrial fraction can be subjected to further frac-
tionation. However, the crude mitochondria solution ob-
tained using the MASH method is sufficient for the
analysis of mitochondrial ATP synthetic activity and there-
fore was used directly in the ATP assay.

ATP synthesis with inhibitors of mitochondrial respiratory
chain
To confirm the functionality of the mitochondria, sev-
eral inhibitors of the respiratory chain were used.
ATP synthesis is inhibited by antimycin A, CCCP, and

DCCD [8-11]. Antimycin A, a strong inhibitor of the
electron transfer of complex III, functions by binding to
the quinone reduction site of the cytochrome bc1 com-
plex [9]. CCCP is an inhibitor of the proton motive force
[10]. DCCD is a specific inhibitor of subunit c of com-
plex V (mitochondria FoF1-ATP synthase) [11]. To test
the effect of inhibitors on the mitochondria, antimycin
A, CCCP, and DCCD were individually added to the re-
action mixture. The addition of either antimycin A or
CCCP completely abolished ATP production (Figure 2).
The addition of DCCD inhibited ATP production by
80%. These results confirmed that this assay could detect
ATP synthetic activity of the crude mitochondria solu-
tion using the MASH method and be further applied to
high-throughput measurement.

High-throughput measurement of mitochondrial ATP
synthesis
Mitochondrial inhibitors confirmed the functionality of
the crude mitochondria isolated using the MASH
method. By using this method, the ATP synthetic activ-
ities of mutants from the single-gene deletion library of
S. cerevisiae, including 45 ATP synthesis-related mutants
were measured (Table 1). The Saccharomyces Genome
Deletion Project created a set of isogenic mutant strains
with each individual nonessential gene deleted [12]. This
mutant collection has facilitated genome-wide studies to
identify genes required for resistance to various cellular
insults [13,14]. The set of 45 ATP synthesis-related mu-
tants, which are divided into six genes categories includ-
ing NADH dehydrogenase (Nde1/Nde2; Complex I),
Succinate dehydrogenase (Sdh1b, etc.)/Fumarate reduc-
tase (Frd1/Osm1; Complex II), Cytochrome c reductase
(Cor1, etc.)/Cytochrome bc1 complex (Cbp4, etc.; Com-
plex III), Cytochrome c oxidase (Cbp4, etc.; Complex
IV), FoF1-ATP synthase (Atp1, etc.; Complex V), and
others including electron transferring-flavoprotein de-
hydrogenase (Cir2) and ADP/ATP translocator (Aac1/
Aac3). The selected mutant strains and the parental
strain were inoculated into 5 ml of YPD medium, grown
overnight, and examined for their ability to synthesize
ATP using MASH method. The results were shown as
the relative value (%) of ATP synthetic activity per mg
protein, and the mutant strain values were compared
with that of the parental strain. We observed that most
of gene deletions in this set resulted in partial loss of the
ATP synthetic activity (Table 1).
Among the mutant strains examined, deletion of genes

directly related to the mitochondria respiratory chain
(NADH dehydrogenase, succinate dehydrogenase, elec-
tron transferring-flavoprotein dehydrogenase, cytochrome
c reductase, cytochrome bc1 complex, cytochrome c oxi-
dase, and FoF1-ATP synthase) showed lower ATP syn-
thetic activity compared with that of the parental strain,
indicating that these components of the mitochondria re-
spiratory chain were indispensable for ATP synthetic
activity.



Table 1 Relative ATP specific activity of gene deletion
mutants related to either mitochondrial ATP synthesis or
mitochondrial fatty acid synthesis

Enzyme Deleted
gene

Relative
ATP specific
activity (%)a

Total protein
concentration
(mg ml−1)b

Parental strain (BY4741) - 100 0.416

NADH dehydrogenase
(Complex I)

NDE2 36 ± 4 0.189

NDE1 31 ± 20 0.187

Succinate dehydrogenase/
Fumarate reductase
(Complex II)

SDH1b 44 ± 18 0.189

EMI5 53 ± 41 0.187

SDH4 67 ± 33 0.167

SDH1 33 ± 11 0.181

SDH2 104 ± 39 0.285

FRD1 56 ± 31 0.185

OSM1 61 ± 16 0.207

Electron transferring-
flavoprotein dehydrogenase

CIR2 56 ± 9 0.195

Cytochrome c reductase/
Cytochrome bc1 complex
(Complex III)

COR1 38 ± 10 0.179

RIP1 37 ± 7 0.179

QCR6 34 ± 21 0.201

QCR9 22 ± 26 0.191

QCR10 72 ± 20 0.187

QCR8 40 ± 9 0.180

QCR2 n.d. 0.177

QCR7 n.d. 0.191

CYT1 n.d. 0.201

CBP4 15 ± 10 0.173

FMP25 29 ± 11 0.203

CBP3 65 ± 25 0.197

RCF2 35 ± 13 0.200

CBP6 27 ± 14 0.190

Cytochrome c oxidase
(Complex IV)

COX9 44 ± 16 0.187

COX6 25 ± 6 0.167

COX5B 37 ± 11 0.191

COX12 20 ± 9 0.193

COX8 62 ± 41 0.175

COX7 n.d. 0.176

COX5A 30 ± 10 0.182

ATP synthase (Complex V) ATP1 32 ± 12 0.177

ATP2 18 ± 5 0.234

ATP7 52 ± 28 0.179

ATP14 52 ± 29 0.187

ATP20 17 ± 8 0.189

ATP18 40 ± 16 0.168

ATP4 98 ± 73 0.206

ATP15 24 ± 16 0.197

ATP5 38 ± 4 0.187

Table 1 Relative ATP specific activity of gene deletion
mutants related to either mitochondrial ATP synthesis or
mitochondrial fatty acid synthesis (Continued)

INH1 43 ± 14 0.175

STF1 43 ± 17 0.171

STF2 53 ± 10 0.190

ADP/ATP translocator AAC1 59 ± 7 0.178

AAC3 53 ± 24 0.208
aRelative ATP specific activity of the mutant strains was expressed as a
percentage of the specific activity of the parental strain.
bThe protein concentration of the crude mitochondria solution was
determined using the Bradford method [25].
All experiments were conducted at least in triplicate. Values are means ± SD.
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In the case of FoF1-ATP synthase (complex V), 12 sin-
gle gene deletion strains were used to measure their
ATP synthetic activity by the MASH method. Deletion
of ATP4 had almost no effect on the ATP synthetic ac-
tivity because ATP4 encodes b subunit which effects on
the stability of oligomeric FoF1-ATP synthases, not ATP
synthetic activity [15]. As the result, especially in both
the ΔATP2 strain and ΔATP20 strain, the ATP synthetic
activities were drastically decreased compared to the
other mutant strains lacking gene encoding a subunit of
the FoF1-ATP synthase. Their ATP synthetic activities
were 20% of that of the parental strain. ATP2 and ATP20
encode β subunit and γ subunit of the FoF1-ATP synthase,
respectively. The β subunit is the catalytic subunit of
FoF1-ATP synthase and the γ subunit constructs a stalk
structure connecting the proton-motive force generated
in Fo-part and ATP synthesis in F1-part of FoF1-ATP
synthase [16]. Thus, the deletions of these functionally
important genes, ATP2 and ATP20, indicate completely
loss of ATP synthesic ability of FoF1-ATP synthase.
These reasonable results guarantee the validity of this
assay. The remaining 20% activities of ATP synthesis
compared to the parental strain in the ΔATP2 strain and
ΔATP4 strain indicate the ATP synthesis by mitochon-
drial adenylate kinase (2ADP→AMP +ATP) encoded
by ADK2 [17]. Some deletion mutants (QCR2, QCR7,
CYT1, CBP4 and COX7) showed lower ATP synthetic
activities rather than 20% of the parental strain. This re-
sult indicates that the deletion of these genes enhance
the hydrolysis of ATP resulted from adenylate kinase.
The ATP hydrolysis would be catalyzed through revers-
ible reaction of ATP synthesis by FoF1-ATP synthase be-
cause of the lower H+-gradient formed between inside
and outside of mitochondrial inner membrane.
Aside from the respiratory chain mutants, the ADP/

ATP translocator, which is mainly responsible for trans-
ferring ADP/ATP in or out of the mitochondria [18],
was also tested. Notably, deletion of genes AAC1 and
AAC3 encoding the ADP/ATP translocator, resulted in a
50% - 60% loss of ATP synthetic activity compared with
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Figure 3 Distribution of relative protein concentration and relative ATP
synthetic activity of crude mitochondria solutions from gene deletion
mutants related to mitochondrial ATP synthesis. The relative protein
concentrations of the crude mitochondria solutions were determined
using the Bradford method. Relative ATP synthetic activity was
normalized by each protein concentration of the mutant strains.
These values are expressed as a percentage of its activity of the
parental strain. The relative ATP synthetic activities under detectable level
were plotted at “zero”. All experiments were conducted at least in
triplicate and values are represented as means.
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that of the parental strain. Previous studies demon-
strated that disruption of AAC1 or AAC3 did not influ-
ence the content of the ADP/ATP translocator, and both
AAC1 and AAC3 genes did not substantially participate
in mitochondrial ADP/ATP transport under normal
growth conditions [19]. On the contrary, our result dem-
onstrated that AAC1 and AAC3 caused some loss of
ATP synthetic activity, indicating that although these
genes may not be directly involved in mitochondrial
ADP/ATP transport, they are potentially responsible for
mitochondrial ATP synthesis. Further elucidation of the
underlying mechanism is needed.
When deleted, three genes (QCR2, QCR7, and CYT1)

encoding subunits of cytochrome c reductase (complex
III) have been shown to have undetectable ATP synthetic
activity (Table 1). Cytochrome c reductase is essential to
the energy-generating process of oxidative phosphoryl-
ation [20]. Qcr2 is one of the core subunits of complex
III, and its mutation has been demonstrated to cause
either a severe decrease or a total block in complex III
activity and respiratory growth [21]. Cyt1 (cytochrome
c1) is one of the catalytic subunits of the cytochrome bc1
complex and is essential for electron transfer and for the
respiratory growth [22]. Therefore, the deletion of Qcr2
and Cyt1 led to dramatically decreased ATP synthetic
activity. Together with the result that the addition of
antimycin A completely suppressed ATP synthetic activity
(Figure 1), this result further indicated that cytochrome c
reductase played an important role in mitochondrial ATP
synthesis.
To further test the feasibility of the MASH method for

measuring ATP synthetic activity, we compared the distri-
bution of protein concentration and ATP synthetic activity
in crude mitochondrial solutions from 45 single-gene
deletion strains related to mitochondrial ATP synthesis.
The relative protein concentration (%) versus relative ATP
synthetic activity (%) of each strain compared to the par-
ental strain was plotted (Figure 3). This distribution map
indicated that the relative protein concentration and the
ATP synthetic activity were not correlated. All tested
strains were distributed in the 40-50% range for relative
protein concentration except the ATP2 and SDH2 deletion
strains. In contrast, these strains were broadly distributed
for the relative ATP synthetic activity. Strains lacking
NDE1 or NDE2 involved in Complex I were plotted near
to each other. Deletion mutants for genes involved in
Complex II were distributed in the 30-70% range except
the SDH2 deletion strain. Strains lacking genes involved in
Complex III and IV were broadly distributed in the 0-72%
and 0-62% ranges, respectively. In contrast, deletion mu-
tants for genes involved in Complex V were narrowly
distributed in the 18-53% range except the ATP4 deletion
strain, which showed almost the same ATP synthetic
activity as the parental strain. Deletion of all three genes
involved in other proteins related to ATP synthesis in-
cluding electron transferring-flavoprotein dehydrogen-
ase (CIR2) and two ADP/ATP translocators (AAC1 and
AAC3) showed almost 55% of the relative ATP synthetic
activity compared to the parental strain.
This result demonstrates the wide applicability of the

MASH method. As shown in this study, the MASH
method can propose new areas of study to resolve the
cellular ATP synthesis mechanism.

Potential applications of the MASH method
The MASH method is a simple and rapid way to obtain
a crude mitochondria solution and determine respiratory
ATP synthesis in yeast cells. Mitochondria have been
isolated from yeast using the combination of zymolyase
and Dounce homogenization for many years at least
since 1982 from the Schatz’s laboratory [7]. Thus, in the
conventional methods, to prepare intact mitochondria
from yeast, cells are collected, then disrupted by mech-
anical homogenization or detergent treatment. Next, the
suspension is separated using differential centrifugation,
and the fraction containing mitochondria is subjected to
several steps of differential gradient centrifugation, which
takes 4–5 hours. In contrast, the MASH method can be
finished within two hours and is free of contamination
that affects the ATP activity assay, simplifying the purifi-
cation procedure. Moreover, because the method needs
only a small amount of cells and has no requirement for
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retrieving the band containing mitochondrial fraction
from the centrifuged gradient, it is suitable for high-
throughput (e.g., 96-well format) analysis of mutants and
drugs.
It is worth noting that any components whose defects

result in loss of mitochondrial ATP synthesis can be mea-
sured by the MASH method. By using a combination of
specific mitochondrial inhibitors and single gene deletion
mutant strains, the point of defect could be determined.
Furthermore, if the original or mutated target genes are
added back into the knockout cells by transformation, their
function can be investigated in more detail. One application
of this method would be a functional test for activities of
the respiratory chain complexes I, II, III, IV, V, the ADP/
ATP translocator, and other ATP synthesis-related proteins
in mitochondria.

Conclusion
This method is designated as measurement method for
S. cerevisiae Mitochondrial ATP Synthetic activity in
High-throughput (MASH method). To obtain crude, yet
functional mitochondria, only three steps are included
(Figure 1). ATP production from isolated mitochondria
could be determined by a bioluminescence assay. By
using this MASH method, systematic analysis of gene
deletion mutants related to the mitochondrial ATP syn-
thesis was carried out to identify genes required for ATP
synthesis, providing a global view of these genes in
maintaining ATP activity. The MASH method described
in this study introduces a quick and reproducible meth-
odology for measuring ATP synthetic activity in isolated
mitochondria.

Methods
Yeast strains and growth conditions
The parental strain S. cerevisiae BY4741 (MATα his3Δ1
leu2Δ0 met15Δ0 ura3Δ0) was cultured in 5 ml of YPD
medium containing 10 g L−1 yeast extract, 20 g L−1 bacto-
peptone, and 20 g L−1 glucose overnight at 30°C. The col-
lection of yeast knockouts was purchased from Invitrogen.
Zymolyase-20T was purchased from Seikagaku Kogyo Co.
(Tokyo, Japan). Protease inhibitor cocktail and D-luciferin
was purchased from Roche (Basel, Switzerland). Firefly
luciferase was obtained from Promega (Madison, WI,
USA). Other chemicals were purchased from Nacalai
Tesque (Kyoto, Japan) or Wako Chemicals (Osaka, Japan).

Measurement of ATP synthetic activity
All solutions were stored at 4°C and freshly prepared
prior to use. Cultures of S. cerevisiae cells were grown
aerobically in 5 ml of YPD medium at 30°C for 24 h.
The optical density at 600 nm (OD600) was measured
using a UVmini-1240 spectrophotometer (Shimadzu,
Kyoto, Japan). The cells were collected, washed with
0.5 ml of 10 mM EDTA, and centrifuged (400 × g, 5
min, 4°C). The supernatant was discarded, and the pellets
were resuspended in 50 mM Tris–HCl (pH 7.5), 1.2 M
sorbitol, 10 mM EDTA, 0.3% (v/v) 2-mercaptoethanol,
and 1.2 mg g−1 wet cells of the zymolyase solution (4 mg
ml−1). After incubation at 37°C for 1 h with rotary agita-
tion, the lysis of the cell wall was verified under a micro-
scope. The supernatant was resuspended in 50 mM
Tris–HCl (pH 7.5), 0.7 M sorbitol, 10 mM EDTA, 1
mM PMSF, protease inhibitor cocktail, and 20 mM
triethanolamine, and then subjected to the low-speed
centrifugation step (2,500 × g, 15 min, 4°C). The debris
was discarded and the supernatant was then subjected
to the high-speed centrifugation step (20,000 × g, 15
min, 4°C). The resulting pellets obtained were dissolved
in 50 mM Tris–HCl buffer (pH 7.5), and stored at 4°C
before use.
The ATP assay was conducted as previously described

[23,24]. The reaction buffer containing 50 mM Tris–HCl
(pH 7.5), 1.3 μg ml−1 luciferase, 0.05 mM D-luciferin, 1
mM DTT, 5 mM MgCl2, and 0.1 mM EDTA was added to
the crude mitochondria solution. The reaction was initi-
ated by addition of 0.1 mM ADP, and the luminescence
was measured using EnVision Multilabel Reader 2104
(PerkinElmer, Waltham, MA, USA). The luminescence
of each well was measured at 1 s intervals. The ATP
synthetic activities of the crude mitochondria solutions
were calculated by taking away the background lucifer-
ase activity in the presence of ADP. The relative ATP
synthetic activity was normalized each protein concen-
tration determined using the Bradford method [25] of
the mutant strains. The values are expressed as a per-
centage of its activity of the parental strain. To test the
functionality of mitochondria, the inhibitors (0.1 mM
antimycin A, 0.5 mM CCCP, and 0.1 mM DCCD) were
incubated with the crude mitochondria solution for 5
min before being subjected to the ATP assay.
High-throughput measurement for mitochondrial ATP
synthesis
The glycerol stock of yeast gene-deletion mutants was
inoculated with a sterilized toothpick to 5 ml of YPD
medium. Cells were cultured overnight at 30°C with
shaking. The cells were harvested by centrifugation
(3,000 × g, 10 min, 4°C) and washed twice with distilled
water. The purification of mitochondria was conducted
as described above. Protein concentration was measured
with the Bio-Rad assay system (Bio-Rad, Hercules, CA,
USA) using bovine serum albumin as the standard. Rela-
tive specific activity (%) was calculated from the ratio of
total activity divided by total protein concentration of
the mutant strain to that of the parental strain. Z’ of this
assay can be calculated as 0.58.
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