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Abstract

In the last decades, the understanding of inclusion body biology and consequently, of their properties and poten-
tial biotechnological applications have dramatically changed. Therefore, the development of new purification
protocols aimed to preserve those properties is becoming a pushing demand.

Commentary
The formation of inclusion bodies (IBs) in bacteria,
especially in Escherichia coli, has become one of the
most common undesirable events when using these
microbial cell factories to produce soluble recombinant
proteins for both research and industrial applications
[1-3]. Since IBs have been long considered a waste pro-
duct, essentially formed by misfolded proteins, prone to
aggregate, important efforts have been made to elimi-
nate, or at least partially reduce, its formation [4]. Gene
dosage, promoter strength, mRNA stability, codon
usage, culture temperature, protein and genetic engi-
neering and overexpression of folding modulators are
just some examples of a vast list of parameters that have
been modulated to avoid IB formation [4].
However, based on publications listed on PubMed cita-

tion database in the last years, it is worth noting that the
scene has completely changed. The first evidence of
change was published in Microbial Cell Factories in 2005,
when our group showed that IBs, contrarily to what had
been widely believed, were particulate aggregates formed,
at least partially, by biologically active polypeptides [5].
Since then, an avalanche of proofs that undoubtedly sup-
port this observation has been incessantly published.
Apart from our publications [6-13], de Groot el al. [14,15]
and Peternel el al. [16,17] have shown that Green Fluores-
cent Protein (GFP) embedded in such aggregates is highly
fluorescent, when observed by both confocal microscopy
and fluorescence spectroscopy. Jevsevar and collaborators
have also recently proved that the cytokine human granu-
locyte colony-stimulating factor (hG-CSF) in IBs adopt a
native structure, being consequently fully active [18].

Although the amount of evidences compromising the
dogma describing IBs as inert aggregates, there is still an
important question to be answered: why do not previous
research data support these observations? The answer is
simple: nobody checked IB functionality before (except
Worall and Goss and Tokatlidis and collaborators, who
described the presence of biologically active IBs [19,20],
although they have for long leaved aside). In fact, the use
of GFP as a reporter to study IB kinetics through fluores-
cence microscopy raised the alarm in 2005 [5]. Thereby,
not long ago, the information concerning conformational
quality of these proteins aggregates was simply neglected,
being not information available with regard to this
phenomenon.
When reviewing recent reports in which enzyme-based

IBs are tested, it is observed that, in agreement with the
observations done with GFP and other proteins, enzymes
embedded in such aggregates are also active [5,7,21-26].
This observation not only corroborates the model regard-
ing IB composition [27], but also opens a promising mar-
ket in biocatalysis industry. In this context, it is worth
highlighting that Nahálka and coworkers have made an
important contribution to this field, as they have evalu-
ated a wide number of examples [21-25,28]. Enzymes like
galactosidases [5,7], reductases [5], oxidases [22,28],
kinases [21,24], phosphorylases [25] and aldolases [23]
have been produced as IBs and used to successfully cata-
lyze specific reactions. Furthermore it should also be
underlined that IBs can be easily removed from the re-
action mixture by a simple centrifugation, allowing then
the possibility to reuse them in other reaction cycles
[21,23,25]. Therefore, based on these published studies
and considering that the high cost of the catalyst produc-
tion, the mass transfer problems occurring during the
catalysis reaction and the lost of activity due to enzyme
immobilization processes are important drawbacks in
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biocatalysis processes, the incorporation of IBs can draw
an innovative and encouraging stage in the industrial cat-
alysis market [29].
Focusing our attention on the search of other reported

applications of IBs, we come up with a paper published
in 2009 by Nahálka and collaborators [30]. In this work
the authors explore the possibility of using IBs with lectin
activity in a hemaaglutination assay in order to design a
cheap diagnostic tool for the characterization of glyco-
proteins. IBs show to be once again a good alternative, in
this case to the expensive and cumbersome lectin micro-
arrays, being able to be used for the design of an array of
glycoproteins.
Moreover, recent results show that IBs, as proteinac-

eous nanoparticles, could also open the doors of an
encouraging future in regenerative medicine field, being
these particulate aggregates a promising alternative
[9-11] to the classical materials used for tissue engineer-
ing purposes [31-33].
It seems undeniable that IB concept has completely

changed and, consequently, it is also becoming obvious
that the existing protocols to purify these aggregates need
to be adapted to this new reality. Up to now, since IBs
have essentially been used for protein refolding attempts
[34], protocols established to purify these aggregates had
not important requirements. However, the possibility to
use IBs as biocatalysts, as diagnostic tools or as biomater-
ials for tissue engineering, necessarily involve a careful
redesign of the purification protocol strategy used.
Several publications show that both mechanical and

non-mechanical lysis methods are equally used to break
cell in order to obtain recombinant soluble proteins
[35-37]. After cell disruption, the soluble fraction can be
easily separated from cell debris by centrifugation, thus
being the protein of interest finally isolated from the
obtained supernatant by conventional purification proce-
dures. On the other hand, even though both mechanical
and non-mechanical cell disruption processes are also
used to recover IBs, in this case it is necessary to take the
insoluble fraction after the corresponding centrifugation
step, which is generally washed, using detergents and/or
DNase treatments, being the obtained product ready to be
use for protein refolding purposes [38]. Nevertheless,
given that an important amount of impurities such as
membranes, membrane bound proteins, cell wall frag-
ments, DNA, RNA and, even, viable cells are still present
in the IB mixture, under these conditions these nanoparti-
cles are not suitable for biotechnological and biomedical
purposes. Consequently, the optimization of the IB purifi-
cation strategy has come out as a new necessity and, in
fact, in just few months a couple of papers discussing this
issue have been published in Microbial Cell Factories
[38,39]. Both publications point out that it is crucial to
redefine an appropriate method to isolate highly pure IBs

from bacterial cells, especially emphasizing the importance
of choosing a suitable cell lysis strategy to completely
eliminate the presence of any viable bacteria in the final
sample, since this would be not acceptable when aiming to
use such aggregates for the applications listed above. Even
though the importance of having cell-free IBs, it is also cri-
tical to bear in mind that the isolation process should not
damage neither IB structure nor the quality of the protein
embedded inside these protein aggregates. Thus, the pur-
sued objective is the establishment of a new protocol that
does not compromise the applicability of IBs, neither for
the presence of viable bacteria or impurities nor for the
damage of the final product. Our group and Peternel and
Komel have explored the effectiveness of lysis methods
such as enzymatic lysis, sonication, freeze-thawing cycles
and high-pressure homogenization, among others [38,39].
The obtained results show that non-mechanical lysis is
gentle toward IB integrity, but not effective enough
regarding cell disruption [39]. On the other hand, while
cell lysis improve when using mechanical methods [38,39],
the quality of protein trapped in IBs is frequently compro-
mised [39]. Therefore, both groups agree that there is no
method good enough to completely break bacterial cell
wall, without damaging IB quality. Therefore, it could be
concluded that the combination of both mechanical and
non-mechanical lysis procedures could be a suitable elec-
tion. Moreover, the published data from both groups in
2010 in Microbial Cell Factories also underline the existing
variability among different strains overproducing different
recombinant proteins, being some of them more sensitive
to the cell lysis process than others [38,39], an effect that
could be connected with the influence of the recombinant
protein production on the membrane composition and
permeability [40]. Altogether, these data point out that
further studies are needed to approach an universal alter-
native to obtain pure and functional IB with preserved
morphology, regardless of the recombinant protein. The
exploration of an improved strategy should take into
account not only the election of an appropriate lysis
method, but also the design of the necessary washing steps
to isolate native, undisturbed active protein nanoparticles.
Thus, it seems that a new age of IBs has just started,

which should necessarily go accompanied by an optimi-
zation of the IB isolation protocol. In this line, it is
important to note that such a procedure protocol has to
be meticulously redesigned, analyzing point-by-point the
spectrum of effects of any purification step in the final
product.
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