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Abstract

Background: Overexpression of proteins in Escherichia coli is considered routine today, at least
when the protein is soluble and not otherwise toxic for the host. We report here that the massive
overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions
in the expression plasmid, leading to the growth of only non-producers, when expression is not
well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact
on high-throughput protein production, e.g. for structural genomics, where not every expression
parameter will be monitored.

Results: We studied the high-level expression of several robust non-toxic proteins using a T5
promoter under lac operator control. Full induction leads to no significant growth retardation. We
compared expression from almost identical plasmids with or without the lacl gene together in
strains expressing different levels of Lacl. Any combination without net overexpression of Lacl led
to an efficient promoter deletion in the plasmid, although the number of growing colonies and even
the plasmid size — all antibiotic-resistant non-producers — was almost normal, and thus the problem
not immediately recognizable. However, by assuring sufficient repression during the initial
establishment phase of the plasmid, deletion was completely prevented.

Conclusion: The deletions in the insufficiently repressed system are caused entirely by the burden
of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the
stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during
a transient stationary phase. The cause of the deletion is thus distinct from the well known
interference of high-level transcription with plasmid replication. The deletion can be entirely
prevented by overexpressing Lacl, a useful precaution even without any signs of stress caused by

the protein.
Background grammed to do so, and this is one of the foundations of
Microorganisms have not evolved to produce single pro-  modern biological research and biotechnological applica-
teins in large amounts. Nonetheless, they can be pro-  tions. Yet, some recombinant proteins can be toxic to the
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host, either by interference with a cellular function or by
their physical properties, e.g., proteins that interact with
the membrane, and are thus strongly selected against (see
below). However, we are not concerned with such pro-
teins in the present study. Even proteins that are com-
pletely "benign" to the host are a metabolic burden when
overexpressed in very large amounts [1]. Depending on
the expression system, this could in principle be an effect
of plasmid replication, transcription or translation. While
the first two have been well studied (see below), the
effects of extremely high translation by itself have not
been directly addressed.

We show here that very efficient translation can itself be a
serious problem directly after transformation, and that in
the absence of sufficient repression, Escherichia coli finds
surprisingly efficient ways of promoter deletions, leading
to the exclusive growth of non-producing, yet antibiotic-
resistant cells. We also show that this problem can be con-
trolled and completely prevented by securing tight control
of the repressible promoter system by providing the
repressor in sufficient amounts.

In this article, we do not wish to put emphasis on how to
control this problem, as this is readily done by overpro-
ducing the repressor protein, but on the fact that it can go
easily undetected. While a thorough optimization of all
expression parameters is important in large scale fermen-
tation, especially for recurring industrial production, and
thus they will be measured, for smaller scale batch cul-
tures used in research, this is not the case, as it is generally
sufficient that the process is robust and high-yielding.
Under such high-throughput conditions, it is possible,
therefore, that this facile promoter deletion might go
undetected.

The strong overexpression of recombinant proteins is well
known to lead to different stress reactions and interferes
with cellular processes in many ways [2-4], which may
finally lead to a "viable but non-culturable" cell state of
the host organism [5]. The reason for this stress response
and the adaptation of metabolic activities and cellular
physiology under conditions of high-level recombinant
protein production can in principle be attributed to the
burden of the production of the plasmid, the mRNA and
the protein product.

The metabolic burden for plasmid maintenance is by itself
usually considered negligible [6], even though many dif-
ferences can be observed when comparing plasmid-bear-
ing cells with their plasmid-free counterparts [ 7], with size
and copy number being important parameters [8-10].
Therefore, plasmids with runaway replication [11] are
usually not preferred; at least, runaway plasmid replica-
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tion should be inducible. Most expression vectors have
thus high but stable copy numbers.

High-level transcription of the gene of interest, on the
other hand, can be a serious problem, but not primarily
because of consuming resources. Rather, when this high-
level transcription interferes with plasmid replication [12-
14], it decreases the plasmid copy number, which influ-
ences both antibiotic resistance and final product yield.
This can be controlled both by placing an efficient tran-
scription terminator at the end of the cassette, and/or by
choosing the same direction of transcription as the unidi-
rectional ColE1l replication fork. Thus, many modern
expression vectors have been designed to avoid problems
at the level of replication and transcription, and the sys-
tem used here is no exception (see below), as transcrip-
tion of the protein of interest is isolated by several
transcription terminators from replication and other
genes.

More severe perturbations of cellular metabolism are in
general encountered by the high-level production of the
plasmid-encoded protein itself. The response of the cell to
such "translational stress" can be manifold, and will usu-
ally be a function of the recombinant protein itself: e.g.
poorly folding proteins can trigger the heat-shock
response of the cell [15,16] and toxic proteins (e.g.
enzymes with deleterious activity) may lead to increased
mutational alterations of their respective genes [17,18].
However, the production even of benign proteins is an
enormous stress to the cell when under control of
extremely strong promoters and Shine-Dalgarno
sequences [19], and it can interfere with cellular processes
in many ways [20,21]. Here we report that this stress is not
necessarily directly detectable, since the promoter is rap-
idly eliminated, leading to the growth of cells in normal
numbers which, however, do not produce the protein of
interest.

We observed this surprisingly easily generated promoter
deletion in several E. coli strains (DH50; RV308; SB536)
in response to massive overexpression of very robust pro-
teins which neither by their protein function nor their
properties show any obvious toxicity, but only as a conse-
quence of the resources needed to synthesize them. This
promoter deletion can go unnoticed up to the point of
detecting a complete lack of expression in normally grow-
ing cultures. We reiterate that this deletion event can be
entirely prevented and protein overproduction be sus-
tained by overexpressing the Lacl protein either from the
bacterial chromosome or from the expression plasmid.
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Results and discussion

Expression plasmid design and experimental system

We used a plasmid expression system with well estab-
lished components, closely analogous to the widely
employed pQE30 backbone (a commercial vector from
Qiagen). It consists of the strong inducible T5 promoter
under control of two lac-operator [22] sequences in series,
the ORF of the protein of interest, followed by two termi-
nators in series (a'T7 transcription terminator and a strong
rrnB t, transcription terminator [23]), a ColE1 origin of
replication (as present in pBR322, but without the rop
gene [24]), the B-lactamase gene under its own promoter
to confer resistance to ampicillin with the strong tran-
scription terminator t, of phage A, and, facultatively, the
lacI gene coding for the lac repressor, which is under con-
trol of the lacl9 promoter and terminated by the strong t;;p
terminator [25], for tight regulation of the operon. The
expression vectors used are called pMPAG77 (without lacl
gene cassette), and pMPAG6 (carrying a lacl gene cassette
under the laclv promoter, this being the only difference to
PMPAG77) (see Additional file 1).

As test proteins we used four different proteins which have
in common that they are monomeric, very soluble and
expressible in very high amounts in E. coli: the Designed
Ankyrin Repeat Protein (DARPin) G3, an ErbB2-binder
[26], the unselected DARPin E3_5 [27], coat protein D
(pD) form phage A [28] and E. coli maltose binding pro-
tein (MBP [29]).

As expression hosts 5 different E. coli strains were used
(see Methods section for genotypes), two of which are
overexpressing the lac repressor under the lacl1 promoter,
either on an F-plasmid (XL1 blue F' [30]) or integrated in
the chromosome (DH50Z1 [31]; which is DH5a lac-
IitetR+), or three strains without the lacl¥ genotype (RV308
[32], DH5a [33] and SB536 [34]. For simplicity, we refer
to the strains as lacl+ (XL1 blue F', DH50Z1) and lacle
(RV308, DH5a, SB536).

Expression of well expressible proteins in a lacld-
background

When we transformed lacls strains with the expression
plasmids not containing a lacl gene, only a slight reduc-
tion in transformation efficiency was observed on ampi-
cillin containing plates, yielding about 0.5-0.8 times the
colony number of that obtained when a lacl+ stain was
transformed with the same plasmids, or when the corre-
sponding plasmid containing the lacl gene was used in
either type of strain. Since this reduction in colony
number was still in the range of variation for different
preparations of competent cells, it would have stayed
unnoticed without the respective controls. Only the cod-
ing sequence of protein D in the vector without lacl gene
gave a stronger reduction in colony number in the lacls
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strains than in either of the lacl? controls. It should be
noticed that no outgrowth in liquid media after transfor-
mation and only a short incubation on ice was performed.
Instead, cells were directly plated on solid media. It is,
therefore, very unlikely that a preexisting deletion within
the plasmid pool was enriched such that it could explain
the nearly equal transformation efficiencies under condi-
tions of incomplete or complete repression of protein
expression. Furthermore, the plasmid used for test-trans-
formation of lacl4 strains had always been prepared from
laclIa+ strains.

Small scale protein expression tests of single clones of the
lacle strains, transformed with expression plasmids not
encoding the lacl gene, resulted in normal growth, but no
expression at all for each of the tested proteins (Figure
1(a), (b)). Lack of expression was additionally confirmed
by a western blot analysis of the RGS-His-Tag of our test
proteins (data not shown). In contrast, normal, very high
protein expression for all proteins tested could be
observed for single clones originating from colonies of the
lacl+-strains transformed with expression plasmids encod-
ing lacl, which was also confirmed by western blot (Figure
1(b) and data not shown). Normal high expression was
also observed in single clone protein expression analysis
of lacl4+ strains, no matter whether they were transformed
with the plasmids encoding lacI or plasmids not encoding
lacI (data not shown).

To investigate whether the plasmid may have become
mutated, we isolated the DNA of the non-producers from
lacI- E. coli strains and introduced them into lacl%+ strains.
Such retransformation did not lead to any protein expres-
sion of the respective test proteins upon induction with
IPTG, indicating that the non-producing phenotype had
become encoded on the plasmid. The same type of plas-
mid leads to extremely strong expression when isolated
from a lacl+ background.

PAGE-analysis of whole cell lysates of small scale protein
expression tests with lacl?- strains harboring plasmids not
encoding lacl, while not showing any trace of the protein
of interest, frequently led to the appearance of a promi-
nent protein band of around 19 kD (Figure 1(a)). N-ter-
minal sequencing of the respective excised band and
subsequent BLAST-search identified this protein as Dps
(DNA protecting during starvation protein; SWISSPROT:
POABT?2; PDB-ID: 1L8H), which is expressed by most bac-
teria at high levels under various stress conditions (e.g.
heat, depletion of nutrients, oxidative stress) to protect its
DNA [35].

Sequence analysis of expression plasmids
To determine the reason for this unexpected complete fail-
ure of protein expression we analyzed the sequences of
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Figure |
Small scale expression tests of individual clones in a lacl9* or lacls- background. (A) Expression test of 10 clones each

of the DARPins E3_5 and G3 in E. coli RV308 (lacl?') from expression vector pMPAG77 (lacl). MW, molecular weight marker;
U, uninduced, number, clone number induced with IPTG. No protein band of the correct size in 15% SDS-PAGE analysis could
be observed. Instead, a prominent band of ~19 kDa of a host protein was observed upon induction with IPTG (black arrow),
which was identified as E. coli Dps. (B) Expression of DARPins E3_5 and G3 (two individual clones each) in E. coli DH5a. (lacl9-)
can only be observed in 15% SDS-PAGE analysis if Lacl is provided by the expression plasmid. U, uninduced; I, induced with

IPTG.
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several clones of our expression plasmids for our different
test proteins. Plasmid preparations not encoding lacl for
the various test proteins were either prepared from E. coli
RV308 or DH5a (both are laclt). Sequence analysis
revealed that, independent of the examined test proteins
(DARPins E3_5 or G3) a 32 bp fragment of the respective
expression vector including the -10-region and one of the
homologous operator-regions had been deleted when the
plasmid preparation originated from a strain not overex-
pressing Lacl (Figure 2) [36], independent of the test pro-
tein. The remaining vector backbone including the CDS of
the protein of interest was correct in all cases and did not
show any mutational variability. Thus, this deletion in the
operator/promoter region of our expression plasmids,
which is only occurring when both the strain is lacld- and
the plasmid does not encode lacl, is the reason for the
complete lack of protein expression under such circum-
stances.

Transcription vs. Translation

To examine whether this promoter deletion was caused by
cell stress originating from the level of transcription of the
very strong T5 promoter [22] or from the level of transla-
tion, we constructed a pMPAG77-expression plasmid var-
iant (not encoding lacl) which contained a stop codon in
the ORF after the fifth amino acid position. By this meas-
ure we are recruiting a similar amount of the transcription
machinery to this altered construct to produce mRNA as
with the full length construct. While the translating ribos-
omes will likely protect the mRNA from degradation [37],
they would not be expected to influence its initial biosyn-
thesis rate. Therefore, if high-level transcription interfered
with plasmid replication or if there was a metabolic bur-
den due to massive RNA biosynthesis, this problem
would remain when translation is abbreviated to a pen-
tapeptide by an early stop codon.

Transformation rates of lacl4- cells harboring this altered
construct turned out to be as high as with the full length
construct in a lacl?* strain background, and higher than
with the corresponding construct lacking the stop codon
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in a lacl? background (data not shown). Sequence analy-
sis of individual clones of this construct with the inserted
stop codon prepared form lacls strains did not show the
deletion described above, nor did they have any other
mutation in the gene (data not shown). This observation
also strongly argues against the objection that such a dele-
tion is already present in the starting plasmid pool. If this
were true, it should be observed with the shortened con-
struct as frequently as with the full length product, which
is obviously not the case.

Doubling rates after induction were essentially indistin-
guishable between cells expressing the full proteins or the
truncated versions. This observation is very distinct from
the complete cessation of growth usually observed when
the expression of "toxic" proteins is induced, e.g. some
integral membrane proteins. This shows that, while high
level protein expression is a resource problem, E. coli can
handle it very well once the plasmid is established, at least
during the few doublings of a batch culture.

Taken together, these observations suggest that the
observed promoter deletions occur in response to massive
overproduction of the respective protein and not due to
problems at the transcriptional level, neither due to tran-
scription/replication interference nor at the RNA resource
level. The deletion event disappears once a stop codon is
introduced shortly after the start codon of the ORF of our
test proteins. This observation strongly argues that the
deletion occurs in response to resource problems on the
translational level and not on the transcriptional level.
The deletion occurs in the present plasmids, which are
very closely analogous to the widely used expression vec-
tor pQE30 (Qiagen) in strains lacking the lacl? phenotype
(RV308, DH50, SB536). This vector has been shown, oth-
erwise, to be very robust and not to show any interference
of transcription and replication. In our vector the strong
transcript is isolated by strong terminators in both direc-
tions, and similarly the origin of replication is protected.

-35 lac Ol -10 lac O1 RBS START
AATTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACAGAAT TCATTAAAGAGGAGARATTACATATG
ARTTATTTGCT .« e e veeeee et et eaeeaeeeenenns TTGTGAGCGGATAACAATTTCACACAGAATTCATTAAAGAGGAGAAATTACATATG

Figure 2

Sequence Analysis. Sequence of the promoter/operator region, identical in pMPAG6 (lacli*) and pMPAG77 (lacld-) (top line),
and alignment with the deletions (bottom line) isolated from lacl9°E. coli strains harboring the respective lacl9- expression vec-
tor: identical sequences were found in at least 6 independent clones of each construct protein. The -35 and -10 regions are
indicated by yellow boxes; the two lac O/ operator sites are marked by red letters (length defined as the Lacl contact residues
seen by NMR [36], with each symmetry center in bold). The ribosomal binding site (RBS) is highlighted in green and the start
codon in light blue, respectively.
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Potential mechanism of deletion

The exact underlying mechanism for deletion of part of
the promoter region still needs further investigations. The
E. coli cells exploit the homology between the two lac
operators, but the deletion is only observable under
resource stress from translation. In the presence of suffi-
cient Lacl, this system is extremely well expressed [12].
After transformation, the plasmid starts from a single copy
and is replicated until it reaches its steady state copy
number, perhaps offering multiple opportunities for
mutagenesis. It is likely that the resource stress and thus
the selection operates at this time.

Deletions between short tandem repeats are thought to
occur predominantly by "replication slippage" during rep-
lication and are favored when repeats are in close proxim-
ity, as they need to be present in the same replication fork
[38-40]. As replication slippage is RecA-independent, this
is consistent with our observation that the deletions also
occur in E. coli DH5a, which has a recA1 phenotype.

While it has been proposed that these events are triggered
by stalled replication forks [38,39], and one might suspect
strong transcription to somehow lead to this situation, we
note that the deletions were not found when a stop codon
was introduced into the main transcript of an otherwise
identical vector. We can, at present, not distinguish
whether the intrinsic replication error is still rare when
high level translation occurs and the deletion product is
only strongly selected by the translational resource limita-
tion or whether the resource limitation also increases the
intrinsic frequency of this misalignment event. There has
been a long standing controversy as to what degree selec-
tive stress induces mutations or only affects the relative
growth advantage of preexisting mutants [41-44]. Our
experiments cannot resolve this controversy, and different
mechanisms may be operative, but we note the obvious
signs of serious stress evidenced by the accumulation of
the Dps protein [35]. Dps is a sign of early stationary
phase [35], and thus the mutations are somewhat remi-
niscent of the observations of stationary phase mutagene-
sis described by Balbinder [45,46], even though the
underlying mechanism is probably very different.

Conclusion

As a practical consequence of the observations described
here, we recommend using fully repressible systems for
massive routine protein overproduction, even if none of
the expressed proteins show signs of growth retardation or
other evidence of toxicity. For strongly expressed, stable
and soluble proteins, resources will not be recycled by
protein degradation, and the problem may be even more
acute. The existence of resource limitation may not be
immediately apparent, as there are no obvious effects on
growth or colony number after transformation, since dele-
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tion is surprisingly frequent. For lac operator controlled
systems, Lacl overexpression as with the lacl1 phenotype is
thus mandatory (either from the chromosome or the plas-
mid) to prevent such deletion.

Even though the double lac operator was exploited by the
cell as the homologous region for recombination, the
underlying problem is the extremely strong selective pres-
sure, not the opportunity. Even in the absence of this par-
ticular homology, deletion between imperfect
homologous regions or induction of an early frameshift in
tracts of one particular base [38,39] are two efficient
mechanisms that would cause the same kind of loss of
expression. Therefore, the pragmatic solution to such a
problem must lie in the supply of sufficient repressor, and
not in the removal of the second binding site. We further
note that the expression system is extremely robust in the
presence of a lacl?+ phenotype, from micro scale to fer-
mentation.

In the past few years, paralleling the rapid progress in the
availability of complete genome sequences and thus the
identification of novel ORFs, numerous techniques for
automated and manual high-throughput protein expres-
sion and purification have been developed [47-53]. It is
commonly believed that modern expression vectors, espe-
cially commercial and widely used ones, have been opti-
mized, e.g. to prevent the collision of transcription and
replication machinery [12], and that any problem would
at least result in a clear phenotype. In other words, such
malfunction of a given expression vector would be
expected not to stay unnoticed even in parallel or auto-
mated processes. However, in such high-throughput pro-
tein production approaches, one would ironically lose the
best behaving and most robust proteins. Similarly, in fer-
mentation processes with very long induction times, the
occurrence of such deletions cannot per se be excluded.
The complete absence of protein expression, without indi-
cation of plasmid loss or easily detectable large rearrange-
ments, may thus warrant a more detailed investigation of
the problem. Additionally, full repression even in the
absence of a visible problem, is a useful precaution.

Methods

Unless stated otherwise, all molecular biology experi-
ments were performed according to protocols of Sam-
brook and Russell [54].

Strains

The strains used in this study were Escherichia coli XL1 blue
F' [30] (recA, endA1, gyrA96, thi, hsdR17 (ry, mg*), supE44,
relAl, A, lac, [F'::Tn10(tet), proA+B+, lacli ZAM15]), RV308
[32], (A(lac)y74 galPO-308::1S2 1psL), DH5a [33] (F,
endAl hsdR17(rimy*) supE44 thi-1 ArecAl gyrA96 relAl
deoR, A(lacZYA-argF)U169, ¢80dlacZAM15), DH50Z1
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[31] (DH5a laclitetR+), and SB536 [34] (w.t. strain WG1
AfhuA AhhoAB). The stocks of the strains were stored in
20% (v/v) glycerol solution at -80°C.

Plasmids

Plasmids used in this study are listed in Table 1 in the
Additional file 1. The sequences of all inserts in plasmids
that were generated by PCR were confirmed by sequenc-
ing.

All cloning and plasmid preparation for subsequent
experiments was performed using E. coli XL1 Blue F'
(Stratagene, USA). The plasmid preparation for the com-
parative expression experiments in different strains started
from a single colony that was then grown in LB medium
supplemented with 50 pg/ml ampicillin under glucose
repression (1% (w/v)) to give a "master" plasmid prepara-
tion. This DNA was than used in all subsequent transfor-
mations.

Transformation efficiency and comparative expression
experiments

Transformation efficiency was determined by introducing
a normalized amount of the various expression plasmids
prepared as described above into the E. coli test strains.
This was done by incubation of the normalized plasmid
solution with 30 pl of a competent cell solution [55] of
the respective expression strains for 20 min on ice. After-
wards this mixture was directly plated, without further
outgrowth in liquid media, on LB agar plates containing
1% (w/v) glucose and 50 pg/ml of ampicillin. Cells were
grown at 37 °C overnight.

For small scale expression tests single clones from these
plates were taken to inoculate fresh LB medium supple-
mented with 1% (w/v) glucose (repression conditions)
and 50 pg/ml ampicillin and grown up under vigorous
shaking at 37°C. Protein expression was induced at an
ODy,, of 0.5-0.8 by the addition of 1 mM IPTG. After 4
hours, aliquots of the samples were withdrawn, normal-
ized to ODy, and cells were disrupted by heating at 95°C
for 15 minutes in SDS-loading buffer. Proteins were sub-
sequently separated by SDS-PAGE.

Identification of 19 kDa protein

Prior to N-terminal sequencing cell samples were normal-
ized to cell density and proteins were separated by stand-
ard 15% SDS-PAGE. Subsequently samples were
transferred to an Immobilon-P membrane (Millipore,
Billerica, MA, USA) using semi-dry electroblotting [56].
Proteins were stained with Coomassie Brilliant Blue,
respective protein bands of interest were cut out and sub-
jected to Edman-degradation combined with HPLC anal-
ysis of the degradation products. The result of the HPLC
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analysis was subjected to the SIB BLAST Network Service
[57].
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