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Background
The central metabolic pathways of many biological sys-
tems with industrial interest are currently known. Knowl-
edge of intracellular fluxes is crucial to understand cell
metabolism. Bioreactor dynamic optimisation schemes
could profit from the incorporation of this knowledge
[1,2]. A number of methods have been developed to study
the structure of biochemical networks. The elementary
flux modes (EFMs) method is particularly attractive since
it allows to reduce network complexity to a minimal set of
reactions [3].

In previous studies [4], a bioprocess batch-to-batch opti-
misation scheme supported by a hybrid model was devel-
oped and applied to the optimization of a BHK culture
expressing the fusion glycoprotein IgG1-IL2. The main
contribution of the present study is to improve the previ-
ous method by incorporating the knowledge of the meta-
bolic network. The incorporation of the metabolic
network in the form of EFMs, may increase the generaliza-
tion properties of the model and may thus contribute to
the increase of the rate of success of the optimization
method.

Results
The proposed methodology is based on the premise that
the biological system under consideration is only partially
known in a mechanistic sense. Following this principle, a
hybrid parametric/nonparametric representation of the

biological system was adopted to support a batch-to-
batch optimization scheme (Figure 1).

In the first step, the metabolic network structure of the
biological system under study is analyzed using the ele-
mentary flux modes technique. Elementary flux modes are
the simplest paths within a network that connect sub-
strates with end-products [3], thus they define the mini-
mum set of n species that must be considered for
modelling and how they are connected in a simplified
reaction mechanism. The EFM analysis of a given biosys-
tem results in m elementary flux modes and the corre-
sponding n × m stoichiometric matrix K, with n the
number of compounds that must be considered for mod-
elling. The BHK metabolic network analyzed in this work
considers the most relevant pathways involving the two
main nutrients (glucose and glutamine) within the central
metabolism of BHK cells. The FluxAnalyzer software [3]
was used to determine the EFMs of BHK metabolic net-
work. There are seven EFMs describing the BHK metabolic
network. Assuming the balanced growth condition it is
possible to eliminate the intermediate metabolites from
each EFM resulting in a set of simplified reactions con-
necting extracellular substrates (glucose and glutamine)
with end-products (lactate, ammonia, alanine, carbon
dioxide, purine and pyrimidine). Furthermore, some
assumptions concerning the fluxes were made based on
literature, resulting in five EFMs. The following stoichio-
metric matrix was obtained
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Note that K also accounts for cell growth and product for-
mation as completely independent fluxes since the stoi-
chiometry of theses reactions is not accurately known.

The state space vector is formed by the n concentrations of
compounds of the final reactions set and additionally, the
concentrations of viable cells, Xv, and product, IgG:

c = [Xv, Glc, Gln, Lac, Amm, Ala, IgG]T.  (2)

Once a reaction mechanism has been established using
the EFM method, the next step is the identification of the
EFM kinetics from data. Here we adopted a hybrid para-
metric/nonparametric model structure assuming that that
reaction kinetics of EFM are partially known or even com-
pletely unknown. This model structure can be formulated
mathematically by the following two equations [4]:

r(c, w) = K<φj(c) × ρj(c, w)>j = 1, ...,m  (3b)

with r a vector of n volumetric reaction rates, K a n × m
coefficients matrix obtained from the elementary flux
modes analysis, ϕ,(c) are m kinetic functions established
from mechanistic knowledge, ρj(c,w) are m unknown
kinetic functions, w a vector of parameters that must be
estimated from data, D is the dilution rate, u is a vector of
n volumetric input rates (control inputs).

For the system under study the vector of known kinetic
functions is given by:

ϕ(c)= [Xv XvGlc XvGlc XvGln XvGln XvGlnGln Xv]T,  (4)

whereas the vector of unknown kinetics is given by:

ρ = [μ - kd r1 r2 r3 r4 r5 rIgG]T = ρ(Glc, Gln, Amm, w).  (5)

A backpropagation neural network with a single hidden
layer was used for the identification of ρi(c, w):

ρ(c, w) = ρmaxs(w2s(w1c+b1)+b2)  (6)

with ρmax a vector of scaling factors with dim(ρmax) = m,
w1, b1, w2, b2 are parameter matrices associated with con-
nections between the nodes of the network, w is a vec-
tored form of w1, b1, w2, b2 and s(.) the sigmoid activation
function defined as follows:

Finally, the last term in eq. (3a), the control input vector
is u = [0 FGlc FGln 0 0 0 0] with FGlc and FGln the volumetric
feeding rates of glucose and glutamine respectively.

Off-line measurements of the seven state variables from
five experiments were used for model training and valida-
tion. The neural network had three inputs: glucose and
glutamine, the main limiting nutrients, and ammonia, the
main toxic by-product. The output vector was formed by
the seven unknown specific kinetics: μ-kd, r1, r2, r3, r4, r5,
rIgG. The criterion to stop the training was the minimum
modelling error of the validation data set. The best result
was obtained with five hidden nodes. Figure 2 presents
the hybrid modelling results for one of the training and
one of the validation data sets. A relevant result is the fact
that the hybrid model was able to describe simultane-
ously all five batches with high accuracy.
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Optimisation results
With the hybrid model just developed, the process per-
formance (described as the glycoprotein quantity at the
end of the bioreaction) is optimized with respect to con-
trol inputs FGlc and FGln, using a micro-genetic algorithm
[5]

The optimization (8) is constrained by the hybrid dynam-
ical model and by the risk of ANN inputs being outside
the trust region. The optimisation results are presented in
Figure 3 showing the optimal trajectories of viable cells,
glucose, glutamine and product concentrations. The final
product titre is 25 mg/l representing a 67% improvement
of performance obtained in the fed-batch experiments so
far.

According to the iterative batch-to-batch optimisation
scheme shown in Fig. 1, the next step is to perform a new
experiment to validate this optimization results. If meas-
ured data and predicted optimal process trajectories devi-
ate considerably, additional iterations are performed until
convergence of model and process performance is
achieved.

Conclusion
A bioinformatic tool was developed that integrates classi-
cal optimal control and elementary flux analysis tools. A
hybrid parametric/nonparametric modelling framework
was adopted that does not require detailed knowledge of
intracellular kinetics. A dynamic optimisation method is
employed constrained by the risk of nonparametric com-
ponents unreliability. The method was applied to a
recombinant BHK-21 cell line expressing the fusion glyc-
oprotein IgG2-IL1. The final hybrid model was then used
to optimise conditions that favour product formation
showing that high productivity increments are likely for
the process at hand.
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Hybrid model results for a training data set (a) and a valida-tion data set (b)Figure 2
Hybrid model results for a training data set (a) and a valida-
tion data set (b).
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