RESEARCH

Open Access

Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in *Escherichia coli*

Monika Maciąg¹, Dariusz Nowicki¹, Laurent Janniere², Agnieszka Szalewska-Pałasz¹ and Grzegorz Węgrzyn^{1*}

Abstract

Background: Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in *Bacillus. subtilis.* Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule.

Results: We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of *dnaA46*(ts) mutation could be suppressed by dysfunction of *pta* or *ackA*, effects of *dnaB*(ts) by dysfunction of *pgi* or *pta*, effects of *dnaE486*(ts) by dysfunction of *tktB*, effects of *dnaG*(ts) by dysfunction of *gpmA*, *pta* or *ackA*, and effects of *dnaN159*(ts) by dysfunction of *pta* or *ackA*. The observed suppression effects were not caused by a decrease in bacterial growth rate.

Conclusions: The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, *E. coli*. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

Background

When considering a bacterial cell as a microbial factory, producing various macromolecules either natural or formed due to introduction of recombinant genes, several biochemical processes must be taken into consideration. Among them, there are two basic processes ensuring that more specialized reactions (like transcription of particular genes and translation of particular mRNAs on ribosomes as well as enzyme-mediated production of various compounds) can occur. These two processes are central carbon metabolism (for a review see ref. [1]) and DNA replication (for a review see ref. [2]). The former one provides energy from nutrients, which is absolutely necessary to all life functions of cells. The latter one, although consuming cellular energy, ensures integrity of genetic material and its inheritance by daughter cells after each cell division,

providing the source of information about biological structures and functions of macromolecules.

The central carbon metabolism (CCM) is generally recognized as a set of biochemical pathways devoted to transport and oxidation of main carbon sources in the cell [1]. In a model Gram-negative bacterium, *Escherichia coli*, it consists of the phosphortransferase system, glycolysis, gluconeogenesis, pentose-monophosphate bypass with Entner-Dudoroff pathway, Krebs cycle with glyoxylate bypass and the respiration chain [3]. Biochemical reactions of these pathways ensure the optimal energy production and usage in the cell at particular growth conditions, in order to keep homeostasis.

DNA replication is a process of genetic information duplication, which is necessary to equal and precise distribution of the genetic material to both daughter cells after each cell division [2]. The process of replicative DNA synthesis requires large cellular machinery, which in *E. coli* consists of DNA polymerase III holoenzyme (containing at least 10 subunits) and other essential proteins, including DnaB helicase and DnaG primase.

© 2011 Maciąag et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: wegrzyn@biotech.univ.gda.pl

¹Department of Molecular Biology, University of Gda**ń**sk, Kładki 24, 80-822 Gda**ń**sk, Poland

Full list of author information is available at the end of the article

Additional proteins (DnaA, DnaC) are required for DNA replication initiation at a specific genome region, called *oriC* [2,4].

Although it was observed previously that regulation of DNA replication may depend on bacterial cell metabolism, it was generally assumed that this dependency is indirect. For example, it might result from different availability of cellular energy and/or precursors of macromolecules [5,6] or from production of specific alarmons, like cyclic AMP (cAMP) [7,8] or guanosine tetraphosphate (ppGpp) [9-12], in response to nutritional deprivations. However, it was reported recently that DNA replication may be directly linked to central carbon metabolism, particularly glycolysis, in a model Gram-positive bacterium, *Bacillus subtilis* [13]. Namely, specific suppression of conditionally-lethal (temperaturesensitive, ts) mutations in genes coding for replication proteins (DnaE, a DNA polymerase involved in lagging strand synthesis, DnaC, a helicase - homologue of E. coli DnaB protein, and DnaG, the primase) by dysfunction of certain genes coding for enzymes involved in glycolysis, was observed. An indirect suppression mechanism (e.g. by slowing down of bacterial growth rate) was excluded, strongly suggesting a real link between glycolysis and DNA replication. Thus, the existence of such a link should be considered in any studies on both these processes, as well as when constructing and using biotechnological systems for efficient production of desired compounds.

Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in *B. subtilis* [13]. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Since *E. coli* is both a model Gram-negative bacterium and a widely used host for production of recombinant proteins, in our studies, which were performed to answer the above question, we employed strains of this species.

Methods

Bacterial strains, plasmids and bacteriophages

E. coli strains used in this work are listed in Table 1. Plasmids and bacteriophages are described in Table 2. New bacterial strains and plasmids were constructed according to standard procedures of P1 transduction and molecular cloning, respectively [14].

Oligonucleotides

Oligunucleotides are described in Table 3.

Growth conditions

Luria -Bertani (LB) medium, and minimal media M9 and MM, were used [14]. Solid media contained 1.5% of

bacteriological agar. For liquid cultures, bacteria were grown in various media in shake flasks, with aeration (by shaking). Overnight cultures were diluted in LB and grown to $OD_{600} = 0.3$. Then, 100 µl of the culture or its dilution was plated on solid media. The plates were then incubated at indicated temperatures for indicated time. CFU (colony forming units) were calculated from plates where colony number was between 100 and 1000.

Results

We have employed six E. coli temperature-sensitive mutants in following genes coding for proteins necessary for chromosomal DNA replication: *dnaA* (coding for the replication initiator protein that binds to the oriC region and forms a specific nucleoprotein structure; this is the first step in the DNA replication initiation), dnaB (coding for the main DNA helicase, the enzyme necessary to melt DNA during the replication process), dnaC (coding for the protein which delivers DnaB helicase to the DnaA protein bound to *oriC*), *dnaE* (coding for the α subunit of DNA polymerase III, the catalytic subunit of this enzyme), dnaG (coding for primase, an enzyme necessary to synthesize RNA primers during DNA replication) and *dnaN* (coding for the β subunit of DNA polymerase III, a protein forming the sliding clamp and allowing DNA polymerase III to be kept on the template DNA strand when synthesizing new polynucleotide strand) [for more detailed information on these genes and their products, see ref. 2]. These mutants are described in Table 1.

To test whether mutations (particularly deletioninsertion mutations) in genes coding for enzymes from central carbon metabolism (CCM) may suppress temperature sensitivity of the replication mutants, we have determined the sensitivity profiles of all tested conditionally lethal mutants. This was necessary to chose temperatures that severely restricted growth of mutant cells, however, which still allowed observing some viability of tested strains; otherwise detection of any suppression would be impossible, as observed in the *B. subtilis* study [13]. The profiles of temperature-sensitivity of *dnaA*, *dnaB*, *dnaC*, *dnaE*, *dnaG* and *dnaN* mutants in LB medium are shown in Figure 1.

A series of double mutants, bearing mutations in one of the replication genes and in one of genes coding for CCM enzyme, has been constructed by P1 transduction (Table 1). For these constructions, deletion-insertion mutants in following genes were employed: *gapC*, *pykF*, *tpiA*, *pgi*, *fbaB*, *gpmA*, *pck*, *zwf*, *tktB*, *pta*, *ackA*, *aceB*, *acnB*, and *icd*. Enzymes encoded by these genes are listed in Table 4, and locations (in particular biochemical pathways) of reactions catalyzed by them are marked on the scheme depicting the central carbon metabolism in *E. coli* (Figure 2).

Table 1 E. coli strains used in this work

Strain	Relevant characteristics	Reference or source
JJC809 (PC8)	dnaB8(ts) Cm ^R F2 leuB6 thyA47 deoC3 rps153 l2	[21]
PC2	dnaC(ts) thy leu rpsL	[21]
PC3	dnaG(ts) Hfr leu thy rpsL	[22]
MG1655	F- λ- ilvG- rfb-50 rph-1	[23]
MG1655 <i>dna</i> A46	F- λ- ilvG- rfb-50 rph-1 dnaA46 tna::Tn10	[24]
DH5a	F- ϕ 80lacZdM15 χ lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ	[25]
BW25113	Δ (araD-araB)567, Δ lacZ4787::rrnB-3, λ , rph-1, Δ (rhaD-rhaB)568, hsdR514	[26]
JW1122	Same as BW25113 but <i>Dicd::kan</i>	[27]
JW1413	Same as BW25113 but <i>AgapC::kan</i>	[27]
JW1666	Same as BW25113 but <i>ApykF::kan</i>	[27]
JW1841	Same as BW25113 but <i>Azwf::kan</i>	[27]
JW2449	Same as BW25113 but <i>AtktB::kan</i>	[27]
JW3366	Same as BW25113 but <i>Apck::kan</i>	[27]
JW3890	Same as BW25113 but <i>LtpiA::kan</i>	[27]
JW3974	Same as BW25113 but <i>LaceB::kan</i>	[27]
JW3985	Same as BW25113 but <i>Apgi::kan</i>	[27]
JW2294	Same as BW25113 but Apta::kan	[27]
JW2293	Same as BW25113 but <i>LackA::kan</i>	[27]
JW5173	Same as BW25113 but <i>AicdC::kan</i>	[27]
JW5175 JW5344	Same as BW25113 but AfbaB::kan	[27]
JW0738		
	Same as BW25113 but <i>AgpmA::kan</i>	[27]
NR13339	Same as KA796 with <i>dnaN159</i> (Ts) <i>zid501::</i> Tn10	[28]
NR7651	Same as MC4100 <i>lacZ</i> 104 <i>dnaE486</i> (Ts) <i>zae502::</i> Tn10	[28] This study by D1 transduction form IM/0114
AS701	MG1655 dnaA46 Δacn::kan	This study, by P1 transduction from JW0114
AS702	MG1655 dnaA46 Aicd::kan	This study, by P1 transduction from JW1122
AS703	MG1655 dnaA46 ΔgapC::kan	This study, by P1 transduction from JW1413
AS704	MG1655 dnaA46 ApykF::kan	This study, by P1 transduction from JW1666
AS705	MG1655 dnaA46 Azwf::Kan	This study, by P1 transduction from JW1841
AS706	MG1655 dnaA46∆tktB::kan	This study, by P1 transduction from JW2449
AS707	MG1655 dnaA46 Apck::Kan	This study, by P1 transduction from JW3366
AS708	MG1655 dnaA46 ΔtpiA::Kan	This study, by P1 transduction from JW3890
AS709	MG1655 dnaA46 LaceB:Kan	This study, by P1 transduction from JW3974
AS710	MG1655 dna A46 Дрді::kan	This study, by P1 transduction from JW3985
AS711	MG1655 dna A46 Дрta::kan	This study, by P1 transduction from JW2294
AS712	MG1655 dnaA46 ΔackA::kan	This study, by P1 transduction from JW2293
AS713	MG1655 dnaA46 ΔicdC::kan	This study, by P1 transduction from JW5173
AS714	MG1655 dnaA46ΔfbaB::kan	This study, by P1 transduction from JW5344
AS715	MG1655 dnaA46 ΔgpmA::kan	This study, by P1 transdukcion from JW0738
AS766	MG1655 dnaB8 Δacn::kan	This study, by P1 transduction from JW0114
AS767	MG1655 dnaB8 Δicd::kan	This study, by P1 transduction from JW1122
AS768	MG1655 dnaB8 ДдарС::kan	This study, by P1 transduction from JW1413
AS769	MG1655 dnaB8 ДрукF::kan	This study, by P1 transduction from JW1666
AS770	MG1655 dnaB8 Δzwf::kan	This study, by P1 transduction from JW1841
AS771	MG1655 dnaB8 ΔtktB::kan	This study, by P1 transduction from JW1841
AS772	MG1655 dnaB8 Дрск::kan	This study, by P1 transduction from JW3366
AS773	MG1655 dnaB8 ΔtpiA::kan	This study, by P1 transduction from JW3890
AS774	MG1655 dnaB8 LaceB::kan	This study, by P1 transduction from JW3974
AS775	MG1655 dnaB8 4pgi::kan	This study, by P1 transduction from JW3985
AS776	MG1655 dnaB8 Apta::kan	This study, by P1 transduction from JW2294
AS778	MG1655 dnaB8 ZackA::kan	This study, by P1 transduction from JW2293

AS779 AS780 AS781 AS750 AS751 AS752 AS753 AS754 AS755 AS756 AS757 AS758 AS759 AS760 AS761 AS762 AS763 AS764 AS783 AS784 AS785 AS786 AS787 AS788 AS789 AS790 AS791 AS792 AS793 AS794 AS795 AS796 AS797 AS718 AS719 AS720 AS721 AS722 AS723 AS724 AS725 AS726 AS728 AS729 AS730 AS731 AS732 AS733 AS734 AS735 AS736 AS737

Table 1 E. coli strains used in this work (Continued)

MG1655 dnaB8 ΔicdC::kan	This study, by P1 transduction from JW5173
MG1655 dnaB8 ΔfbaB::kan	This study, by P1 transduction from JW5344
MG1655 dnaB8 ДдртА::kan	This study, by P1 transduction from JW0738
PC2 dnaC(<i>ts</i>) <i>Δacn::kan</i>	This study, by P1 transduction from JW0114
PC2 dnaC(ts) Δicd::kan	This study, by P1 transduction from JW1122
РС2 dnaC(ts) ДдарС::kan	This study, by P1 transduction from JW1413
PC2 dnaC(ts) ДрукF::kan	This study, by P1 transduction from JW1666
PC2 dnaC(ts) Azwf::kan	This study, by P1 transduction from JW1841
PC2 dnaC(ts) ΔtktB::kan	This study, by P1 transduction from JW2449
РС2 dnaC(ts) Дрск::kan	This study, by P1 transduction from JW3366
PC2 dnaC(ts) ΔtpiA::kan	This study, by P1 transduction from JW3890
PC2 dnaC(ts) ΔaceB::kan	This study, by P1 transduction from JW3974
РС2 dnaC(ts) Дрgi::kan	This study, by P1 transduction from JW3985
PC2 dnaC(ts) Δpta::kan	This study, by P1 transduction from JW2294
PC2 dnaC(ts) ΔackA::kan	This study, by P1 transduction from JW2293
PC2 dnaC(ts) ΔicdC::kan	This study, by P1 transduction from JW5173
PC2 $dnaC(ts) \Delta fbaB::kan$	This study, by P1 transduction from JW5344
PC2 dnaC(ts) ΔgpmA::kan	This study, by P1 transduction from JW0738
PC3 dnaG(ts) Aacn::kan	This study, by P1 transduction from JW0114
PC3 dnaG(ts) <i>Licd::kan</i>	This study, by P1 transduction from JW1122
PC3 dnaG(ts) <i>A</i> gapC::kan	This study, by P1 transduction from JW1413
PC3 dnaG(ts) ΔpykF::kan	This study, by P1 transduction from JW1666
PC3 dnaG(ts) Azwf::kan	This study, by P1 transduction from JW1841
PC3 dnaG(ts) ΔtktB::kan	This study, by P1 transduction from JW2449
PC3 dnaG(ts) Apck::kan	This study, by P1 transduction from JW3366
PC3 dnaG(ts) ΔtpiA::kan	This study, by P1 transduction from JW3890
PC3 dnaG(ts) ZaceB::kan	This study, by P1 transduction from JW3974
PC3 dnaG(ts) Apgi::kan	This study, by P1 transduction from JW3985
PC3 dnaG(ts) Apta::kan	This study, by P1 transduction from JW2294
PC3 dnaG(ts) ZackA::kan	This study, by P1 transduction from JW2291 This study, by P1 transduction from JW2293
PC3 dnaG(ts) ZicdC::kan	This study, by P1 transduction from JW7173
PC3 $dnaG(ts) \Delta fbaB::kan$	This study, by P1 transduction from JW5344
PC3 dnaG(ts) ΔgpmA::kan	This study, by P1 transduction from JW0738
МG1655 dnaE486 Дасп	This study, by P1 transduction from JW0114
МG1655 dnaE486 Дісл	This study, by P1 transduction from JW1122
мстозу илисного део MG1655 dnaE486 ДаарС	This study, by P1 transduction from JW1413 This study, by P1 transduction from JW1413
MG1655 dnaE486 ΔργkF	
MG1655 dnaE486 Δzwf	This study, by P1 transduction from JW1666 This study, by P1 transduction from JW1841
MG1655 dnaE486 ΔtktB	
	This study, by P1 transduction from JW2449
MG1655 dnaE486 Δpck	This study, by P1 transduction from JW3366
MG1655 dnaE486 AtpiA	This study, by P1 transduction from JW3890
MG1655 dnaE486 ΔaceB	This study, by P1 transduction from JW3974
MG1655 dnaE486 Apgi	This study, by P1 transduction from JW3985
MG1655 dnaE486 Δpta	This study, by P1 transduction from JW2294
MG1655 dnaE486 ΔackA	This study, by P1 transduction from JW2293
MG1655 dnaE486 ΔicdC	This study, by P1 transduction from JW5173
MG1655 dnaE486 ΔfbaB	This study, by P1 transduction from JW5344
MG1655 dnaE486 ΔgpmA	This study, by P1 transduction from JW0738
MG1655 dnaN159 ZacnB::kan	This study, by P1 transduction from JW0114
MG1655 dnaN159 Δicd::kan	This study, by P1 transduction from JW1122
MG1655 dnaN159 ΔgapC::kan	This study, by P1 transduction from JW1413
MG1655 dnaN159 ΔpykF::kan	This study, by P1 transduction from JW1666

Table 1 E. coli strains used in this work (Continued)

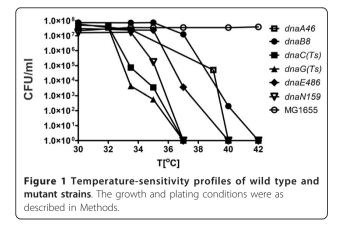
AS738	MG1655 dnaN159 Azwf::kan	This study, by P1 transduction from JW1841
AS739	MG1655 dnaN159 AtktB::kan	This study, by P1 transduction from JW2449
AS740	MG1655 dnaN159 Дрск::kan	This study, by P1 transduction from JW3366
AS741	MG1655 dnaN159 ∆tpiA::kan	This study, by P1 transduction from JW3890
AS742	MG1655 dnaN159 ∆aceB::kan	This study, by P1 transduction from JW3974
AS743	MG1655 dnaN159 Дрді::kan	This study, by P1 transduction from JW3985
AS744	MG1655 dnaN159 Дрta::kan	This study, by P1 transduction from JW2294
AS745	MG1655 dnaN159 ∆ackA::kan	This study, by P1 transduction from JW2293
AS746	MG1655 dnaN159 ∆icdC::kan	This study, by P1 transduction from JW5173
AS747	MG1655 dnaN159 ΔfbaB::kan	This study, by P1 transduction from JW5344
AS748	MG1655 dnaN159 ДдртА::kan	This study, by P1 transduction from JW0738
AS700	MG1655 <i>dnaN159 zid501::</i> Tn10	This study, by P1 transduction from NR13339
AS717	MG1655 <i>dnaE486 zae502::</i> Tn10	This study, by P1 transduction from NR7651
AS765	MG1655 dnaB8(ts) cmR	This study, by P1 transduction from JJC809

We have tested whether mutations in the CCM genes can suppress temperature sensitivity of bacteria caused by mutations in the replication genes. In this test, bacteria were plated at sublethal temperatures (i.e. temperatures causing a decrease in the efficiency of plating for several orders of magnitude, but still allowing survival of a small fraction of mutant cells), selected on the basis of temperature-sensitivity profiles determined as shown in Figure 1 (in control experiments, the temperature permissive to all strains, 30°C, was used). These following sublethal temperatures were chosen for particular replication mutants: 39°C for *dnaA46*(ts), 41°C for *dnaB8*(ts), 35°C for *dnaC*(ts), 36.5°C for *dnaE486*(ts), 34°C for *dnaG*(ts) and 37.5°C for *dnaN159*(ts).

We found no specific suppression (i.e. suppression which could be reversed by plasmid-mediated expression of the wild-type CCM gene whose defective allele resulted in temperature-tolerance of otherwise temperature-sensitive replication mutant) of the effects of *dnaC* (ts) mutation by any tested dysfunction in the CCM genes (Figure 3). However, interestingly, efficiency of plating of *dnaA46*(ts), *dnaB8*(ts), *dnaE486*(ts), *dnaG*(ts) and *dnaN159*(ts) mutants could be increased by at least one order of magnitude (often considerably more) at sublethal temperatures in the presence of particular mutations in genes coding for enzymes from CCM (Figure 3). The effects of *dnaA46*(ts) mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB8(ts) by dysfunction of pgi or pta, effects of *dnaE486*(ts) by dysfunction of *tktB*, effects of *dnaG*(ts) by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts) by dysfunction of pta or ackA. Most of the suppression phenomena were not complete, i.e. the efficiency of survival of the ts mutants in the sublethal temperature was between 1 and 10% of that in the permissive temperature, though still it was 10 to 100 times higher than that of the ts mutant without suppressor mutation at the sublethal temperature (Figure 4).

Table 2 Plasmids employed and constructed in this study

Plasmid	Relevant characteristics	Reference
pBAD24	Ori pBR322; <i>bla</i> + P _{BAD}	[29]
pAS101	pBAD24 bearing the <i>ackA</i> gene under of pBAD control	This study, by cloning of a PCR amplified fragment of <i>E. coli</i> MG1655 chromosome, obtained with primers ackaF and ackaR (Table 3), into the Smal side of pBAD24
pAS102	pBAD24 bearing the <i>pgi</i> gene under of pBAD control	This study, by cloning of a PCR amplified fragment of <i>E. coli</i> MG1655 chromosome fragment obtained with primers pgiF and pgiR (Table 3), into the Smal side of pBAD24
pAS103	pBAD24 bearing the <i>fbaB</i> gene under of pBAD control	This study, by cloning of a PCR amplified fragment of <i>E. coli</i> MG1655 chromosome fragment obtained with primers fbabF and fbabR (Table 3), into the KpnI side of pBAD24
pAS104	pBAD24 bearing the <i>tktB</i> gene under of pBAD control	This study, by cloning of a PCR amplified fragment of <i>E. coli</i> MG1655 chromosome fragment obtained with primers tktbF and tktbR (Table 3), into the KpnI side of pBAD24
pAS105	pBAD24 bearing the <i>pta</i> gene under of pBAD control	This study, by cloning of a PCR amplified fragment of <i>E. coli</i> MG1655 chromosome fragment obtained with primers ptaF and ptaR (Table 3), into the Kpnl side of pBAD24
pAS106	pBAD24 bearing the <i>gpm</i> gene under of pBAD control	This study, by cloning of a PCR amplified fragment of <i>E. coli</i> MG1655 chromosome fragment obtained with primers gpmaF and gpmaR (Table 3), into the KpnI side of pBAD24
pAS107	pBAD24 bearing the <i>aceB</i> gene under of pBAD control	This study by cloning of a PCR amplified fragment of <i>E. coli</i> MG1655 chromosome fragment obtained with primers acebF and acebR (Table 3), into the Kpnl side of pBAD24


Table 3 Oligonucleotides used for cloning

Primer name	Primer sequence (5'>3')	Tm °C	Restriction enzyme site
ackaF	GG <u>CCCGGG</u> ATGTCGAGTAAGTTAG	58.0	Smal
ackaR	TGGCAAGCTTACATTCAGGCAGTCAGGCGGCTCG	60.0	HindIII
gpmaF	CCGGGTACCATGGCTGTAACTAAGCTGGTTCTG	66.9	Kpnl
gpmaR	CGCG <u>GTCGAC</u> TTACTTCGCTTTACCCTGG	65.7	Sall
fbabF	TCCGGTACCATGACAGATATTGCGCAGTTGCTTG	65.6	Kpnl
fbabR	GGCC <u>GTCGAC</u> TCAGGCGATAGTAATTTTGC	64.4	Sall
pgiF	GCCCGGGATGAAAAACATCAATCCAACGCAGACC	66.8	Smal
ogiR	CGGAAGCTTTGATTAACCGCGCCACGCTTTATAG	65.6	HindIII
ptaF	CGGAGGAGGTACCATGTCCCGTATTATTATG	63.0	Kpnl
ptaR	GACGAAGCTTAGATTACTGCTGCTGTGCAGAC	64.4	HindIII
tktbF	CGGAG <u>GGTACC</u> ATGTCCCGAAAAGACCTTG	54.0	Kpnl
tktbR	GCGCAAGCTTTCAGGCACCTTTCACTCCC	57.0	HindIII
acebF	GAGCGGTACCATGACTGAACAGGCAACAACAAC	58.0	Kpnl
acebR	TGTGTCGACTTACGCTAACAGGCGGTAGCCTGG	58.0	Sall

Sequences of particular oligonucleotides recognized by restriction enzymes listed in corresponding row are underlined.

This correlates with the previous findings on the *B. subtilis* model [13]. Interestingly, the only exceptions were *dnaA46* suppressors, restoring 100% growth relative to that under permissive conditions. It is worth noting that *dnaA* mutants of *B. subtilis* were not tested in the previous work, mentioned above [13].

To test whether suppressions depicted in Figure 3 were specific, plasmids bearing wild-type copies of disrupted metabolic genes (Table 2) have been introduced into cells of the double mutants. The wild-type alleles were under control of the pBAD promoter, which could be stimulated by addition of L-arabinose into growth medium. We found that for dnaA46(ts), dnaB8 (ts), dnaE486(ts), dnaG(ts) and dnaN159(ts) hosts, expression of appropriate wild-type allele of CCM gene reversed effects of temperature sensitivity suppression by the corresponding mutant allele (Figure 4). Therefore, we conclude that the suppression effects depicted in Figure 3 are specific for certain mutations.

We asked whether the suppression of temperature sensitivity of mutants in the replication genes by dysfunction of particular genes coding for CCM enzymes could be caused by decreased growth rates of double mutants. This question was substantiated by the fact that DNA replication regulation is known to be dependent on bacterial growth rate [2]. However, we found that although in most cases (excluding the *dnaA46* mutants) at 30°C the growth rates of the double mutants revealing suppression of the temperature sensitivity were lower than in wild-type bacteria, a similar or lower decrease in the growth rate was observed also in double mutants which did not suppress the temperature sensitivity (Figure 5). Therefore, we conclude that the observed suppression effects could not be caused simply by a decrease in bacterial growth rate.

We have also tested whether the suppression can be caused by growth of the replication mutants in media containing various carbon sources, which also allow for different growth rates. Therefore, we have plated dnaA46(ts), dnaB8(ts), dnaC(ts), dnaE486(ts), dnaG(ts) and dnaN159(ts) mutants on plates containing a minimal medium supplemented with various carbon sources: glucose, glycerol, maleic acid or sodium acetate. However, in these experiments, we did not observe any improvement in viability of these mutants at the sublethal temperatures (data not shown). These results corroborate the results of experiments with growth rate measurement, and support our conclusion that the suppression of temperature sensitivity of the replication mutants cannot be explained by lower growth rates of bacteria.

Discussion

The approach to understand cellular processes as a network of complex relations becomes more appreciated

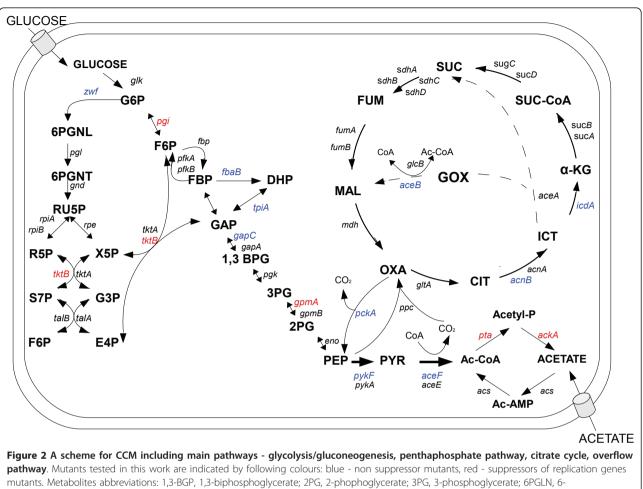
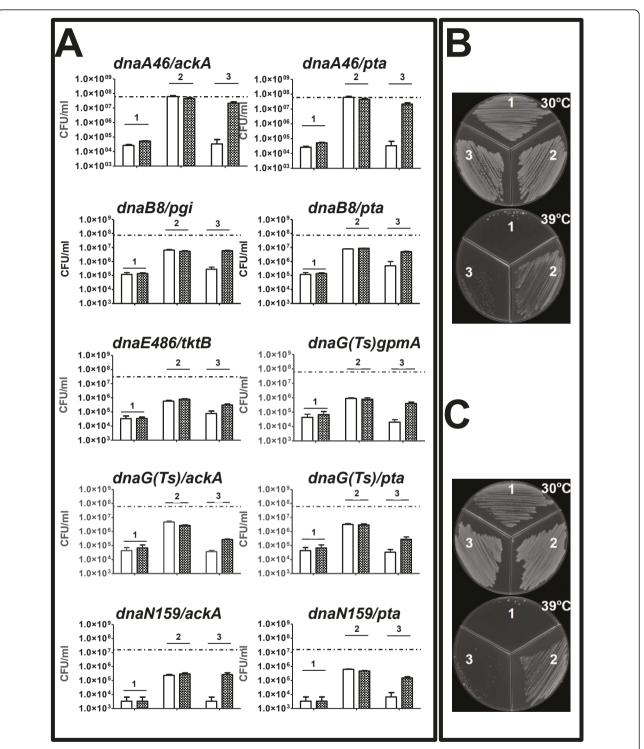
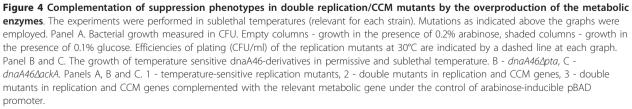

EC number	Name	Gene	Pathway
EC 1.2.1.9	Glyceraldehyde-3-phosphate dehydrogenase	gapC	glycolysis/gluconeogenesis
EC 2.7.1.40	Pyruvate kinase	pykF	
EC 5.3.1.1	Triose-phosphate isomerase	tpiA	
EC 5.3.1.9	Glucose-6-phosphate isomerase	pgi	
EC 4.1.2.13	Fructose-bisphosphate aldolase	fbaB	
EC 5.4.2.1	Phosphoglyceromutase	gpmA	
EC 4.1.1.49	Phosphoenolpyruvate carboxykinase (ATP)	pckA	
EC 1.1.1.49	Glucose-6-phosphate 1-dehydrogenase	zwf	pentose phosphate pathway
EC 2.2.1.1	Transketolase B	tktB	
EC 2.3.1.8	Phosphate acetyltransferase	pta	overflow pathway
EC 2.7.2.1	Acetate kinase	ackA	
EC 2.3.1.12	Dihydrolipoyllysine-residue acetyltransferase	aceF	
EC 2.3.3.9	Malate synthase	асеВ	citrate cycle (TCA cycle)
EC 4.2.1.3	Aconitate hydratase	acnB	
EC 1.1.1.42	Isocitrate dehydrogenase, specific for NADP+	icdA	
-	Conserved hypothetical protein (pseudogene)	icdC	

Table 4 Enzymes of CCM, whose genes were tested in this study

only nowadays. Two major processes responsible for maintenance and reproduction of the cell (i.e. energy metabolism and DNA replication) were studied mostly independently until recently. A direct link between DNA replication and central carbon metabolism (CCM) has been demonstrated solely for one species of Grampositive bacterium, *B. subtilis* [13]. This finding was a breakthrough in considering these processes as interrelated. Thus, it was crucial to address the question whether such a phenomenon occurs only in the specific strain or it is more general. Here we present evidence that such a link exists also in *E. coli*, a model Gramnegative bacterium.


Despite the general similarity, there are important differences between suppression of effects of mutations in replication genes by dysfunction of genes coding for enzymes of CCM in E. coli and B. subtilis. According to previous report [13], in B. subtilis, the temperature-sensitivity suppression was detected for only three genes: dnaE, dnaC (an equivalent of the E. coli dnaB gene, coding for helicase) and *dnaG*. Temperature-sensitive mutants in these genes could grow at elevated temperatures in the presence of additional mutations in gapA, pgk, pgm, eno or pykA. These five genes code for enzymes acting at the late stages of glycolysis and gluconeogenesis. In E. coli, we were able to observe suppression of effects of temperature-sensitive mutations not only in *dnaE*, *dnaB* and *dnaG* genes (like in *B. subtilis*), but also in *dnaN* and - perhaps the most surprisingly in *dnaA*. Moreover, growth at sublethal temperatures of these mutants was observed under conditions of a lack of enzymes involved not only in glycolysis and gluconeogenesis (pgi and gpmA), but also in other regimens of CCM, namely the pentose phosphate pathway (*tktB* gene) and the overflow pathway (*pta* and *ackA* genes). This suggests that in *E. coli* the link between DNA replication and CCM may be broader than in *B. subtilis*. Alternatively, the observed differences might result from a partial exploration of a complex system (only some replication and metabolic genes were tested due to technical reasons, namely unavailability of viable mutants).


For B. subtilis, the target of the regulation by metabolic-related signals was shown to be mostly the elongation of the DNA replication process, though some suppressed replication mutations affected also replication initiation [13]. In E. coli, the evidence presented here shows the link between CCM and replication elongation (represented by enzymes involved in the replication complex), and initiation. One of indispensable regulators of the latter process in E. coli is DnaA protein [15,4]. Thus, the finding of the suppression of dnaA46(ts) conditionally-lethal phenotype by mutants in genes involved in CCM suggests the presence of as yet unidentified correlation. Moreover, the observed suppression was complete (100% survival at sublethal temperature relative to survival at permissive temperature), contrary to those noted for other mutants in replication genes. Both suppressors of the *dnaA46*(ts) phenotype map in the overflow pathway of CCM. This and the presence of the suppressors in genes of enzymes from other pathways beside glycolysis in E. coli could be explained by (i) partial exploration of the coupling system, (ii) the differences in the replication complexes in E. coli and B. subtilis, and/or (iii) different lifestyles and nutrient requirements of these bacterial species. E. coli, during its life cycle, may be exposed to the abrupt changes in the nutrient availability (the "feastfamine" scenario), which requires a more strict regulation, linking energy turnover and DNA replication, thus,

mutants. Metabolites abbreviations: 1,3-bGP, 1,3-bDPhosphoglyCerate; 2PG, 2-phophoglyCerate; 3PG, 3-phosphoglyCerate; oPGLN, 6phosphoglucono- δ -lactone; 6PGNT, 6-phophogluconate; GLC, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FUM, fumarate; MAL, malate; OXA, oxaloacetate PBP, fructose-1,6-biphosphate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate; PYR, pyruvate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P, erythrose-4phosphate; Ac-CoA, acetyl coenzyme A; Ac-P, acetyl phosphate; Ac-AMP, acetyl-AMP; CIT, citrate; ICT, isocitrate; GOX, glyoxylate; α -KG, α ketoglutarate; SUC-CoA, succinyl-coenzyme A; SUC, succinate; Xu5P, xylulose-5-phosphate.

	Glycolysis/gluconeogenesis							PF	Р	Overflow		Krebs cycle			
	gapC	pykF	tpiA	pgi	fbaB	gpmA	pck	zwf	tktB	pta	ackA	aceB	acnB	icd	icdC
dnaA															
dnaB															
dnaC															
dnaE															
dnaG															
dnaN															

Replication mutants				Mutatio	on in metabol	ic gene			
	None	tpiA	pgi	fbaB	gpmA	tktB	pta	ackA	aceB
dnaA46	52 ± 7.6	-	35 ± 0.0	-	-	-	38 ± 7.6	37 ± 3.8	-
dnaB8	56 ± 5.8	46 ± 6.4	115 ± 0.0	-	-	-	50 ± 0.0	-	-
dnaC(Ts)	48 ± 0,7	-	42 ± 2.1	75 ± 0.0	45 ± 8.3	65 ± 7.0	-	-	-
dnaE486	37 ± 2.8	-	-	24 ± 5.0	-	42 ± 4.2	-	-	-
dnaG(Ts)	43 ± 3.4	55 ± 7.6	-	-	44 ± 12.8	-	53 ± 6.6	52 ± 7.1	41 ± 5.3
dnaN159	43 ± 2.5	-	-	73 ± 3.5	-	-	46 ± 8.5	50 ± 7.0	_

Figure 5 Generation times of double mutants in replication and CCM genes. Bacteria were grown at 30°C in LB and doubling time (values presented in the boxes \pm SD) was assessed in the exponential growth phase. The doubling time for the wild-type strain (MG1655) was 48 \pm 0.7 min. The colors represent genotypes in which suppressions were observed at sublethal temperatures (red - full suppression, yellow - incomplete suppression). Dash - the generation time was not determined.

it may profit from more metabolic sensors. Similarly to *B. subtilis*, the suppression observed in *E. coli* was not caused by a decrease in the growth rate. Moreover, the increase in the doubling time of replication mutants (by growth on the minimal media containing various carbon sources, including very poor ones, like maleic acid or acetate) did not improve their viability at sublethal temperatures.

The proposed mechanism of the regulation of DNA replication by CCM in *B. subtilis* involves a putative metabolic linker which can cause conformational changes in replication proteins to modulate replisome properties [13]. This hypothesis may be supported by the role of acetyl phosphate which can accumulate in the overflow pathway mutants. Acetyl phosphate has been proposed to function as a global signal that fits into various two-compound systems [16,17]. This may require the second, as yet unknown, protein modulating replication proteins, or the mechanism can rely on autophosphorylation. The role of acetyl phosphate in protein folding and stability has been proposed as well [18]. In this light it is interesting that AckA and Pta reduce the production of double-stranded breaks in DNA [19]. Moreover, DiaA, a DnaA-binding protein, contains a SIS motif that might bind phosphosugars [20]. These facts may provide a start point to further works on understanding the link between CCM and DNA replication.

It is worth noting that since we have used deletioninsertion mutants in genes coding for CCM enzymes, the suppressions of the temperature-sensitivity phenotypes of the replication mutants cannot be explained by direct protein-protein interactions. Indeed, numerous and large-scale interactions between replication proteins and CCM enzymes seemed unlikely, which led us to use a set of deletion mutants in tested genes. On the other hand, the use of such mutants ensured that particular enzymatic functions were absent in mutant cells, which excluded potential problems with putative partial inactivation of CCM enzymes caused by point mutations.

One should also take into consideration a possibility that changes in chemical composition of the cells caused by a lack of particular CCM enzymes might alleviate temperature sensitivity of mutants in genes coding for replication proteins. In fact, we cannot exclude that increased concentrations of some substances that accumulate due to metabolic blocks at certain steps of CCM might stabilize the temperature-sensitive replication proteins and allow them to function at higher temperatures. If so, CCM could have no effects on wild-type replication proteins and the DNA replication process in wildtype cells. However, to accept such a hypothesis it would be necessary to assume that there are at least several compounds (metabolites) able to interact specifically with several different temperature-sensitive variants of the replication proteins, resulting in their stabilization at elevated temperatures. Although still possible, such a scenario seems unlikely, therefore, we prefer the hypothesis that there is a link between CCM and DNA replication in bacterial cells.

Conclusions

We show the genetic correlation between central carbon metabolism and DNA replication in the model Gramnegative bacterium, *E. coli*. Therefore, one might suggest that the existence of such a link is a general phenomenon rather than an event occurring very specifically in a small group of organisms. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

List of abbreviations

CFU: colony forming unit; CCM: central carbon metabolism; PPP: pentose phosphate pathway; ts: temperature-sensitivity.

Acknowledgements and Funding

We are grateful to Dr. Benedicte Michel and Dr. Iwona Fijałkowska for replication mutant strains. The mutants in the CCM genes were obtained from the Keio collection (25, National BioResource Project (NIG, Japan): E. coli). This work was supported by Ministry of Science and Higher Education (Poland) (project grant no. N N301 467234 to GW).

Author details

¹Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland. ²MEGA Laboratory, Institute of System and Synthetic Biology, Génopole Campus I, 5 rue Henri Desbruères, 91000 Evry, France.

Authors' contributions

MM and DN performed all experiments. LJ was the initiator of the project and contributed to experimental design and data analysis. ASP supervised experiments and participated in preparation of the manuscript. GW was a project leader, supervised the work and drafted the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 11 February 2011 Accepted: 31 March 2011 Published: 31 March 2011

References

- 1. Gottschalk G: Bacterial Metabolism. Springer, Berlin-Heidelberg; 2 1986.
- Kornberg A, Baker TA: DNA Replication. University Science Books, Sausalito, CA;, 2 1992.
- Neidhardt FC: Escherichia coli and Salmonella Cellular and Molecular Biology. ASM Press. Washington, D.C., 2 1996:2:189-206.
- Zakrzewska-Czerwińska J, Jakimowicz D, Zawilak-Pawlik A, Messer W: Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol Rev 2007, 31:378-387.
- Zyskind JW, Smith DW: DNA replication, the bacterial cell cycle, and cell growth. Cell 1992, 69:5-8.
- Michelsen O, Teixeira de Mattos MJ, Jensen PR, Hansen FG: Precise determinations of C and D periods by flow cytometry in *Escherichia coli* K-12 and B/r. *Microbiology* 2003, 149:1001-1010.
- Hughes P, Landoulsi A, Kohiyama M: A novel role for cAMP in the control of the activity of the *E. coli* chromosome replication initiator protein, DnaA. *Cell* 1988, 55:343-350.
- Landoulsi A, Kohiyama M: Initiation of DNA replication in Δcya mutants of Escherichia coli K12. Biochimie 1999, 81:827-834.
- 9. Levine A, Vannier F, Dehbi M, Henckes G, Seror SJ: The stringent response blocks DNA replication outside the *ori* region in *Bacillus subtilis* and at the origin in *Escherichia coli*. *J Mol Biol* 1991, **219**:605-613.
- Schreiber G, Ron EZ, Glaser G: ppGpp-mediated regulation of DNA replication and cell division in *Escherichia coli*. *Curr Microbiol* 1995, 30:27-32.
- Herman A, Wegrzyn G: Effect of increased ppGpp concentration on DNA replication of different replicons in *Escherichia coli*. J Basic Microbiol 1995, 35:33-39.
- 12. Wegrzyn G, Wegrzyn A: Stress responses and replication of plasmids in bacterial cells. *Microb Cell Fact* 2002, 1:2.

- Jannière L, Canceill D, Suski C, Kanga S, Dalmais B, Lestini R, Monnier AF, Chapuis J, Bolotin A, Titok M, Le Chatelier E, Ehrlich SD: Genetic evidence for a link between glycolysis and DNA replication. *PLoS ONE* 2007, 2:e447.
- 14. Sambrook J, Russell DW: **Molecular Cloning: A Laboratory Manual.** Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York; 3 2001.
- Messer W: The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. *FEMS Microbiol Rev* 2002, 26:355-374.
- Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ: The intracellular concentration of acetyl phosphate in *Escherichia coli* is sufficient for direct phosphorylation of two-component response regulators. J *Bacteriol* 2007, 189:5574-5581.
- McCleary WR, Stock JB: Acetyl phosphate and the activation of twocomponent response regulators. J Biol Chem 1994, 269:31567-31572.
- Mizrahi I, Biran D, Ron EZ: Involvement of the Pta-AckA pathway in protein folding and aggregation. *Res Microbiol* 2009, 160:80-84.
- Shi IY, Stansbury J, Kuzminov A: A defect in the acetyl coenzyme A acetate pathway poisons recombinational repair-deficient mutants of *Escherichia coli*. J Bacteriol 2005, 187:1266-1275.
- Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T, Ogata Y, Sekimizu K, Katayama T: DiaA, a novel DnaA-binding protein, ensures the timely initiation of *Escherichia coli* chromosome replication. *J Biol Chem* 2004, 279:45546-45555.
- 21. Carl PL: *Escherichia coli* mutants with temperature-sensitive synthesis of DNA. *Mol Gen Genet* 1970, **109**:107-122.
- Dabbs ER: The gene for ribosomal protein S21, rpsU, maps close to dnaG at 66.5 min on the Escherichia coli chromosomal linkage map. J Bacteriol 1980, 144:603-607.
- Jensen KF: The *Escherichia coli* K-12 "wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. *J Bacteriol* 1993, 175:3401-3407.
- Fayet O, Louarn JM, Georgopoulos C: Suppression of the Escherichia coli dnaA46 mutation by amplification of the groES and groEL genes. *Mol Gen Genet* 1986, 202:435-445.
- Seth GN, Grant T, Jesseet J, Bloomt FR, Hanahan D: Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylationrestriction mutants (bacterial restriction/DNA methylation/cloning mammalian DNA/heterogeneous transgene expression/insulin gene regulation). Proc Natl Acad Sci USA 1990, 87:4645-4649.
- Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97:6640-6645.
- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of *Escherichia coli* K-12 inframe, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* 2006, 2:2006-0008.
- Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper RM, Fijalkowska IJ: Role of *Escherichia coli* DNA Polymerase I in chromosomal DNA replication fidelity. *Mol Microbiol* 2009, 74:1114-1127.
- Guzman LM, Belin D, Carson M, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol 1995, 177:4121-4130.

doi:10.1186/1475-2859-10-19

Cite this article as: Maciąg *et al.*: Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in *Escherichia coli*. *Microbial Cell Factories* 2011 **10**:19.