TY - STD TI - Ragauskas AJ. The Path Forward for Biofuels and Biomaterials. Science (80-). 2006;311:484–9. http://www.sciencemag.org/cgi/doi/10.1126/science.1114736. UR - http://www.sciencemag.org/cgi/doi/10.1126/science.1114736 ID - ref1 ER - TY - STD TI - Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science (80-). 2014;344:1246843–1246843. http://www.sciencemag.org/cgi/doi/10.1126/science.1246843. UR - http://www.sciencemag.org/cgi/doi/10.1126/science.1246843 ID - ref2 ER - TY - STD TI - Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chemie Int Ed. 2016;55:8164–215. http://doi.wiley.com/10.1002/anie.201510351. UR - http://doi.wiley.com/10.1002/anie.201510351 ID - ref3 ER - TY - STD TI - Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, et al. Biological valorization of low molecular weight lignin. Biotechnol Adv. 2016;34:1318–46. http://linkinghub.elsevier.com/retrieve/pii/S0734975016301288. UR - http://linkinghub.elsevier.com/retrieve/pii/S0734975016301288 ID - ref4 ER - TY - STD TI - Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci. 2014: 12013–8. http://www.pnas.org/cgi/doi/10.1073/pnas.1410657111. UR - http://www.pnas.org/cgi/doi/10.1073/pnas.1410657111 ID - ref5 ER - TY - STD TI - Harwood CS, Parales RE. The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–90. http://www.annualreviews.org/doi/10.1146/annurev.micro.50.1.553. UR - http://www.annualreviews.org/doi/10.1146/annurev.micro.50.1.553 ID - ref6 ER - TY - STD TI - Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol. 2011;9:803–16. http://www.nature.com/articles/nrmicro2652. UR - http://www.nature.com/articles/nrmicro2652 ID - ref7 ER - TY - STD TI - Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT. Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 2015;17:4951–67. http://xlink.rsc.org/?DOI=C5GC01165E. UR - http://xlink.rsc.org/?DOI=C5GC01165E ID - ref8 ER - TY - STD TI - Salmela M, Sanmark H, Efimova E, Efimov A, Hytönen VP, Lamminmäki U, et al. Molecular tools for selective recovery and detection of lignin-derived molecules. Green Chem. 2018;20:2829–39. http://xlink.rsc.org/?DOI=C8GC00490K. UR - http://xlink.rsc.org/?DOI=C8GC00490K ID - ref9 ER - TY - JOUR AU - Fischer, R. AU - Bleichrodt, F. S. AU - Gerischer, U. C. PY - 2008 DA - 2008// TI - Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression JO - Microbiology VL - 154 UR - https://doi.org/10.1099/mic.0.2008/016907-0 DO - 10.1099/mic.0.2008/016907-0 ID - Fischer2008 ER - TY - STD TI - Tumen-Velasquez M, Johnson CW, Ahmed A, Dominick G, Fulk EM, Khanna P, et al. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proc Natl Acad Sci. 2018;115:7105–10. http://www.pnas.org/lookup/doi/10.1073/pnas.1803745115. UR - http://www.pnas.org/lookup/doi/10.1073/pnas.1803745115 ID - ref11 ER - TY - STD TI - Metzgar D. Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res. 2004;32:5780–90. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh881. UR - https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh881 ID - ref12 ER - TY - STD TI - Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, et al. Improved triacylglycerol production in acinetobacter baylyi adp1 by metabolic engineering. Microb Cell Fact. 2011;10:36. http://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-10-36. UR - http://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-10-36 ID - ref13 ER - TY - STD TI - Santala S, Efimova E, Koskinen P, Karp MT, Santala V. Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1. ACS Synth Biol. 2014;3:145–51. http://pubs.acs.org/doi/10.1021/sb4000788. UR - http://pubs.acs.org/doi/10.1021/sb4000788 ID - ref14 ER - TY - STD TI - Lehtinen T, Santala V, Santala S. Twin-layer biosensor for real-time monitoring of alkane metabolism. FEMS Microbiol Lett. 2017;364:1–7. https://academic.oup.com/femsle/article/doi/10.1093/femsle/fnx053/3063326. UR - https://academic.oup.com/femsle/article/doi/10.1093/femsle/fnx053/3063326 ID - ref15 ER - TY - STD TI - Lehtinen T, Virtanen H, Santala S, Santala V. Production of alkanes from CO2 by engineered bacteria. Biotechnol Biofuels. 2018;11:228. https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1229-2. UR - https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1229-2 ID - ref16 ER - TY - STD TI - Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. 2009;2:26. http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-2-26. UR - http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-2-26 ID - ref17 ER - TY - STD TI - Ibraheem O, Ndimba BK. molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int J Biol Sci. 2013;9:598–612. http://www.ijbs.com/v09p0598.htm. UR - http://www.ijbs.com/v09p0598.htm ID - ref18 ER - TY - STD TI - Cerisy T, Souterre T, Torres-Romero I, Boutard M, Dubois I, Patrouix J, et al. Evolution of a biomass-fermenting bacterium to resist lignin phenolics. Kelly RM, ed. Appl Environ Microbiol. 2017;83:1–13. http://aem.asm.org/lookup/doi/10.1128/AEM.00289-17. UR - http://aem.asm.org/lookup/doi/10.1128/AEM.00289-17 ID - ref19 ER - TY - STD TI - Dragosits M, Mattanovich D. Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Fact. 2013;12:64. http://www.ncbi.nlm.nih.gov/pubmed/23815749. UR - http://www.ncbi.nlm.nih.gov/pubmed/23815749 ID - ref20 ER - TY - JOUR AU - Atsumi, S. AU - Wu, T. Y. AU - MacHado, I. M. P. AU - Huang, W. C. AU - Chen, P. Y. AU - Pellegrini, M. PY - 2010 DA - 2010// TI - Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli JO - Mol Syst Biol. VL - 6 UR - https://doi.org/10.1038/msb.2010.98 DO - 10.1038/msb.2010.98 ID - Atsumi2010 ER - TY - STD TI - Almario MP, Reyes LH, Kao KC. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng. 2013;110:2616–23. http://doi.wiley.com/10.1002/bit.24938. UR - http://doi.wiley.com/10.1002/bit.24938 ID - ref22 ER - TY - STD TI - Sarria S, Kruyer NS, Peralta-Yahya P. Microbial synthesis of medium-chain chemicals from renewables. Nat Biotechnol. 2017;35:1158–66. http://www.nature.com/doifinder/10.1038/nbt.4022. UR - http://www.nature.com/doifinder/10.1038/nbt.4022 ID - ref23 ER - TY - JOUR AU - Choi, Y. J. AU - Lee, S. Y. PY - 2013 DA - 2013// TI - Microbial production of short-chain alkanes JO - Nature. VL - 502 UR - https://doi.org/10.1038/nature12536 DO - 10.1038/nature12536 ID - Choi2013 ER - TY - STD TI - Lee J-W, Niraula NP, Trinh CT. Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes. Metab Eng Commun. 2018; 7: e00076. https://linkinghub.elsevier.com/retrieve/pii/S2214030118300270. UR - https://linkinghub.elsevier.com/retrieve/pii/S2214030118300270 ID - ref25 ER - TY - STD TI - Zhou YJ, Kerkhoven EJ, Nielsen J. Barriers and opportunities in bio-based production of hydrocarbons. Nat Energy. 2018; http://www.nature.com/articles/s41560-018-0197-x. UR - http://www.nature.com/articles/s41560-018-0197-x ID - ref26 ER - TY - STD TI - Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB. Microbial Biosynthesis of Alkanes. Science (80-). 2010;329:559–62. http://www.sciencemag.org/cgi/doi/10.1126/science.1187936. UR - http://www.sciencemag.org/cgi/doi/10.1126/science.1187936 ID - ref27 ER - TY - STD TI - Rui Z, Li X, Zhu X, Liu J, Domigan B, Barr I, et al. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci. 2014;111:18237–42. http://www.pnas.org/lookup/doi/10.1073/pnas.1419701112. UR - http://www.pnas.org/lookup/doi/10.1073/pnas.1419701112 ID - ref28 ER - TY - JOUR AU - Steen, E. J. AU - Kang, Y. AU - Bokinsky, G. AU - Hu, Z. AU - Schirmer, A. AU - McClure, A. PY - 2010 DA - 2010// TI - Microbial production of fatty-acid-derived fuels and chemicals from plant biomass JO - Nature. VL - 463 UR - https://doi.org/10.1038/nature08721 DO - 10.1038/nature08721 ID - Steen2010 ER - TY - JOUR AU - Liu, Q. AU - Wu, K. AU - Cheng, Y. AU - Lu, L. AU - Xiao, E. AU - Zhang, Y. PY - 2015 DA - 2015// TI - Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction JO - Metab Eng. VL - 28 UR - https://doi.org/10.1016/j.ymben.2014.12.004 DO - 10.1016/j.ymben.2014.12.004 ID - Liu2015 ER - TY - STD TI - Beller HR, Goh E-B, Keasling JD. genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol. 2010;76:1212–23. http://aem.asm.org/cgi/doi/10.1128/AEM.02312-09. UR - http://aem.asm.org/cgi/doi/10.1128/AEM.02312-09 ID - ref31 ER - TY - STD TI - Kang M-K, Nielsen J. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol. 2017;44:613–22. http://link.springer.com/10.1007/s10295-016-1814-y. UR - http://link.springer.com/10.1007/s10295-016-1814-y ID - ref32 ER - TY - STD TI - Rui Z, Harris NC, Zhu X, Huang W, Zhang W. Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal. 2015;5:7091–4. http://pubs.acs.org/doi/10.1021/acscatal.5b01842. UR - http://pubs.acs.org/doi/10.1021/acscatal.5b01842 ID - ref33 ER - TY - JOUR AU - Zhu, Z. AU - Zhou, Y. J. AU - Kang, M. K. AU - Krivoruchko, A. AU - Buijs, N. A. AU - Nielsen, J. PY - 2017 DA - 2017// TI - Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast JO - Metab Eng. VL - 44 UR - https://doi.org/10.1016/j.ymben.2017.09.007 DO - 10.1016/j.ymben.2017.09.007 ID - Zhu2017 ER - TY - STD TI - Zhao Z, Moghadasian MH. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem. 2008;109:691–702. http://linkinghub.elsevier.com/retrieve/pii/S0308814608002264. UR - http://linkinghub.elsevier.com/retrieve/pii/S0308814608002264 ID - ref35 ER - TY - STD TI - de Menezes FF, Rencoret J, Nakanishi SC, Nascimento VM, Silva VFN, Gutiérrez A, et al. Alkaline pretreatment severity leads to different lignin applications in sugar cane biorefineries. ACS Sustain Chem Eng. 2017;5:5702–12. http://pubs.acs.org/doi/10.1021/acssuschemeng.7b00265. UR - http://pubs.acs.org/doi/10.1021/acssuschemeng.7b00265 ID - ref36 ER - TY - STD TI - Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, et al. Adipic acid production from lignin. Energy Environ Sci. 2015;8:617–28. http://xlink.rsc.org/?DOI=C4EE03230F. UR - http://xlink.rsc.org/?DOI=C4EE03230F ID - ref37 ER - TY - JOUR AU - Segura, A. AU - Bünz, P. V. AU - D’Argenio, D. A. AU - Ornston, L. N. PY - 1999 DA - 1999// TI - Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter JO - J Bacteriol. VL - 181 ID - Segura1999 ER - TY - STD TI - Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol. 2004;97:104–13. http://doi.wiley.com/10.1111/j.1365-2672.2004.02275.x. UR - http://doi.wiley.com/10.1111/j.1365-2672.2004.02275.x ID - ref39 ER - TY - STD TI - Calero P, Jensen SI, Bojanovič K, Lennen RM, Koza A, Nielsen AT. Genome-wide identification of tolerance mechanisms toward p-coumaric acid in Pseudomonas putida. Biotechnol Bioeng. 2018;115:762–74. http://doi.wiley.com/10.1002/bit.26495. UR - http://doi.wiley.com/10.1002/bit.26495 ID - ref40 ER - TY - STD TI - Bleichrodt FS, Fischer R, Gerischer UC. The -ketoadipate pathway of Acinetobacter baylyi undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc. Microbiology. 2010;156:1313–22. http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.037424-0. UR - http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.037424-0 ID - ref41 ER - TY - JOUR AU - Chen, B. AU - Lee, D. Y. AU - Chang, M. W. PY - 2015 DA - 2015// TI - Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production JO - Metab Eng. VL - 31 UR - https://doi.org/10.1016/j.ymben.2015.06.009 DO - 10.1016/j.ymben.2015.06.009 ID - Chen2015 ER - TY - STD TI - Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, et al. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels. 2014;7:28. http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-7-28. UR - http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-7-28 ID - ref43 ER - TY - STD TI - Steigedal M, Valla S. The Acinetobacter sp. chnB promoter together with its cognate positive regulator ChnR is an attractive new candidate for metabolic engineering applications in bacteria. Metab Eng. 2008;10:121–9. http://linkinghub.elsevier.com/retrieve/pii/S1096717607000481. UR - http://linkinghub.elsevier.com/retrieve/pii/S1096717607000481 ID - ref44 ER - TY - STD TI - Benedetti I, Nikel PI, de Lorenzo V. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria. Data Br. 2016;6:738–44. http://linkinghub.elsevier.com/retrieve/pii/S2352340916000287. UR - http://linkinghub.elsevier.com/retrieve/pii/S2352340916000287 ID - ref45 ER - TY - STD TI - Zheng Y, Li L, Liu Q, Yang J, Cao Y, Jiang X, et al. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels. 2012;5:76. http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-5-76. UR - http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-5-76 ID - ref46 ER - TY - STD TI - Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488:320–8. http://www.nature.com/articles/nature11478. UR - http://www.nature.com/articles/nature11478 ID - ref47 ER - TY - STD TI - Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol. 2016;42:40–53. http://linkinghub.elsevier.com/retrieve/pii/S0958166916300520. UR - http://linkinghub.elsevier.com/retrieve/pii/S0958166916300520 ID - ref48 ER - TY - JOUR AU - Hartmans, S. AU - Smits, J. P. AU - Werf, M. J. AU - Volkering, F. AU - Bont, J. A. PY - 1989 DA - 1989// TI - Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading xanthobacter strain 124X JO - Appl Environ Microbiol. VL - 55 ID - Hartmans1989 ER - TY - STD TI - Santala S, Karp M, Santala V. Rationally engineered synthetic coculture for improved biomass and product formation. PLoS ONE. 2014;9: e113786. http://dx.plos.org/10.1371/journal.pone.0113786. UR - http://dx.plos.org/10.1371/journal.pone.0113786 ID - ref50 ER -