Skip to main content
Fig. 1 | Microbial Cell Factories

Fig. 1

From: EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion

Fig. 1

Architecture of the active site of the ectoine hydroxylase from S. alaskensis and in silico model of the EctD protein from P. stutzeri A1501. a Crystal structure of the ectoine hydroxylase from S. alaskensis containing the iron catalyst (purple sphere), the co-substrate 2-oxoglutarate (blue sticks) and the reaction product 5-hydroxyectoine (orange sticks) bound in the active side of the enzyme (PDB accession code: 4Q5O). Amino acids of the S. alaskensis EctD protein involved in ligand binding [27] are represented as sticks. b in silico model of the ectoine hydroxylase from P. stutzeri A1501 that is based on the crystal structure of the S. alaskensis EctD protein was build with the SWISS model web server (https://swissmodel.expasy.org/) [101]. Amino acids of the active site of the P. stutzeri A1501 EctD protein predicted to be involved ligand binding are shown as grey sticks

Back to article page