Skip to main content

Table 7 Metabolic network model of P. putida KT2440

From: Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol

Pathway Reactions
Transport reactions ‘→ GLY[e]’
‘→ NH3[c]’
‘→ SO4[c]’
‘→ O2[c]’
‘biomass[c] → ’
‘FORMATE_ex[e] → ’
‘MAL_ex[e] → ’
‘SUCC_ex[e] → ’
‘PHA[c] → ’
‘ATPmaintenance[c] →’
‘CO2[c] → ’
Glycerol uptake and conversion to glycerone-phosphate ‘GLY[e] → GLY[p]’
‘GLY[p] → GLY[c]’
‘GLY[c] + ATP[c → GLY-3P[c] + ADP[c]’
‘GLY-3P[c] + NAD[c] ↔ DHAP[c] + NADH[c]’
Pentose phosphate pathway ‘G6P[c] + NADP[c] → 6-P-Gluconate[c] + NADPH[c]’
‘6-P-Gluconate[c] + NADP[c] → RIB-5P[c] + CO2[c] + NADPH[c]’
‘RIB-5P[c] XYL-5P[c]’
‘RIB-5P[c] RIBO-5P[c]’
‘S7P[c] + GAP[c] RIBO-5P[c] + XYL-5P[c]’
‘S7P[c] + GAP[c] E4P[c] + F6P[c]’
‘F6P[c] + GAP[c] E4P[c] + XYL-5P[c]’
Entner-Doudoroff pathway ‘6-P-Gluconate[c] → KDPG[c]’
‘KDPG[c] → GAP[c] + PYR[c]’
Embden-Meyerhof-Parnas pathway ‘G6P[c] F6P[c]’
‘FBP[c] → F6P[c]’
‘FBP[c] GAP[c] + DHAP[c]’
‘DHAP[c] GAP[c]’
‘GAP[c] + NAD[c] 13-PG[c] + NADH[c]’
‘ADP[c] + 13-PG[c] ATP[c] + 3-PG[c]’
‘3-PG[c] 2-PG[c]’
‘2-PG[c] PEP[c]’
‘PEP[c] + ADP[c] → PYR[c] + ATP[c]’
‘PYR[c] + NAD[c] → AcCoA[c] + NADH[c] + CO2[c]’
‘PYR[c] + 2 ATP[c] → 2 ADP[c] + PEP[c]’
Citric acid cycle ‘AcCoA[c] + OAA[c] → CIT[c]’
‘CIT[c] ↔ ICI[c]’
‘ICI[c] + NADP[c] → AKG[c] + CO2[c] + NADPH[c]’
‘AKG[c] + NAD[c] → SUCC-CoA[c] + NADH[c] + CO2[c]’
‘SUCC-CoA[c] + ADP[c] ↔ SUCC[c] + ATP[c]’
‘SUCC[c] + Q[c] ↔ FUM[c] + QH2[c]’
‘FUM[c] ↔ MAL[c]’
‘MAL[c] + NAD[c] ↔ OAA[c] + NADH[c]’
Organic acid production ‘MAL[c] → MAL_ex[e]’
‘SUCC[c] → SUCC_ex[e]’
‘FORMATE[c] → FORMATE_ex[e]’
Glyoxylate metabolism ‘ICI[c] → Glyoxy[c] + SUCC[c]’
‘Glyoxy[c] + AcCoA[c] → MAL[c]’
Amphibolic metabolism ‘OAA[c] → PYR[c] + CO2[c]’
‘PEP[c] + CO2[c] + ATP[c] → OAA[c] + ADP[c]’
‘MAL[c] + NADP[c] → PYR[c] + NADPH[c] + CO2[c]’
PHA production ‘5 AcCoA[c] + 4 ATP[c] + 7 NADPH[c] → C10-PHA[c] + 4 ADP[c] + 7 NADP[c]’
‘4 AcCoA[c] + 4 ATP[c] + 7 NADPH[c] → C8-PHA[c] + 4 ADP[c] + 7 NADP[c]’
‘6 AcCoA[c] + 4 ATP[c] + 7 NADPH[c] → C12-PHA[c] + 4 ADP[c] + 7 NADP[c]’
‘0.75 C10-PHA[c] + 0.17 C8-PHA[c] + 0.08 C12-PHA[c] → PHA[c]’
Energy metabolism ‘NADPH[c] + NAD[c] → NADP[c] + NADH[c]’
‘(3) NADH[c] + (3) NADP[c] + ATP[c] → (3) NAD[c] + (3) NADPH[c] + ADP[c]’
‘(0.5) O2[c] + NADH[c] + (1.33) ADP[c] → NAD[c] + (1.33) ATP[c]’
‘(0.5) O2[c] + QH2[c] + (0.66) ADP[c] → Q[c] + (0.66) ATP[c]’
‘ATP[c] → ADP[c] + ATPmaintenance[c]’
‘SO4[c] + (3) NADPH[c] + (4) ATP[c] → H2S[c] + (3) NADP[c] + (4) ADP[c]’
Biomass production ‘(1.481) OAA[c] + (1.338) 3-PG[c] + (0.627) RIBO-5P[c] + (17.821) ATP[c] + (16.548) NADPH[c] + (6.965) NH3[c] + (3.548) NAD[c] + (2.930) AcCoA[c] + (2.861) PYR[c] + (1.078) AKG[c] + (0.361) E4P[c] + (0.72) PEP[c] + (0.233) H2S[c] + (0.072) F6P[c] + (0.206) G6P[c] + (0.129) GAP[c] → biomass[c] + (16.548) NADP[c] + (3.548) NADH[c] + (17.821) ADP[c] + (1.678) CO2[c]’