Skip to main content

Table 7 Metabolic network model of P. putida KT2440

From: Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol

Pathway

Reactions

Transport reactions

‘→ GLY[e]’

‘→ NH3[c]’

‘→ SO4[c]’

‘→ O2[c]’

‘biomass[c] â†’ â€™

‘FORMATE_ex[e] â†’ â€™

‘MAL_ex[e] â†’ â€™

‘SUCC_ex[e] â†’ â€™

‘PHA[c] â†’ â€™

‘ATPmaintenance[c] â†’’

‘CO2[c] â†’ â€™

Glycerol uptake and conversion to glycerone-phosphate

‘GLY[e] â†’ GLY[p]’

‘GLY[p] â†’ GLY[c]’

‘GLY[c] + ATP[c â†’ GLY-3P[c] + ADP[c]’

‘GLY-3P[c] + NAD[c] â†” DHAP[c] + NADH[c]’

Pentose phosphate pathway

‘G6P[c] + NADP[c] â†’ 6-P-Gluconate[c] + NADPH[c]’

‘6-P-Gluconate[c] + NADP[c] â†’ RIB-5P[c] + CO2[c] + NADPH[c]’

‘RIB-5P[c] ⟺ XYL-5P[c]’

‘RIB-5P[c] ⟺ RIBO-5P[c]’

‘S7P[c] + GAP[c] ⟺ RIBO-5P[c] + XYL-5P[c]’

‘S7P[c] + GAP[c] ⟺ E4P[c] + F6P[c]’

‘F6P[c] + GAP[c] ⟺ E4P[c] + XYL-5P[c]’

Entner-Doudoroff pathway

‘6-P-Gluconate[c] â†’ KDPG[c]’

‘KDPG[c] â†’ GAP[c] + PYR[c]’

Embden-Meyerhof-Parnas pathway

‘G6P[c] ⟺ F6P[c]’

‘FBP[c] â†’ F6P[c]’

‘FBP[c] ⟺ GAP[c] + DHAP[c]’

‘DHAP[c] ⟺ GAP[c]’

‘GAP[c] + NAD[c] ⟺ 13-PG[c] + NADH[c]’

‘ADP[c] + 13-PG[c] ⟺ ATP[c] + 3-PG[c]’

‘3-PG[c] ⟺ 2-PG[c]’

‘2-PG[c] ⟺ PEP[c]’

‘PEP[c] + ADP[c] → PYR[c] + ATP[c]’

‘PYR[c] + NAD[c] → AcCoA[c] + NADH[c] + CO2[c]’

‘PYR[c] + 2 ATP[c] → 2 ADP[c] + PEP[c]’

Citric acid cycle

‘AcCoA[c] + OAA[c] → CIT[c]’

‘CIT[c] â†” ICI[c]’

‘ICI[c] + NADP[c] → AKG[c] + CO2[c] + NADPH[c]’

‘AKG[c] + NAD[c] → SUCC-CoA[c] + NADH[c] + CO2[c]’

‘SUCC-CoA[c] + ADP[c] â†” SUCC[c] + ATP[c]’

‘SUCC[c] + Q[c] â†” FUM[c] + QH2[c]’

‘FUM[c] â†” MAL[c]’

‘MAL[c] + NAD[c] â†” OAA[c] + NADH[c]’

Organic acid production

‘MAL[c] → MAL_ex[e]’

‘SUCC[c] → SUCC_ex[e]’

‘FORMATE[c] → FORMATE_ex[e]’

Glyoxylate metabolism

‘ICI[c] → Glyoxy[c] + SUCC[c]’

‘Glyoxy[c] + AcCoA[c] → MAL[c]’

Amphibolic metabolism

‘OAA[c] → PYR[c] + CO2[c]’

‘PEP[c] + CO2[c] + ATP[c] → OAA[c] + ADP[c]’

‘MAL[c] + NADP[c] → PYR[c] + NADPH[c] + CO2[c]’

PHA production

‘5 AcCoA[c] + 4 ATP[c] + 7 NADPH[c] → C10-PHA[c] + 4 ADP[c] + 7 NADP[c]’

‘4 AcCoA[c] + 4 ATP[c] + 7 NADPH[c] → C8-PHA[c] + 4 ADP[c] + 7 NADP[c]’

‘6 AcCoA[c] + 4 ATP[c] + 7 NADPH[c] → C12-PHA[c] + 4 ADP[c] + 7 NADP[c]’

‘0.75 C10-PHA[c] + 0.17 C8-PHA[c] + 0.08 C12-PHA[c] → PHA[c]’

Energy metabolism

‘NADPH[c] + NAD[c] → NADP[c] + NADH[c]’

‘(3) NADH[c] + (3) NADP[c] + ATP[c] → (3) NAD[c] + (3) NADPH[c] + ADP[c]’

‘(0.5) O2[c] + NADH[c] + (1.33) ADP[c] → NAD[c] + (1.33) ATP[c]’

‘(0.5) O2[c] + QH2[c] + (0.66) ADP[c] → Q[c] + (0.66) ATP[c]’

‘ATP[c] → ADP[c] + ATPmaintenance[c]’

‘SO4[c] + (3) NADPH[c] + (4) ATP[c] → H2S[c] + (3) NADP[c] + (4) ADP[c]’

Biomass production

‘(1.481) OAA[c] + (1.338) 3-PG[c] + (0.627) RIBO-5P[c] + (17.821) ATP[c] + (16.548) NADPH[c] + (6.965) NH3[c] + (3.548) NAD[c] + (2.930) AcCoA[c] + (2.861) PYR[c] + (1.078) AKG[c] + (0.361) E4P[c] + (0.72) PEP[c] + (0.233) H2S[c] + (0.072) F6P[c] + (0.206) G6P[c] + (0.129) GAP[c] â†’ biomass[c] + (16.548) NADP[c] + (3.548) NADH[c] + (17.821) ADP[c] + (1.678) CO2[c]’