Skip to main content
Figure 1 | Microbial Cell Factories

Figure 1

From: Adaptive laboratory evolution – principles and applications for biotechnology

Figure 1

Adaptive laboratory evolution (ALE). ALE can be performed in the laboratory by (a) sequential serial passages in shake flasks, where nutrients will not be limited and certain growth parameters can heavily fluctuate. (b) Alternatively, chemostat cultures can be applied, where one nutritional component is typically limited and cell density can be much higher than in shake flasks. Additionally, cell density and environmental conditions can be kept constant and more complex cultivation strategies can be implemented. (c) The increase of fitness during laboratory evolution experiments is fast in the first stage but generally slows down during prolonged selection, whereas the number of mutations is steadily increasing; however network complexity leads to a decreasing beneficial effect of additional mutations. [36, 67]. (d) Mutations that are usually identified in ALE studies. Single nucleotide polymorphisms (SNPs), smaller insertions and deletions (indels) and larger deletions and insertions contribute to genetic and gene regulatory changes and fitness changes during the selection for improved phenotypes.

Back to article page