Skip to main content
Figure 1 | Microbial Cell Factories

Figure 1

From: Construction of microbial platform for an energy-requiring bioprocess: practical 2′-deoxyribonucleoside production involving a C−C coupling reaction with high energy substrates

Figure 1

Concept of energy-requiring bioprocess. a) Type I; FDP itself or phosphorylated intermediates (eg. G3P, DHAP, etc.) these are generated from glucose serve as substrates for reactions requiring high-energy phosphorylated compounds (e.g., aldol condensation [7, 8]). The bold line indicates efficient phosphate take-in process for ATP regeneration. Parentheses represent the number of molecules. b) Type II; ATP generated by baker’s yeast served as energy for the reaction requiring ATP. The bold line indicates efficient phosphate take-in process for ATP regeneration. Parentheses represent the number of molecules. c) An example of energy-requiring bioprocesses: Microbial production of dNS from glucose, acetaldehyde, and a nucleobase. In this process, FDP generated from glucose by baker’s yeast [4, 9] serves as a substrate for fructose 1,6-diphosphate aldolase (FDP ALD) reaction in E. coli (DERA-PPMase−co-expressing E. coli), and then the generated triose phosphates (DHAP and G3P) are converted to dNS through reactions catalyzed by triose phosphate isomerase (TPI) [10] and the enzymes involved in dNS metabolism (DERA-PPMase-NPase) [9, 11, 12]. This process is classified into type I in Figure 1a. The bold line indicates efficient phosphate take-in process for ATP regeneration. Parentheses represent the number of molecules.

Back to article page