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Abstract
Background  Not changing the native constitution of genes prior to their expression by a heterologous host can 
affect the amount of proteins synthesized as well as their folding, hampering their activity and even cell viability. 
Over the past decades, several strategies have been developed to optimize the translation of heterologous genes 
by accommodating the difference in codon usage between species. While there have been a handful of studies 
assessing various codon optimization strategies, to the best of our knowledge, no research has been performed 
towards the evaluation and comparison of codon harmonization algorithms. To highlight their importance and 
encourage meaningful discussion, we compared different open-source codon harmonization tools pertaining to their 
in silico performance, and we investigated the influence of different gene-specific factors.

Results  In total, 27 genes were harmonized with four tools toward two different heterologous hosts. The difference 
in %MinMax values between the harmonized and the original sequences was calculated (ΔMinMax), and statistical 
analysis of the obtained results was carried out. It became clear that not all tools perform similarly, and the choice 
of tool should depend on the intended application. Almost all biological factors under investigation (GC content, 
RNA secondary structures and choice of heterologous host) had a significant influence on the harmonization results 
and thus must be taken into account. These findings were substantiated using a validation dataset consisting of 8 
strategically chosen genes.

Conclusions  Due to the size of the dataset, no complex models could be developed. However, this initial study 
showcases significant differences between the results of various codon harmonization tools. Although more 
elaborate investigation is needed, it is clear that biological factors such as GC content, RNA secondary structures and 
heterologous hosts must be taken into account when selecting the codon harmonization tool.
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Background
The ability to introduce and express heterologous gene 
sequences in microorganisms, enabled by synthetic biol-
ogy, is regarded as a cornerstone of modern biotechnol-
ogy. It has contributed to the successful expansion of 
biotechnological processes by allowing the development 
of well-characterized microbial cell factories that can 
adopt recombinant DNA to acquire novel functional-
ities. This has led to breakthroughs in various areas, such 
as the production of platform chemicals through carbon 
capture utilization [1, 2] or the more cost-efficient pro-
duction of therapeutics and vaccines [3, 4], as well as of 
industrial enzymes, all of which are being increasingly 
applied in food processing, detergent, and biofuel indus-
tries [5–7]. To obtain these functionalities, microbial cell 
factories often require rewiring, altering or finetuning of 
their metabolism, warranting the introduction of recom-
binant genes.

Here, the efficiency of gene expression as well as the 
metabolic burden associated with it are two major factors 
affecting the product yield of microbial cell factories [8]. 
Although often overlooked, a key element herein is the 
difference in codon usage between the natural host and 
the intended microbial cell factory. As 61 codons encode 
only 20 amino acids, the genetic code is considered 
redundant. However, synonymous codons are unequally 
distributed in genomes. While historically regarded as 
functionally neutral, evidence now reveals that synony-
mous codon usage is nonrandom and affects multiple 
facets of functional protein biosynthesis, which spurred 
the development of codon optimization approaches [9]. 
Rare codons were initially presumed to be moderately 
deleterious due to their lower translational accuracy 
[10, 11] and slower translation rate due to wobble-based 
decoding [12] and lower cognate tRNA levels [9, 13]. On 
the other hand, common codons were assumed to be pre-
ferred throughout selection events, leading to more effi-
cient translation [14, 15]. However, translational kinetics 
that differ between synonymous codons play a vital role. 
For example, ribosomal pauses induced by translation 
rate variations offer additional time for correct cotrans-
lational folding of certain protein domains or structural 
motifs, something that is supported by the enrichment of 
conserved rare codons in α-helices and adverse effects on 
protein synthesis upon substitution of these rare codons 
with common ones [9, 16]. To date, multiple studies have 
suggested that a dynamic translation rate is crucial for 
efficient protein biogenesis, indicating the need for low-
frequency codons [3, 17, 18].

The growing awareness surrounding the importance 
of species-specific codon usage biases is reflected in the 
way gene design algorithms evolved to optimize protein 
expression [19]. The earlier codon optimization algo-
rithms regarded rare codons as suboptimal and aimed to 

exchange them for more frequently used codons of the 
heterologous host [13, 20]. Initially, the ‘one amino acid-
one codon’ strategy focused on replacing all synonymous 
codons with the host’s most prevalent codon under the 
presumption that charged tRNA molecules were not rate 
limiting [21–24]. However, significant growth inhibition 
is often observed due to imbalanced tRNA pools [25] 
and unwanted repetitive elements or secondary mRNA 
structures [13, 22]. The lack of flexibility in the ‘one 
amino acid-one codon’ algorithm and associated draw-
backs resulted in the exploration of different algorithms, 
such as codon randomization [6, 26]. Although in some 
cases heterologous protein expression improved signifi-
cantly when using these approaches [27, 28], the high 
translation rates still led to insoluble aggregates isolated 
in inclusion bodies [29] or to unsatisfactory expression 
in other instances [20, 30, 31]. While the influence of 
translation kinetics, originating from codon usage bias, 
on cellular processes such as chaperone interactions or 
cotranslational folding became apparent, new algorithms 
substituting native codons with synonymous ones while 
mimicking the original host’s pattern of codon frequency, 
i.e., codon harmonization algorithms, were explored and 
gained interest in ensuring the biogenesis of soluble, 
natively folded proteins [3, 32]. Nevertheless, as the syn-
thetic biology community has not reached a consensus 
on whether codon harmonization (a strategy focused on 
quality and accurate translation kinetics) or codon opti-
mization (a strategy focused on fast translation and pro-
tein quantity) is the superior strategy, recently developed 
tools support both codon harmonization and optimi-
zation and leave the choice to the user. While the main 
principle behind harmonization remains consistent, 
varying harmonization algorithms are employed by more 
recently developed proprietary and open-source soft-
ware tools for synthetic gene design (Table 1). This fact, 
alongside several tool-specific sequence customization 
options, makes it hard to predict which tool offers the 
best codon harmonization for expression in a given het-
erologous system. Various studies concerning the draw-
backs and strengths in different codon optimization tools 
have been carried out [19, 28, 33], but at the time of writ-
ing, comparisons of harmonization algorithms remained 
unexplored. Thus, to lay groundwork for future experi-
mental research, we aim to examine the in silico per-
formance of various tools in different model organisms. 
Hence, we have investigated four open-source genetic 
design tools that make use of codon harmonization 
algorithms and were available (EuGene, Galaxy, Codon-
Wizard and CHARMING) [34–37]) to determine which 
of these tools, if any, is more suitable when redesigning 
certain genes or domains. CHARMING has two different 
modes of action, geometric mean (CHARMING:Geo) 
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and %MinMax (CHARMING:MM); hence, a total of five 
tool outputs were evaluated.

The main reasons these four were selected, compared 
to the other tools mentioned in Table 1, were their pub-
lic availability and target host range. Tools that required 
subscription or payment were excluded to ensure broad 
applicability within the scientific community. Addition-
ally, tools that can only perform gene optimization or 
gene harmonization toward specific, predetermined het-
erologous hosts were not included. Genes were harmo-
nized without selection of additional filters or options, 
as different tools possess different filters (Supplementary 
Table 1); thus, their effect on codon harmonization accu-
racy could not be accounted for. It is important to pref-
ace that the purpose of the intended research is to act as 
an exploratory study with the aim of evaluating different 
codon harmonization tools and the relevance of bio-
logical factors influencing the efficacy of harmonization 
results, thus paving the way for future studies and discus-
sions regarding the topic.

Therefore, the four tools were selected for an in silico 
evaluation of their performance alongside an assessment 
of the influence on harmonization accuracy of various 
gene-specific characteristics (GC content, RNA folding 
and enzyme class) as well as of the choice for a heterolo-
gous host (Escherichia coli, Saccharomyces cerevisiae or 
Streptomyces lividans). To this end, generalized estimat-
ing equations (GEE) were used [38]. The selected gene 
characteristics were investigated due to their individual 

importance for gene expression and are expected to 
affect harmonization results. GC content has been cor-
related with gene expression levels [39], and organisms 
possess genomes with varying degrees of GC composi-
tion, indicating that this parameter might be important 
in codon harmonization. Aside from its implications for 
transcription and translation, GC composition has also 
been shown to strongly determine genome-wide codon 
bias, in turn influencing intergenetic codon rarities [40, 
41]. RNA folding, on the other hand, is affected by syn-
onymous mutations, as these are able to introduce new 
or eliminate existing mRNA secondary structures, which 
has an impact on mRNA stability and protein levels [42]. 
Last, enzyme classes can be predicted based on DNA 
sequence similarities and are expected to have specific 
but shared DNA motifs or domains [43–45]; hence, dif-
ferent classes are expected to behave differently in con-
junction with harmonization efforts.

Results
With each of the investigated codon harmonization 
tools aiming to nullify the codon usage bias between the 
original and the intended host, one would expect similar 
results across tools. This was investigated by calculat-
ing the relative codon usage frequencies (%MinMax) for 
all 27 genes from the genetic dataset, harmonized to E. 
coli (Eco) or S. cerevisiae (Sce), and comparing them to 
the original distribution (ΔMinMax), visualized by violin 
plots (Supplementary Fig.  1). As an example, the violin 

Table 1  Summary of codon harmonization/optimization tools and their characteristics
NAME OPEN-SOURCE INPUTS REQUIRED FORMAT CODON… OTHER REMARKS REFER-

ENCE
GALAXY Yes - Genome natural & target host

- Nucleotide sequence
Webpage … 

harmonization
[35]

EUGENE Yes - Genome natural & target host
- Nucleotide sequence

Software … optimization 
& harmonization

- Several gene 
redesign options
- Time consuming

[34]

CODON-
WIZARD

Yes - Genome natural & target host
- Codon usage table (CUT)
- Nucleotide sequence

Software … optimization 
& harmonization

- Several gene 
redesign options

[36]

CHARMING Yes - CUT natural & target host
- Nucleotide sequence
- Codon usage measure
- Window size

Webpage/Software … 
harmonization

- Downloadable 
Python code
- Equally well 
harmonized syn-
onymous outputs 
possible

[37]

CAD4BIO
BGene

No - Company contact information Webpage … optimization 
& harmonization

[31]

GeneWiz by 
Azenta

No - Company contact information Webpage … optimization [46]

Atum.bio 
DNA2.0
Gene Designer

No - Company contact information Webpage … optimization [22]

GeneArt
GeneOptimizer
Thermofisher

Yes - Target host
- Nucleotide sequence

Webpage … optimization [47]
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plots of 2 genes are shown in Fig. 1. The distribution of 
the difference in codon usage frequency between the 
original and the heterologous host (Y-axis) should center 
around zero. The farther away from zero, the less opti-
mal the harmonization tool performed. Clear differences 
in the distributions between both tools and hosts (Esch-
erichia coli and Saccharomyces cerevisiae) were observed, 
meaning that certain tools perform better in their codon 
harmonization tasks than others. An important note to 
make is that CodonWizard and CHARMING use the 
outdated Kazusa database for information on CUTs, 

while the others employ the more frequently updated 
HIVE-CUT database. To account for this discrepancy, 
the correct CUTs were factored in when analyzing the 
codon harmonization tools, ensuring that the tools could 
be compared to one another.

To further investigate the difference in performance 
between the codon harmonization tools, the influence of 
various gene-specific characteristics (GC content, RNA 
folding and enzyme class) as well as of the heterologous 
host on the harmonization accuracy was assessed for 
each of the tools. First, a general comparison was made 

Fig. 1  Violin plots of the genes (A) NMB0255 and (B) VGB. In these plots, ΔMinMax is displayed as a distribution on the vertical axis for each of the tool-
host combinations (Escherichia coli = Eco and Saccharomyces cerevisiae = Sce). The ΔMinMax values should be closely distributed around zero. Both 
modes of CHARMING, geometric mean (Geo) and %MinMax (MM), were evaluated
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in which the tools were compared to each other as a 
whole. To do this, per gene, the root mean square error 
(RMSE) was derived from the ΔMinMax values calcu-
lated between the original and the harmonized gene (see 
Materials and Methods section). The mean RMSE values 
(mean of all 27 genes under investigation) of each tool 
are plotted in Fig. 2A, confirming clear differences in tool 
efficacy. To enable a statistically substantiated evalua-
tion of the different tools and the influence of the differ-
ent parameters on their codon harmonization efficiency, 
GEEs were fitted, whereafter the Wald test, commonly 
used to calculate p values and confidence intervals of 
GEEs, was performed. Again, from the Wald test between 
the equation with and without the tool-incorporated fac-
tor, it was clear that the tools have a significant impact on 
the mean RMSE (p value of 2.0 *10− 16), indicating that, 
in general, the tools could be organized from the lowest 
mean RMSE to the highest, i.e., from the best performing 
to the worst performing as follows: CHARMING:MM, 
CodonWizard, EuGene, CHARMING:Geo & Galaxy.

Next, it was examined whether the choice for a given 
heterologous host would affect the codon harmoniza-
tion efficiency of the tools. Hereto, the model organ-
isms E. coli and baker’s yeast were selected. In Fig.  2B, 
the mean RMSE was plotted as a function of each tool, 
calculated separately for each heterologous host. While 
clear differences between tools are still visible, codon 
harmonization toward E. coli generally yields a higher 
mean RMSE than toward S. cerevisiae, with the exception 
of CHARMING:Geo. Similar to before, the CHARM-
ING tool in MM mode scores very well for both hosts, 
whereas the difference for Galaxy is the largest. These 

findings were also supported after statistical analysis, 
as the choice of host had a significant effect (p value of 
2.9 *10− 3) on the mean RMSE values, and this effect was 
dependent on which tool was used for codon harmoni-
zation, as the interaction term was significant as well (p 
value of 1.2 *10− 3).

As the GC content of a gene plays an important role in 
protein formation and gene expression [48, 49], its effect 
on codon harmonization was also investigated. Figure 3A 
and 3B therefore represent the mean RMSE as a function 
of the GC content and the distribution of the GC content 
within the gene dataset, respectively. From Fig. 3B, it was 
clear that there is no preference for a certain GC range, 
and all %GC values are more or less evenly represented, 
between a content of 30% and 80%. For every tool, the 
GC content affects the mean RMSE and hence the har-
monization accuracy. In general, for all the tools, the 
highest mean RMSE values (and thus worst results) were 
obtained in the 45–60% GC range. The mean RMSE val-
ues gradually decrease for lower or higher GC contents. 
Overall, CodonWizard (maximal difference in mean 
RMSE of 9) and CHARMING:Geo and EuGene (maxi-
mal difference in mean RMSE of 15) seem to be the least 
influenced by the GC content of a gene, while Galaxy and 
CHARMING:MM are the most influenced (maximal dif-
ference in mean RMSE of 19 and 22, respectively). How-
ever, CHARMING:MM has in general the lowest mean 
RMSE, indicating that it performs most accurately over 
all. The parameter ‘GC-content’ and its interaction term 
were added to the equation, and the Wald test was used 
to investigate their effect on the parameter Tool. The 
resulting p value is 1.9 *10− 7, meaning that GC content 

Fig. 2  In A), the mean RMSE is plotted for each tool, while in B), the effect of the host on the mean RMSE is plotted for each tool. A lower mean RMSE 
indicates a better performing codon harmonization tool
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indeed has a significant impact on the mean RMSE and 
thus on the codon harmonization results. Afterwards, 
it was checked if the interaction term between Tool and 
GC-content is necessary. The comparison between both 
equations rendered a p value of 2.15 *10− 15, meaning that 
the effect of GC content on the results is dependent on 
the choice of tool.

mRNA secondary structures formed by, e.g., intramo-
lecular interactions, can also play an important role in 
controlling translation [50], warranting closer inspec-
tion pertaining to codon harmonization tools. In Fig. 3C, 
the mean RMSE was plotted as a function of the amount 
of secondary structures present in the original gene 

sequence, indicated by %mRNA. %mRNA is the per-
centage of mRNA of a sequence affected by secondary 
structures. This value was calculated using RNAfold with 
default settings. As expected, mRNA secondary struc-
tures have a clear effect on codon harmonization effi-
ciency, with a similar pattern for each tool, reaching a 
maximum mean RMSE of approximately 0.65% mRNA. 
However, the magnitude of the effect is dependent on 
the tool. CHARMING:Geo is the least affected and per-
forms the most consistently, along with CodonWizard. 
Galaxy, on the other hand, is once again the most influ-
enced by biological parameters. As for the GC content, 
CHARMING:MM has in general the lowest mean RMSE 

Fig. 3  Plot A) shows the effect of GC content on the mean RMSE and thus the harmonization results. In B), the distribution of GC content in the data is 
displayed. C) plots the effect of secondary structures (%mRNA) on mean RMSE, while D) displays the distribution of the %mRNA in the dataset
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and hence performs most accurately over all %mRNA val-
ues, in contrast to CHARMING:Geo. After performing a 
Wald test, it was proven that the parameter %mRNA has 
a significant effect on the mean RMSE and thus the har-
monization results (p value of 6.61 *10− 11). No statistical 
analyses have been performed on the interaction term 
due to the size of the genetic dataset: not enough obser-
vations are available to prevent overfitting when estimat-
ing the needed model parameters. Figure  3D shows the 
distribution of the mean %mRNA of the various genes. 
There are relatively more datapoints with mean %mRNA 
values between 0.60 and 0.67. Overall, a normal distribu-
tion was obtained for %mRNA values between 0.58 and 
0.68.

The last biological parameter that was taken into 
account is the enzyme class to which the gene prod-
uct belongs. The enzyme class could potentially have an 
effect on codon harmonization, as this is often accom-
panied by the occurrence of different DNA motifs or 
domains, such as transmembrane regions, metal bind-
ing and repeating regions. Here, the enzyme class was 
plotted versus the mean RMSE, showing that the differ-
ences between both enzyme classes are less pronounced 
(Fig. 4). After the Wald test of this parameter both with 
and without the interaction term (p values of 0.90 and 
0.85, respectively), it could be concluded that it has no 
effect on RMSE and thus on codon harmonization.

In addition to analyzing the codon harmonization tools 
in a general manner or the effect of various biological 
parameters on their performance, a closer investigation 
as to whether each codon is equally efficiently harmo-
nized by each tool was conducted. To do so, heatmaps 
visualizing the RMSEcodons for each tool were made. 
This RMSEcodons (see Methods section) is a measure for 
the CUT-corrected difference in occurrence of a certain 
codon between all 27 original sequences and harmonized 
sequences, or, put otherwise, it is a measure for which 
codons are harder to harmonize than others. The better 
the tool could handle the harmonization, the closer to 
zero its RMSEcodons should be, and thus, when visualized 
as a gradient of blue in a heatmap, the whiter it should 
appear (Fig. 5). Figure 5 represents the RMSEcodons for all 
64 unique codons for the 5 tool outputs and the 2 heter-
ologous hosts.

The brighter areas of the heatmap are mostly situated 
on the right, while the darker blue cells are situated on 
the left. This again is an indication that CHARMING 
did a better job harmonizing the various genes from the 
dataset than the other tools. This finding is supported by 
Table 2, where the mean RMSEcodons values are presented, 
calculated over all different codons for each tool-host 
combination. Per specific codon, CodonWizard generally 
produced the highest RMSE values, while CHARMING 
produced the lowest RMSE values.

Fig. 4  The effect of enzyme class on the mean RMSE and how this is possibly affected by the choice of tool. Green represents the oxidoreductase results, 
red the transferase results
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To validate the findings of the sections above and as an 
example of how this research could be useful for future 
research, four case studies were worked out with aca-
demic and/or industrially relevant genes. To this end, a 

dataset with new genes was compiled, namely the valida-
tion dataset (Supplementary Table 3). The 4 case studies 
are:

1.	 Which tool is most reliable to harmonize a gene of 
interest having a high/low GC content?

2.	 Which tool is most reliable to harmonize a gene of 
interest that has/does not have secondary mRNA 
structure(s)?

3.	 Which tool is most reliable to harmonize a gene 
for expression in a model host like E. coli or S. 
cerevisiae?

4.	 Which tool is most reliable to harmonize a gene 
for expression in a non-conventional host like 
Streptomyces lividans?

As visualized in Fig.  6A, analysis with the validation 
dataset confirmed the effect of GC content on the mean 
RMSE values, and thus on harmonization results, and 

Table 2  Mean RMSEcodons for every tool-host combination
TOOL-HOST MRMSEcodons

CodonWizard E. coli 0.20

CodonWizard S. cerevisiae 0.20

EuGene E. coli 0.18

EuGene S. cerevisiae 0.16

Galaxy E. coli 0.17

Galaxy S. cerevisiae 0.16

CHARMING:Geo E. coli 0.14

CHARMING:Geo S. cerevisiae 0.13

CHARMING:MM E. coli 0.13

CHARMING:MM S. cerevisiae 0.13

Fig. 5  Codon change heatmap displaying separately calculated RMSE codons for each codon vs. tool-host combination. As some codons do not have 
synonymous codons (ATG: M, TGG: W), they yield an RMSE of 0
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confirmed a significantly different effect of GC content 
on harmonization results when using different tools. 
This was backed by statistical analysis, because a p-value 
lower than 2*10− 16 was observed for both the effect of 
GC content itself as its interaction term with tools. It 
was confirmed that CHARMING:MM performs the 
most robust over all GC content ranges evaluated (low-
est mean RMSE) and hence can be chosen for harmoni-
zation purposes, regardless if your gene of interest has a 
high or a low GC content. Using the validation dataset, 
the extent to which harmonization is affected by GC con-
tent using the different tools was different as compared to 
the genetic dataset.

As for GC content, analysis with the validation dataset 
confirmed the effect of the prevalence of mRNA second-
ary structures on mean RMSE and seems to confirm the 
fact that it is different for different tools (Fig. 6B). The first 
finding was backed by statistical analysis, since a p-value 
of lower than 2*10− 16 was the outcome of the performed 
Wald test. The interaction term between %mRNA and 
tool could not be statistically identified as significant, 
since it could not be calculated, due to the complexity of 
the relation and the need for more data to reduce overfit-
ting. Again, CHARMING:MM performs the most robust 
over all %mRNA ranges (lowest mean RMSE) and hence 
can be chosen for harmonization purposes, regardless 
if your gene of interest has or does not have secondary 
mRNA structure(s).

For the third case study, we wanted to check which tool 
is the better choice to harmonize a gene for expression 

in a model host like E. coli or S. cerevisiae. In Fig.  7, 
the mean RMSE values for each tool-host combination 
obtained with the validation dataset are plotted. Clear 
differences can be seen between the combinations. The 
choice of host had a significant effect on mean RMSE 
values (0.15*10− 3) and the interaction term between host 
and tool was also significant (0.26*10− 2), meaning that 
the effect of host was dependent on the choice of tool. 
Overall, it was seen that harmonization towards S. cere-
visiae resulted in lower mean RMSE values than harmo-
nizing towards E. coli. Both CHARMING modes (Geo 
and MM) performed the most consistent for both pro-
duction hosts, since the difference in mean RMSE values 
between the 2 hosts is the smallest for this tool. Contrary 
to the results obtained with the genetic dataset, using the 
validation dataset, EuGene performs the least consis-
tent, having the biggest difference in mean RMSE values 
between E. coli and S. cerevisiae. However, the validation 
dataset is smaller than the genetic dataset. Regardless for 
which model host you harmonize your gene, the lowest 
mean RMSE values are obtained with CHARMING:MM, 
which confirms the results obtained with the genetic 
dataset.

As a fourth and final case study, the question of which 
tool to use when harmonizing a gene for expression in a 
non-conventional host was raised. Indeed, not all heter-
ologous expression is performed in S. cerevisiae or E. coli, 
a plethora of other production hosts has been described 
in literature. Here, we considered Streptomyces lividans 
to harmonize the genes of the validation dataset towards. 

Fig. 6  Plot A) shows the effect of GC content on the mean RMSE and thus the harmonization results for the validation dataset. In B), the effect of second-
ary structures (%mRNA) on mean RMSE is displayed
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This microorganism has already been well character-
ized and is known for its high genetic tractability. It is 
often used in literature for the production of secondary 
metabolites, so codon harmonization towards it is of 
importance. From Fig. 7, it can be seen that harmoniza-
tion towards S. lividans generally results in higher mean 
RMSE values and thus worse harmonization results. Here 
again, CHARMING:MM is the most consistent harmoni-
zation tool both delivering the lowest mean RMSE results 
as the lowest difference in mean RMSE results between 
various hosts. It can hence be advised for use when har-
monizing genes for S. lividans. Since for different tools 
harmonization towards S. lividans was much worse than 
for model organisms like E. coli and S. cerevisiae, the 
other biological parameters were taken under the loop as 
well (Fig. 8). When comparing both for GC content and 
%mRNA the mean RMSE graphs obtained with the val-
idations set for the reference organisms (Fig.  6A and B, 
respectively) with those obtained for S. lividans (Fig. 8A 
and B, respectively), strong resemblances between them 
can be seen and the same conclusions can be drawn: also 
for harmonizing a gene for use in S. lividans, regard-
less whether the original gene has a high or low GC 
content or weak or strong mRNA structures, using 
CHARMING:MM will result in the lowest RMSE values. 
After performing the Wald test, the effect of GC content 
on mean RMSE values remains significant and the inter-
action term between GC content and tool does so as well 

(both p-values are lower than 2*10− 16). Likewise, after 
erforming the Wald test, the effect of mRNA is still sig-
nificant (p-value lower than 2*10− 16).

Discussion
It can be argued that one of the motivators for the con-
tinued development of new harmonization tools is the 
lack of consensus on which codon usage measure is to 
be employed in harmonization efforts [51]. Here, we 
considered using both the codon adaptation index (CAI) 
and %MinMax for the comparison of the open-source 
harmonization tools. CAI is one of the most commonly 
used and earliest codon usage measures [52], utilized by 
many commercial vendors [53], while the patterns cal-
culated by the %MinMax algorithm are predictive of the 
translational kinetics of nascent polypeptide chains [54] 
and have helped steer the protein folding mechanism in 
an expected manner [55]. Despite its popularity in syn-
thetic gene design, concerns about CAI being poorly pre-
dictive of protein yield are becoming increasingly valid, 
as reports have pointed out that there is no correlation 
between protein expression levels and CAI [42, 56], 
which has been reaffirmed in a recent study [33], lead-
ing to our choice of %MinMax as the more reliable codon 
usage measure for tool comparison.

Turning the data into violin plots, differences in out-
put between codon harmonization tools became clear. 
To shed light on why these tools differ and how they can 

Fig. 7  The effect of the choice of host on the mean RMSE is plotted for each tool, results obtained with the validation dataset. A lower mean RMSE indi-
cates a better performing codon harmonization tool

 



Page 11 of 16Willems et al. Microbial Cell Factories          (2023) 22:227 

cope with various biological parameters, an in-depth 
analysis was performed to help select the most suitable 
tool for codon harmonization. Based on the Wald test, 
p values were delivered that showed that the codon har-
monization efficiency differs significantly with regard 
to the tools and hosts. According to these findings, the 
tools could generally be ranked, from better perform-
ing to worse, as follows: CHARMING:MM > Codon-
Wizard > EuGene > CHARMING:Geo > Galaxy. When 
hosts are taken into account, the order changes 
as follows: CHARMING:MM > EuGene ≈ Codon-
Wizard > Galaxy > CHARMING:Geo for 
Saccharomyces, CHARMING:MM > CodonWiz-
ard > EuGene ≈ CHARMING:Geo > Galaxy for E. coli. 
Looking at the biological parameters GC-content and 
%mRNA, a more complex effect on harmonization 
results was observed. It could be seen that both GC con-
tent and RNA folding have the biggest effect on RMSE 
values, and thus harmonization results, of Galaxy, lead-
ing again to the indication that this tool might be the 
least suitable. Contrary to previous results, CodonWiz-
ard instead of CHARMING:MM seems to be the least 
influenced by variations in GC content or RNA folding. 
Despite the correlation of DNA motifs or regions such 
as transmembrane regions, metal binding and repeat-
ing regions with certain enzyme classes, no significant 
effect of enzyme class on codon harmonization results 
was observed. Finally, it became apparent that the open-
source tools investigated in this manuscript also differ 
at the codon level. CHARMING and Galaxy are more 

capable of resembling the original codon usage frequency 
in the harmonized genes for both E. coli and S. cerevisiae. 
Additionally, for certain codons, it is easier to nullify the 
difference in occurrence between the original and har-
monized genes, and this effect was different for the vari-
ous tools.

To verify our conclusions in regards to the tools’ har-
monization efficacy, a validation data set was used for 
four different case studies, as described in the Results 
section. Genes for this dataset were selected in a man-
ner that ensured enough variability for each of the inves-
tigated biological factors. As with the original dataset, 
the influence of GC-content, %mRNA and choice of 
host is again shown to significantly influence harmoni-
zation results of each tool, substantiating our previous 
findings. More importantly, the results further confirm 
that CHARMING:MM can be considered as the most 
efficient and most reliable tool for giving more consis-
tent harmonization results, as it shows the lowest mean 
RMSE over both varying GC-content and %mRNA. 
Similarly, it remains consistent in its harmonization 
results with the choice of S. lividans as host, as opposed 
to CHARMING:Geo and CodonWizard, which show a 
stark departure from the previous consistent results in 
regards to the choice of host, as a large deviation from 
the mean RMSE when harmonizing towards E. coli 
and S. cerevisiae is observed. The results suggest that 
CHARMING:MM seems to be the most robust choice 
for harmonizing towards these three heterologous hosts.

Fig. 8  Plot (A) shows the relationship between GC% and mean RMSE values in the validation dataset for S. lividans, while plot (B) shows the effect of 
%mRNA on mean RMSE values in the validation dataset for S. lividans
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As mentioned at the start of the Results section, har-
monization with CodonWizard and CHARMING is 
standardly performed by making use of the CUTs on 
the Kazusa database, which has been outdated since 
2007. The scarce number of coding sequences for many 
organisms listed in this database is a pressing issue. The 
other tools allow for employing a user-specified CUT 
in high throughput, which, for example, can be derived 
from the newer, regularly updated HIVE-CUT database, 
which hosts codon usage statistics for every organism 
that has available sequencing data on RefSeq or Gen-
Bank [57], thus increasing available codon usage statis-
tics both in size and accuracy. As harmonization heavily 
depends on the accuracy of the CUTs, tools that are able 
to incorporate HIVE-CUT data are invaluable in the 
future. CodonWizard aims to adopt this functionality in 
the future [36]. When the user wants to use their own 
CUT, every codon has to be imported separately, mak-
ing it extremely cumbersome when harmonizing genes 
from various organisms. Galaxy is also able to calcu-
late CUTs from user-uploaded genomes and generates 
downloadable CSV files that can also be edited, creat-
ing a more transparent process. In addition to the input, 
each of the tools differs in the algorithm used for codon 
harmonization. In the case of EuGene, harmonization 
can be performed with either of two codon usage mea-
sures: relative synonymous codon usage (RSCU) or CAI 
[52]. The algorithm scans each codon one by one, con-
sidering all synonymous codons and their usage in the 
host species, and selects the one with a minimal differ-
ence in RSCU or CAI, depending on the user’s choice, 
to that of the original species (Paulo Gaspar, personal 
communication, 15/02/2021). Galaxy, on the other hand, 
converts the CUT to relative codon adaptiveness scores, 
a measure based on the RSCU values originally devised 
by Sharp et al. that represents the frequency of a codon 
compared to the frequency of the most prevalent syn-
onymous codon. Whereas codon usage bias is regularly 
determined based on a reference set of highly expressed 
genes of the organism [4, 6], scores calculated by Galaxy 
are based on the codons of all protein-encoding genes 
of a genome assembly, i.e., on the complete ORFeome 
[35, 52]. Using these scores for comparison, the harmo-
nization algorithm finds the best matching synonymous 
codons for the target gene in the new expression envi-
ronment. CodonWizard employs a variety of algorithms 
and allows for less stringent codon modification criteria 
through the concept of ‘tolerance’. It offers an empirical 
approach to optimize heterologous protein expression 
and to accommodate for the lack of clear understanding 
of all complex aspects influencing translation efficiency. 
The harmonization algorithm calculates the absolute dif-
ference of each synonymous codon’s relative usage fre-
quency in the heterologous host with that of the original 

host’s codon. These differences are then converted to 
probabilities that dictate the likelihood that a codon is 
selected for replacing the original codon. Codons with a 
smaller difference from the original codon have a higher 
likelihood of being selected. The basic harmonization 
algorithm will select the codon with the lowest absolute 
difference as a replacement. However, by introducing 
a specific tolerance level, a pool of potential candidates 
formed from the synonymous codons, which is based on 
the calculated probabilities, will be considered for replac-
ing the original codon. The tolerance level determines the 
size of this pool, ranging from zero tolerance featuring 
solely the most similarly frequent codon to consideration 
of every synonymous codon at 100% tolerance. To avoid 
confounding, codons are analyzed and adapted in a ran-
dom manner instead of sequentially in a 5’-to-3’ direction 
(Peter Rehbein, personal communication, 15/05/2021). 
Finally, CHARMING stands for Codon HARMonizING 
and is an upgrade of the rudimentary codon harmoniza-
tion algorithm ‘Rodriguez initialization’, which was pre-
viously developed alongside a tool for evaluating codon 
usage patterns [37, 54]. The synonymous codon sequence 
is analyzed based on the codon usage values of the desti-
nation host and a user-specified sliding window, assign-
ing values to each individual codon. A comparison to the 
wild-type values of the original host serves to identify 
potential codon alterations. When a local optimum has 
been achieved and the algorithm is unable to decrease 
the net deviation any further, the output is final. Since a 
given input will always return the same output, a possi-
bility to explore other local optima is offered through the 
option of generating random synonymous sequences that 
are subsequently used as alternative inputs and in turn 
produce equally well harmonized but unique solutions.

Another important factor to take into account when 
comparing the various tools is the user-friendliness and 
presence of customization through various filters (e.g., 
site removal, amino acid starvation, secondary structure 
of RNA optimization), which also greatly varied between 
the tools. In general, EuGene is the most flexible tool 
with various features allowing gene tailoring (see Supple-
mentary Table  1), while CHARMING and Galaxy pos-
sess none. Importantly, when additional filters are used 
in EuGene, the rendering time greatly increases, mak-
ing it very slow. Additionally, the results obtained differ 
greatly between uploading the heterologous host first or 
selecting the host in the drop-down menu. The redesign 
criteria either support a simulated annealing approach to 
rapidly approximate a global optimum or the calculation 
of several Pareto-optimal solutions using a genetic algo-
rithm from which the user can choose. To automatically 
prefer harmonization solutions over other design crite-
ria, an option to favor retaining rare codons is present. 
This prevents the program from removing a rare codon 
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despite the event of its substitution for a more frequent 
codon drastically increasing the quality with respect to a 
different selected design criterion (e.g., codon context), 
although it is unclear at what frequency the algorithm 
considers a codon as ‘rare’. Another useful feature is the 
gene diagnosis option, which scans the selected gene 
and returns information related to any of the selected 
redesigns. This significantly facilitates further examina-
tion of redesigned or original genes, as well as methods 
and allows comparisons between them. However, due 
to scarce documentation combined with the use of per-
centages to indicate levels of improvement instead of 
established scores, effective interpretation of the exact 
improvements remains complicated [19]. CodonWiz-
ard has some filters, but with a rather limited use (e.g., 
amino acid starvation only for E. coli). After finishing 
harmonization, a report is generated featuring relevant 
diagnostics such as GC%, codons changed and a graphi-
cal representation of codon usages, albeit lacking X- and 
Y-axis variables, obfuscating interpretation. Finally, 
CHARMING’s web application is limited to only 350 
codons, making the harmonization of large genes cum-
bersome. To do so, the user needs to download the origi-
nal python file of the tool and harmonize its gene there. 
In general, the rendering time of CHARMING can be 
long for large genes as well. In this paper, CHARMING 
was also tested by using the Kazusa database. This was 
because CHARMING was better adapted for the use of 
Kazusa and could be used more efficiently with this data-
base in a high-throughput context. However, it could also 
be used with other CUT databases.

Conclusions
As protein expression of genes in heterologous hosts is 
of vital importance to metabolic engineering and pro-
tein production to establish microbial cell factories, the 
purpose of this paper is to shed light on the capabilities 
of currently available open-source codon harmoniza-
tion tools. The current genetic dataset was too limited 
to allow for highly complex models to be made with-
out significant loss of statistical power, yet it provides a 
foundation for future research and comparison of these 
tools through such models. While the effect of various 
parameters, such as heterologous host, GC content and 
secondary structures, was clearly observed, the enzyme 
class did not significantly impact codon harmonization 
results. Despite the lack of statistical power to investi-
gate these parameters altogether, CHARMING with the 
%MinMax mode enabled seems to be the most promis-
ing tool for most gene designs, regardless the choice for 
the heterologous host, the gene of interests’ GC content 
or the prevalence of mRNA structures. However, when 
the user intends to further customize their genetic code, 
perhaps tools such as EuGene and CodonWizard could 

be opted for in a second round of harmonization, after 
using CHARMING:MM, as they offer additional filters 
for gene tailoring and optimization, meaning automated 
custom design for e.g. removal of preliminary transcrip-
tion termination signals, restriction enzyme recogni-
tion sites, mRNA secondary structures etc. Our findings 
also lead to the belief that Galaxy is the least perform-
ing codon harmonization tool. Attention should also be 
given to the input required by the tools. CodonWizard 
and CHARMING employ, in a standard setting, the out-
dated Kazusa CUTs, while other tools allow for user-spe-
cific inputs from, for example, the HIVE-CUT database. 
In addition to the effect of biological parameters, dif-
ferences between tools were also observed at the codon 
level, where certain tool-host combinations were more 
capable of resembling the native codon usage frequency. 
Although various parameters seem to have a significant 
effect on codon harmonization, the impact of these sub-
stitutions and altered codon usage frequencies is yet to 
be investigated by functionally expressing these (harmo-
nized) genes with microorganisms. The latter will require 
a multidisciplinary approach and, more importantly, a 
huge effort towards standardization of DNA parts, exper-
imental procedures and conditions, and data processing. 
Although some efforts are being done, and e.g. biore-
positories are of great importance in this regard, the path 
ahead is still very long.

Methods
Genetic dataset
As a proof of principle, the genetic dataset was limited 
to include only oxidoreductases and transferases, genes 
belonging to the enzyme classes EC 1.x.x.x and EC 
2.x.x.x. While genes were selected at random, attention 
was given to certain criteria to ensure sufficient varia-
tion in the genetic dataset. First, the UniProt Annota-
tion score [58] had to be classified as maximum. Second, 
genes with varying amounts of protein domains, such as 
metal binding domains and transmembrane domains, 
were selected. Finally, the natural hosts of the selected 
genes were chosen from as many biological kingdoms 
(animals, plants, fungi, protista, monera) as possible. The 
gene dataset is given in Supplementary Table 2.

Validation dataset
To validate the findings from statistical analysis on the 
genetic dataset, a new validation dataset was made. This 
dataset, just like the genetic dataset, also only comprises 
genes from the oxidoreductase and transferase enzyme 
families. For this dataset, genes were chosen that have 
academic or industrial relevance, while also checking for 
enough variability when it comes to GC content and sec-
ondary structures. To ensure this, two genes with high 
GC content and two with low GC content were chosen, 
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while 4 genes with increasing secondary structures were 
selected as well. Finally, the natural hosts of the selected 
genes were chosen from as many biological kingdoms 
(animals, plants, fungi, protista, monera) as possible. The 
validation dataset is given in Supplementary Table 3.

Codon harmonization tools
All genes listed in Supplementary Table  2 were har-
monized using CodonWizard, EuGene, Galaxy and 
CHARMING (with modes %MinMax and Geometric 
Mean). When using CodonWizard, the genetic sequence 
was imported and harmonized with 0% tolerance to elim-
inate randomization effects in the results. Kazusa CUTs 
were used during both the harmonization and to com-
pare the output with the original sequence, meaning that 
the use of the outdated Kazusa databases had no impact 
on the comparison. When using EuGene, both the target 
host’s and the natural host’s genome were imported into 
Gene Pool, and the gene of interest was manually added 
to the uploaded natural host’s genome. Importantly, the 
target host’s genome should be uploaded first as the drop-
down menu allowing the user to choose which genome 
the genetic sequence should be harmonized to does not 
work properly. Large differences in harmonization results 
were observed when the order was reversed. Once the 
desired gene was added to the natural host’s genome, the 
gene was uploaded to the workspace, and harmoniza-
tion (RSCU) was carried out without additional filters. A 
similar workflow was followed for Galaxy. First, both the 
heterologous and original host genomes were uploaded, 
and CUTs were calculated. Afterwards, the desired 
gene was harmonized toward the heterologous genome. 
When the online tool CHARMING was used, the gene 
sequence was imported, and the desired codon math for 
harmonization was selected among those available in the 
online tool. A window size of 17 was used. To limit the 
need for computational power, one harmonized output 
was requested. CUTs from Kazusa were used for data 
on the natural host’s codon usage. If the input sequence 
was longer than 350 codons, the CHARMING script was 
used (Python 3.9).

Assessment of codon harmonization tools
To evaluate the efficacy of the various codon harmoni-
zation tools, %MinMax values [59] were calculated for a 
sliding window of 18 codons across the entire length of 
the gene. Afterwards, the differences between the %Min-
Max values of the harmonized sequence and those of 
the original sequence were calculated, obtaining a value 
called ΔMinMax. To evaluate the four tools and perform 
exploratory data analysis, the RMSE was calculated from 
ΔMinMax for each gene using the following formula:

	
RMSE =

√√√√
n∑

i=1

(ŷi − yi)
2

n

with n = the number of sliding windows within a gene, yi 
= the observed ΔMinMax for sliding window i and ŷi = 
the predicted ΔMinMax for sliding window i. The latter 
was set to zero, as each codon harmonization tool aims 
to nullify the codon usage bias between the original and 
the intended host.

Biological parameters GC-content, secondary struc-
tures, enzyme class and host were also included in the 
comparison. The GC content was calculated for each slid-
ing window of 18 codons, while the %mRNA was deter-
mined by uploading the original gene to RNAfold [60] to 
calculate the percentage of each sliding window that was 
involved in secondary mRNA structures. The mean %GC 
and %mRNA were calculated by averaging the obtained 
values per gene.

To create the codon change heatmaps, a python script 
was written to calculate a percentage of occurrence for 
each codon both in all original genetic sequences (ORI%) 
and in all harmonized ones (HARM%). This percentage 
was calculated by dividing the number of occurrences 
of a certain codon by the total number of occurrences 
of all synonymous codons. A host-specific percentage 
of occurrence was calculated in a similar way from the 
CUTs of each host (both original (CUToriginal%) and het-
erologous (CUTheterologous%)) and was used to correct for 
the inherent differences in codon occurrences between 
different species. It makes the codon occurrences relative 
to a ‘theoretical’ value as a reference. Using these param-
eters, RMSE values were calculated for all codons for 
every tool-host combination as follows:

	RMSEcodons =

√
∑n

i=1

(|ORI%− CUT original%| − |HARM%− CUTheterologous%|)2

n

where n is the number of genes present in the dataset and 
thus 27.

The resulting RMSEcodons is a measure for the difference 
in CUT-corrected occurrence of a certain codon between 
the original sequence and the harmonized sequence. As 
before, lower RMSE values represent a better harmoniza-
tion result for a certain codon. Finally, a codon heatmap 
was constructed by using these RMSE values. It visualizes 
which codons are harder to harmonize than others.

Statistical analysis
Statistical analysis and figures were conducted and cre-
ated using R Statistical Software (v4.2.2; R Core Team 
2022) and its attached packages, such as the package ‘gee’ 
[38]. Due to the complexity of the data, the data were fit 
using GEE’s. In this way, the four different tools could be 
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compared. In addition, the influence of various param-
eters (GC content, RNA folding, heterologous host and 
enzyme class) on codon harmonization accuracy could 
be assessed using GEEs combined with the Wald test. For 
each statistical analysis, significance was defined as a p 
value < 0.05.

List of abbreviations
CAI	� Codon Adaptation Index
CHARMING:Geo	� CHARMING with mode Geometric mean
CHARMING:MM	� CHARMING with mode %MinMax
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EC number	� Enzyme Commission number
Eco	� Escherichia coli
GEE	� Generalized Estimating Equations
Geo	� Geometric Mean
MM	� %MinMax
MRMSE	� Mean Root Mean Squared Error
MSE	� Mean Squared Error
RMSE	� Root Mean Squared Error
RSCU	� Relative synonymous codon usage
Sce	� Saccharomyces cerevisiae

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12934-023-02230-y.

Supplementary Material 1

Acknowledgements
The authors wish to express their sincere appreciation to Florian Stijven 
(I-BioStat, KU Leuven) for his contribution in conducting the statistical analysis 
of the data.

Authors’ contributions
M.L.D.M., W.H., T.W. and S.L.D.M. designed the content of the manuscript. Data 
acquisition was done by T.W., S.G. and A.-S.D.R. while data processing was 
performed by T.W., J.R. and S.G. The original draft was prepared by W.H., T.W., 
J.R., S.G. and A.-S.D.R. while it was reviewed and edited by M.L.D.M., S.L.D.M. 
and T.D. The supervision of the research carried out in this manuscript was 
done by S.L.D.M., W.K.S. and M.L.D.M. Funding was acquired by T.W., J.R., 
M.L.D.M., S.L.D.M. and W.K.S. All authors have read and agreed to the published 
version of the manuscript.

Funding
This research was funded by the FWO, PhD grant numbers 198258 and 
1SB8423N and by project number S001422N.

Data Availability
The full genetic dataset that was used in this study can be found in 
Supplementary Tables 2, alongside the needed information to find all required 
genomes.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 14 July 2023 / Accepted: 14 October 2023

References
1.	 Woo HM. Solar-to-chemical and solar-to-fuel production from CO2 by meta-

bolically engineered microorganisms. Curr Opin Biotechnol. 2017;45:1–7.
2.	 Gascoyne JL, Bommareddy RR, Heeb S, Malys N. Engineering Cupriavidus 

necator H16 for the autotrophic production of (R)-1, 3-butanediol. Metab 
Eng. 2021;67:262–76.

3.	 Angov E, Hillier CJ, Kincaid RL, Lyon JA. Heterologous protein expression is 
enhanced by harmonizing the codon usage frequencies of the target gene 
with those of the expression host. PLoS ONE. 2008;3(5):e2189.

4.	 Huang CJ, Lin H, Yang X. Industrial production of recombinant therapeutics 
in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 
2012;39(3):383–99.

5.	 Wang JR, Li YY, Liu DN, Liu JS, Li P, Chen LZ, et al. Codon optimization 
significantly improves the expression level of α-amylase gene from Bacillus 
licheniformis in Pichia pastoris. Biomed Res Int. 2015;2015:248680.

6.	 Elena C, Ravasi P, Castelli ME, Peirú S, Menzella HG. Expression of codon 
optimized genes in microbial systems: current industrial applications and 
perspectives. Front Microbiol. 2014;5:21.

7.	 De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Chal-
lenges and progress towards industrial recombinant protein production in 
yeasts: a review. Biotechnol Adv. 2023;64:108121.

8.	 Goormans AR, Snoeck N, Decadt H, Vermeulen K, Peters G, Coussement P, et 
al. Comprehensive study on Escherichia coli genomic expression: does posi-
tion really matter? Metab Eng. 2020;62:10–9.

9.	 Chaney JL, Clark PL. Roles for synonymous codon usage in protein biogen-
esis. Annu Rev Biophys. 2015;44:143–66.

10.	 Kane JF. Effects of rare codon clusters on high-level expression of heterolo-
gous proteins in Escherichia coli. Curr Opin Biotechnol. 1995;6(5):494–500.

11.	 Kane JF, Kramer EB, Farabaugh PJ. The frequency of translational misread-
ing errors in E. Coli is largely determined by tRNA competition. Curr Opin 
Biotechnol. 1995;6(1):87–96.

12.	 Spencer PS, Siller E, Anderson JF, Barral JM. Silent substitutions predictably 
alter translation elongation rates and protein folding efficiencies. J Mol Biol. 
2012;422(3):328–35.

13.	 Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous 
protein expression. Trends Biotechnol. 2004;22(7):346–53.

14.	 Smith NG, Eyre-Walker A. Why are translationally sub-optimal synonymous 
codons used in Escherichia coli? J Mol Evol. 2001;53(3):225–36.

15.	 Fuglsang A. Codon optimizer: a freeware tool for codon optimization. Protein 
Expr Purif. 2003;31(2):247–9.

16.	 Pechmann S, Frydman J. Evolutionary conservation of codon optimality 
reveals hidden signatures of cotranslational folding. Nat Struct Mol Biol. 
2013;20(2):237–43.

17.	 Purvis IJ, Bettany AJE, Santiago TC, Coggins JR, Duncan K, Eason R, et al. The 
efficiency of folding of some proteins is increased by controlled rates of 
translation in vivo. A hypothesis. J Mol Biol. 1987;193(2):413–7.

18.	 Cortazzo P, Cerveñansky C, Marín M, Reiss C, Ehrlich R, Deana A. Silent muta-
tions affect in vivo protein folding in Escherichia coli. Biochem Biophys Res 
Commun. 2002;293(1):537–41.

19.	 Gould N, Hendy O, Papamichail D. Computational tools and algorithms for 
designing customized synthetic genes. Front Bioeng Biotechnol. 2014;2:41.

20.	 Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M. 
Engineering genes for predictable protein expression. Protein Expr Purif. 
2012;83(1):37–46.

21.	 Wang X, Li X, Zhang Z, Shen X, Zhong F. Codon optimization enhances secre-
tory expression of Pseudomonas aeruginosa Exotoxin A in E. Coli. Protein 
Expr Purif. 2010;72(1):101–6.

22.	 Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S. Gene designer: 
a synthetic biology tool for constructing artificial DNA segments. BMC Bioin-
formatics. 2006;7:285.

23.	 Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé. OPTIMIZER: a web server 
for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 
2007;35:W126–31.

24.	 Wu G, Bashir-Bello N, Freeland SJ. The synthetic gene designer: a flexible web 
platform to explore sequence manipulation for heterologous expression. 
Protein Expr Purif. 2006;47(2):441–5.

25.	 Gong M, Gong F, Yanofsky C. Overexpression of tnaC of Escherichia coli inhib-
its growth by depleting tRNA2Pro availability. J Bacteriol. 2006;188(5):1892–8.

26.	 Al-Hawash AB, Zhang X, Ma F. Strategies of codon optimization for high-level 
heterologous protein expression in microbial expression systems. Gene Rep. 
2017;9:46–53.

https://doi.org/10.1186/s12934-023-02230-y
https://doi.org/10.1186/s12934-023-02230-y


Page 16 of 16Willems et al. Microbial Cell Factories          (2023) 22:227 

27.	 Maertens B, Spriestersbach A, von Groll U, Roth U, Kubicek J, Gerrits M, et al. 
Gene optimization mechanisms: a multi-gene study reveals a high success 
rate of full-length human proteins expressed in Escherichia coli. Protein Sci. 
2010;19(7):1312–26.

28.	 Menzella HG. Comparison of two codon optimization strategies to enhance 
recombinant protein production in Escherichia coli. Microb Cell Fact. 
2011;10:15.

29.	 Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant 
protein expression in Escherichia coli. J Biotechnol. 2005;115(2):113–28.

30.	 Wu G, Zheng Y, Qureshi I, Zin HT, Beck T, Bulka B, et al. SGDB: a database of 
synthetic genes re-designed for optimizing protein over-expression. Nucleic 
Acids Res. 2007;35:D76–9.

31.	 Mignon C, Mariano N, Stadthagen G, Lugari A, Lagoutte P, Donnat S, et al. 
Codon harmonization – going beyond the speed limit for protein expression. 
FEBS Lett. 2018;592(9):1554–64.

32.	 Angov E. Codon usage: nature’s roadmap to expression and folding of pro-
teins. Biotechnol J. 2011;6(6):650–9.

33.	 Ranaghan MJ, Li JJ, Laprise DM, Garvie CW. Assessing optimal: inequalities in 
codon optimization algorithms. BMC Biol. 2021;19(1):1–13.

34.	 Gaspar P, Oliveira JL, Frommlet J, Santos MAS, Moura G. EuGene: maximiz-
ing synthetic gene design for heterologous expression. Bioinformatics. 
2012;28(20):2683–4.

35.	 Claassens NJ, Siliakus MF, Spaans SK, Creutzburg SCA, Nijsse B, Schaap PJ, et 
al. Improving heterologous membrane protein production in Escherichia coli 
by combining transcriptional tuning and codon usage algorithms. PLoS ONE. 
2017;12(9):e0184355.

36.	 Rehbein P, Berz J, Kreisel P, Schwalbe H. CodonWizard–An intuitive software 
tool with graphical user interface for customizable codon optimization in 
protein expression efforts. Protein Expr Purif. 2019;160:84–93.

37.	 Wright G, Rodriguez A, Li J, Milenkovic T, Emrich SJ, Clark PL. CHARMING: 
harmonizing synonymous codon usage to replicate a desired codon usage 
pattern. Protein Sci. 2022;31(1):221–31.

38.	 Vincent JC. GEE: Generalized Estimation Equation Solver. 2022.
39.	 Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M. High guanine and cytosine 

content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(6):e180.
40.	 Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH. Codon usage between 

genomes is constrained by genome-wide mutational processes. Proceedings 
of the National Academy of Sciences. 2004;101(10):3480–5.

41.	 Ermolaev MD. Synonymous codon usage in bacteria. Curr Issues Mol Biol. 
2001;3(4):91–7.

42.	 Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants 
of gene expression in Escherichia coli. Science (1979). 2009;324(5924):255–8.

43.	 Sun Man, Zhang Q, Wang Y, Ge W, Guo D. Prediction of redox-sensitive 
cysteines using sequential distance and other sequence-based features. BMC 
Bioinformatics. 2016;17:1–10.

44.	 Trollope KM, Van Wyk N, Kotjomela MA, Volschenk H. Sequence and 
structure-based prediction of fructosyltransferase activity for functional 
subclassification of fungal GH 32 enzymes. FEBS J. 2015;282(24):4782–96.

45.	 Choi K, Kim S. Sequence-based enzyme catalytic domain prediction using 
clustering and aggregated mutual information content. J Bioinform Comput 
Biol. 2011;9(05):597–611.

46.	 Konczal J, Bower J, Gray CH. Re-introducing non-optimal synonymous 
codons into codon-optimized constructs enhances soluble recovery of 
recombinant proteins from Escherichia coli. PLoS ONE. 2019;14(4):e0215892.

47.	 Raab D, Graf M, Notka F, Schödl T, Wagner R. The GeneOptimizer Algorithm: 
using a sliding window approach to cope with the vast sequence space in 
multiparameter DNA sequence optimization. Syst Synth Biol. 2010;4:215–25.

48.	 Du MZ, Zhang C, Wang H, Liu S, Wei W, Guo FB. The GC content as a main fac-
tor shaping the amino acid usage during bacterial evolution process. Front 
Microbiol. 2018;9(DEC):1–12.

49.	 Newman ZR, Young JM, Ingolia NT, Barton GM. Differences in codon bias 
and GC content contribute to the balanced expression of TLR7 and TLR9. 
Proceedings of the National Academy of Sciences. 2016;113(10):E1362–71.

50.	 De Nijs Y, De Maeseneire SL, Soetaert WK. 5′ untranslated regions: the Next 
Regulatory sequence in yeast Synthetic Biology. Biol Rev. 2020;95(2):517–29.

51.	 Wright G, Rodriguez A, Li J, Clark PL, Milenković T, Emrich SJ. Analysis of 
computational codon usage models and their association with translationally 
slow codons. PLoS ONE. 2020;15(4):e0232003.

52.	 Sharp PM, Li WH. The codon adaptation index-a measure of directional 
synonymous codon usage bias, and its potential applications. Nucleic Acids 
Res. 1987;15(3):1281–95.

53.	 Parret AH, Besir H, Meijers R. Critical reflections on synthetic gene design for 
recombinant protein expression. Curr Opin Struct Biol. 2016;38:155–62.

54.	 Rodriguez A, Wright G, Emrich S, Clark PL, %MinMax:. A versatile tool for cal-
culating and comparing synonymous codon usage and its impact on protein 
folding. Protein Sci. 2018;27(1):356–62.

55.	 Sander IM, Chaney JL, Clark PL. Expanding Anfinsen’s principle: contributions 
of synonymous codon selection to rational protein design. J Am Chem Soc. 
2014;136(3):858–61.

56.	 Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, et al. 
Design parameters to control synthetic gene expression in Escherichia coli. 
PLoS ONE. 2009;4(9):e7002.

57.	 Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U, 
et al. A new and updated resource for codon usage tables. BMC Bioinformat-
ics. 2017;18:1–10.

58.	 Consortium TU. UniProt: the Universal protein knowledgebase in 2023. 
Nucleic Acids Res. 2023;51(D1):D523–31.

59.	 Clarke IVTF, Clark PL. Rare codons cluster. PLoS ONE. 2008;3(10):e3412.
60.	 Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The vienna RNA 

websuite. Nucleic Acids Res. 2008;36(suppl2):W70–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿An exploratory ﻿in silico﻿ comparison of open-source codon harmonization tools
	﻿Abstract
	﻿Background
	﻿﻿Results
	﻿Discussion
	﻿Conclusions
	﻿﻿Methods
	﻿Genetic dataset
	﻿Validation dataset
	﻿Codon harmonization tools
	﻿Assessment of codon harmonization tools
	﻿Statistical analysis

	﻿References


