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Abstract

Background: Glucose repression is a global regulatory system in baker’s yeast. Maltose metabolism in baker’s yeast
strains is negatively influenced by glucose, thereby affecting metabolite productivity (leavening ability in lean
dough). Even if the general repression system constituted by MIG1, TUP1 and SSN6 factors has already been
reported, the functions of these three genes in maltose metabolism remain unclear. In this work, we explored the
effects of MIG1 and/or TUP1 and/or SSN6 deletion on the alleviation of glucose-repression to promote maltose
metabolism and leavening ability of baker’s yeast.

Results: Results strongly suggest that the deletion of MIG1 and/or TUP1 and/or SSN6 can exert various effects on
glucose repression for maltose metabolism. The deletion of TUP1 was negative for glucose derepression to facilitate
the maltose metabolism. By contrast, the deletion of MIG1 and/or SSN6, rather than other double-gene or
triple-gene mutations could partly relieve glucose repression, thereby promoting maltose metabolism and the
leavening ability of baker’s yeast in lean dough.

Conclusions: The mutants of industrial baker’s yeast with enhanced maltose metabolism and leavening ability in
lean dough were developed by genetic engineering. These baker’s yeast strains had excellent potential industrial
applications.
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Background
Baker’s yeast (Saccharomyces cerevisiae) is the key micro-
organism used in the baking industry. Although a small
amount of free sugars exists in lean dough with no added
sugar, maltose represents the principal source of fer-
mentable carbon during dough fermentation [1–3]. A
good baker’s yeast should rapidly ferment maltose.
However, glucose and fructose are the first sugars to be
used during fermentation, and the presence or uptake
of glucose has a negative impact on the metabolism of
other carbon sources [4–7]. Given that the genes in-
volved in maltose utilization are repressed by glucose, a
reasonable way to improve maltose metabolism and
* Correspondence: cyzhangcy@tust.edu.cn; xdg@tust.edu.cn
1Key Laboratory of Industrial Fermentation Microbiology, Ministry of
Education, Tianjin Industrial Microbiology Key Laboratory, Tianjin University of
Science and Technology, Tianjin 300457, PR China
2College of Biotechnology, Tianjin University of Science and Technology,
Tianjin 300457, PR China

© 2014 Lin et al.; licensee BioMed Central Ltd
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
leavening ability of baker’s yeast is by effectively alleviat-
ing glucose repression.
Mig1, a Cys2His2 zinc-finger protein, binds to the pro-

moters of several genes and represses their transcription
when glucose is added to the medium [8–10]. Hu et al.
have shown that Mig1p represses the transcription of
all three MAL genes essential to maltose metabolism
by binding the upstream genes [11]. In addition, Mig1
inhibits transcription by recruiting the general co-
repressor complex Ssn6-Tup1 [12]. Ssn6-Tup1 is one
of the first co-repressor complexes to be identified. As
with other co-repressors, the specificity of repression
is determined by sequence-specific DNA binding repres-
sors, which recruit Ssn6-Tup1 to the target gene pro-
moters; these repressors include Mig1 [13–16]. Therefore,
a strong correlation among MIG1, TUP1 and SSN6 for
glucose repression was observed. Previous studies have
shown that the maltose metabolism of baker’s yeast could
be partly glucose derepressed by MIG1 single-gene mutant
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through enhancing the transcription of the MAL gene
[17–19]. However, the effect of relieving glucose repres-
sion on maltose metabolism of baker’s yeast by silencing
TUP1 and/or SSN6 remains unclear. Furthermore, mal-
tose metabolism of baker’s yeast through combination
mutations of MIG1, TUP1 and SSN6, which breaking
the regulatory pathway of glucose repression, remains
unclear.
In this study, we disrupted the regulatory pathway of

glucose repression by deleting MIG1 and/or TUP1 and/or
SSN6 to investigate the effects of MIG1, TUP1 and SSN6
on maltose metabolism and leavening ability of baker’s
yeast. The results explicitly suggest that the deletion of the
MIG1 and/or TUP1 and/or SSN6 genes lead to different
results in the tested conditions. Deletion of MIG1 and/
or SSN6 is more efficient than TUP1 deletion and other
combination deletions of MIG1, TUP1 and SSN6 on glu-
cose derepression for maltose metabolism and leavening
ability of baker’s yeast in lean dough. This finding lays a
foundation for the optimization of industrial baker’s
yeast strains.

Results
Sugar consumption of single-gene deletion strains in low
sugar model liquid dough (LSMLD) medium
The impact of single-gene mutation of MIG1, TUP1 and
SSN6 on sugar consumption was assayed in three LSMLD
media. The TUP1 single-gene-deletion strain B-TUP1
cannot rapidly utilize maltose and is inferior to the
parental strain BY14-α17, when glucose was exhausted
in the glucose-maltose LSMLD medium (Figure 1C).
Compared with the parental strain BY14-α17, the MIG1
single-gene-deletion strain B-MIG1 did not evidently change
in glucose and maltose LSMLD media (Figures 1A to B).
However, compared with the parental strain, a 10.8% in-
crease of maltose utilization efficiency (21.3% in the paren-
tal strain and 23.6% in the strain B-MIG1, P < 0.05) of the
strain B-MIG1 was observed in glucose-maltose LSMLD
medium, when glucose was exhausted (Figure 1C). Sim-
ultaneously, the time span between the point when half
of the glucose and that of the maltose had been con-
sumed decreased by 10.2% compared with the parental
strain (Table 1). The utilization efficiency of sugar dis-
tinctly increased in the SSN6 single-gene-deletion strain
B-SSN6 compared with the parental strain BY14-α17.
The maltose utilization efficiency in B-SSN6 was 18.3%
and 19.7% higher than that of the parental strain in maltose
(79.6% in the parental strain and 94.2% in the strain B-
SSN6, P < 0.05) and glucose-maltose (21.3% in the parental
strain and 25.5% in the strain B-SSN6, P < 0.05) LSMLD
media, respectively (Figures 1B to C). Furthermore,
compared with the parental strain BY14-α17, the time
span in B-SSN6 decreased from 2.15 h to 1.76 h
(Table 1).
These results demonstrate that the single-gene dele-
tion of the three genes (MIG1, TUP1 and SSN6) resulted
in different effects on the alleviation of glucose repression
in the maltose utilization of baker’s yeast. Single-gene de-
letions of SSN6 and MIG1 promote the glucose derepres-
sion. Particularly, the single-gene deletion of SSN6 was
more effective than the MIG1 single-gene deletion. How-
ever, TUP1 single-gene deletion was negative to relieve
glucose repression to promote the maltose metabolism.
Sugar consumption of double-gene deletion strains in
LSMLD medium
The maltose metabolism was tested for the double-gene
mutants of MIG1,TUP1 and SSN6 in the LSMLD medium.
Although glucose and maltose decreased with BY14-α17 in
the strains B-MIG1-TUP1 and B-TUP1-SSN6 in the three
LSMLD media (Figure 2), the time span of B-TUP1-SSN6
was still 6.98% higher than the parental strain (Table 1). By
contrast, a positive effect with decreased time span (10.7%)
was obtained in B-MIG1-SSN6 (Table 1). When the yeast
cells were inoculated in the maltose and the glucose-
maltose LSMLD media, the strain B-MIG1-SSN6 exhib-
ited a substantially more rapid sugar-uptake than the
other strains. Compared with the parental strain BY14-
α17, maltose utilization efficiency (21.3% in the parental
strain and 29.7% in the strain B-MIG1-SSN6, P < 0.05)
distinctly increased by 39.4% in the strain B-MIG1-
SSN6, when glucose was exhausted in the glucose-
maltose LSMLD medium (Figure 2C).
These results indicate that the double-gene deletion of

the three genes (MIG1, TUP1 and SSN6) also generated
different effects on the maltose metabolism of baker’s yeast
by alleviating glucose repression. The co-gene-deletion
of MIG1 and SSN6 mitigated glucose repression, which
is more efficient than MIG1-TUP1 and TUP1-SSN6
double-gene deletions with no evident function in mal-
tose metabolism.
Sugar consumption of the triple-gene deletion strain in
LSMLD medium
The maltose metabolism was further investigated with
B-MIG1-TUP1-SSN6, which performs the triple-gene-
deletion of MIG1, TUP1 and SSN6. Surprisingly, in B-
MIG1-TUP1-SSN6, the maltose uptake was considerably
delayed compared with the parental strain BY14-α17 until
the termination of the process in the maltose LSMLD
medium (Figure 3B). Compared with the parental strain,
the maltose utilization efficiency (21.3% in the parental
strain and 16.9% in the strain B-MIG1-TUP1-SSN6,
P < 0.05) of the strain B-MIG1-TUP1-SSN6 decreased
by 20.7% in the glucose-maltose LSMLD medium
(Figure 3C). The consumption of maltose was slower
than BY14-α17 throughout the process. Moreover,



Figure 1 Concentration of residual sugar in parental strain and
single-gene mutants in LSMLD medium. Fresh yeast cells were
inoculated into (A) glucose LSMLD medium, (B) maltose LSMLD
medium and (C) glucose-maltose LSMLD medium, and were
sampled at suitable intervals. Data are average of three independent
experiments and error bars represent ± SD.
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the time span was evidently increased (from 2.15 h
to 2.32 h) (Table 1).
These results suggest that the MIG1, TUP1 and SSN6

triple-gene deletions were unavailable to relieve glucose
repression and enhance maltose metabolism of baker’s
yeast, though MIG1, TUP1 and SSN6 could function as a
complex that affects the glucose-repressible genes [12].
Growth and fermentation properties
Considering the diversity of sugars consumption of the
eight strains obtained, we further investigated the growth
characteristics (specific growth rate and biomass yield)
under different carbon sources and explored the leaven-
ing ability in lean dough. The specific growth rate and
biomass yield of the single-gene-deletion and double-
gene-deletion strains illustrated in Table 2 comparatively
remained stable (small difference with no statistical signifi-
cance), revealing that the single-gene and double-gene
deletions of MIG1, TUP1 and SSN6 did not influence the
growth of the strains. However, the specific growth rate of
the triple-gene-deletion B-MIG1-TUP1-SSN6 (0.14 h−1)
was lower than that of the parental strain BY14-α17
(0.19 h−1) in the maltose LSMLD medium. Compared
with the parental strain, the biomass yield of B-MIG1-
TUP1-SSN6 decreased from 5.9 g/L to 5.1 g/L in the
glucose-maltose LSMLD medium (Table 2). The posi-
tive mutants B-MIG1, B-SSN6 and B-MIG1-SSN6 per-
formed well for the leavening ability. Compared with
the parental strain BY14-α17, the amount of evolved
CO2 by B-MIG1, B-SSN6 and B-MIG1-SSN6 within
70 min increased from 825 mL to 875 mL (P < 0.05),
900 mL (P < 0.01) and 925 mL (P < 0.01), respectively
(Figure 4), while the other strains (B-TUP1, B-MIG1-
TUP1, B-TUP1-SSN6 and B-MIG1-TUP1-SSN6) showed
lower CO2 production (data not shown). Moreover, the
fermentation time in B-MIG1, B-SSN6 and B-MIG1-SSN6
were evidently shortened, compared with the parental
strain.
These fermentation findings directly correspond with

sugar consumption in the LSMLD medium suggesting
that the deletion of MIG1 and/or TUP1 and/or SSN6 led
to different effects on the leavening ability of baker’s yeast
in lean dough. Particularly, MIG1 and/or SSN6 deletions
could improve the fermentation with stable physiological
characteristics.



Table 1 Time span of the parental strain and the transformants

Strains BY14-α17 B-MIG1 B-TUP1 B-SSN6 B-MIG1-TUP1 B-MIG1-SSN6 B-TUP1-SSN6 B-MIG1-TUP1-SSN6

Time span (h)a 2.15 ± 0.10 1.93 ± 0.11* 2.22 ± 0.12* 1.76 ± 0.13* 2.07 ± 0.09 1.92 ± 0.14* 2.30 ± 0.10* 2.32 ± 0.11**

Values shown represent averages of at least three independent experiments (data are means ± SD). Significant difference of the transformants (B-MIG1, B-TUP1,
B-SSN6, B-MIG1-SSN6, B-TUP1-SSN6, B-MIG1-TUP1-SSN6) from the parental strain was confirmed by Student’s t-test (**P < 0.01, *P < 0.05, n = 3).
aTime span was determined between the point when half of the glucose and that of the maltose had been consumed in the glucose-maltose LSMLD medium.
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Discussion
Glucose has dramatic down-regulating effects on the
metabolism of other sugars and on the leavening prop-
erties of baker’s yeast strains. Glucose does not repress
all glucose-repressible genes in a similar manner [20].
Numerous reports have shown that the Mig1 repressor
and Ssn6-Tup1 co-repressor are central components of
the glucose repression machinery involved in the regu-
lation of MAL expression [12,21,22]. Moreover, MIG1
deletion does not alleviate glucose repression of maltose
utilization [11,23]. Probably, the genetic backgrounds of
the S. cerevisiae strains used led to the differences in mal-
tose consumptions of the cells. TUP1 and SSN6 mutants
produce various phenotypes, including constitutive dere-
pression of numerous glucose-repressible genes, calcium-
dependent flocculation, mating-type defects in MATα
cells and non-sporulation of homozygous diploids [24,25].
However, the different combinations of mutated MIG1,
TUP1 and SSN6 have never been conceived to improve
the maltose metabolism. In this study, the deletion muta-
tions of MIG1 and/or TUP1 and/or SSN6 were established
for the industrial baker’s yeast cells, explicitly demonstrat-
ing that the deletion of MIG1 and/or TUP1 and/or SSN6
presented different effects on the maltose metabolism and
leavening ability of baker’s yeast.
Compared with the parental strain, glucose repression

of maltose metabolism was partly alleviated by MIG1
single-gene deletion in B-MIG1 strain (Figures 1B to C),
supporting the point that the disruption of MIG1 causes
partial alleviation of glucose repression by the secreted
metabolites [11,22]. Surprisingly, an apparent difference
was observed between the two members of the co-
repressor Ssn6-Tup1, SSN6 and TUP1. The trend for
sugar consumption suggests that the maltose metabol-
ism in TUP1 single-gene-deletion strain B-TUP1 was
longer than the parental strain BY14-α17, pointing to a
negative alleviation of glucose repression. In contrast,
glucose repression was partially relieved in SSN6 single-
gene-deletion strain B-SSN6, increasing maltose metabol-
ism (Figures 1B to C). The different functional domains of
Tup1 and Ssn6 involved in glucose control are probably
the major causes of the different effects of the two gene
deletions on glucose repression. The functional domains
of Ssn6 primarily consist of 10 tandem copies of a TPR
motif and are specifically necessary for the repression of
glucose-regulated genes [26]. Different domains of Tup1
can cause the repression of different target genes. For
example, some WD motifs or N-terminus domains of
Tup1 are not essential for repression of genes regulated
by glucose [26–29]. However, certain regions of Tup1
could be necessary for the high-level expression of
glucose-repressed genes, such as GAL genes for galactose
fermentation [30]. Thus, we propose that the regions of
Tup1 crucial to the expression of MAL genes are dis-
rupted through complete gene deletion. Therefore, MIG1
single-gene deletion and SSN6 single-gene deletion were
considered effective in improving maltose metabolism
in the industrial baker’s yeast.
The combined effects of MIG1, SSN6 and TUP1 on

the maltose metabolism in industrial baker’s yeast were
further investigated. Combined mutations of TUP1 with
MIG1 or SSN6 compensated for the slow maltose me-
tabolism of the strain B-TUP1, while the rates of mal-
tose consumption in the mutants B-MIG1-TUP1 and
B-TUP1-SSN6 were only close to that of the parental
strain BY14-α17 (Figure 2). TUP1 single-gene deletion
is possible in its negative effect limited to the alleviation
of glucose repression. Hence, MIG1 or SSN6 deletion
with TUP1 cannot enhance the maltose metabolism. The
double-gene mutant strain B-MIG1-SSN6 was less glucose
repressed compared with the parental strain (Figure 2C).
This finding corresponds with the studies, which showed
that the interactions with DNA-binding repressors are
mainly mediated through the different surfaces of Ssn6,
and that Ssn6 specifically interacts with Mig1 [31,32]. The
insufficient alleviation of glucose repression in B-MIG1-
SSN6 could result from the co-action of Mig1 and Ssn6.
Although Mig1 is unessential for tethering Ssn6 to the
MAL upstream, it is important for Ssn6-mediated repres-
sion in response to glucose. Surprisingly, the triple-gene
mutant B-MIG1-TUP1-SSN6 was more glucose repressed
than the parental strain (Figure 3). Considering that the
interactions of Ssn6-Tup1 complex contain diverse mech-
anisms, other mechanisms affecting the MAL genes ex-
pression are also possibly involved in the regulation of the
repression by the Mig1-Tup1-Ssn6 complex [13,33]. In
addition, the inferior sugar uptake in B-MIG1-TUP1-
SSN6 could be caused by the feeble physiological char-
acteristic compared with the parental strain (Table 2).
Single-gene and double-gene deletions did not present

any evident changes in the specific growth rate and bio-
mass yield in the three LSMLD media (Table 2). In
other words, the growth properties of single-gene and
double-gene deletions of MIG1 and/or TUP1 and/or



Figure 2 Concentration of residual sugar in parental strain and
double-gene mutants in LSMLD medium. Fresh yeast cells were
inoculated into (A) glucose LSMLD medium, (B) maltose LSMLD
medium and (C) glucose-maltose LSMLD medium, and sampled at
suitable intervals. Data are average of three independent experiments
and error bars represent ± SD.
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SSN6 with no distinctive difference (no statistical signifi-
cance) were insufficient to affect the maltose metabolism.
Therefore, the differences in maltose metabolism (maltose
utilization and CO2 production) do not have strong corre-
lations with the indistinct differences in the physiological
effects of the baker’s yeast in this study.
The effective alleviation of glucose repression or the

rapid transition from glucose to maltose metabolism is
essential to improve the leavening ability of baker’s
yeast in lean dough. The single-gene MIG1/SSN6 and
co-gene-deletions of MIG1 and SSN6 decreased the
span time in the glucose-maltose LSMLD medium with
stable growth properties (Tables 1 and 2). Therefore,
these deletions could cause efficient leavening ability
(Figure 4). Furthermore, evident increase of the leaven-
ing ability level was observed in B-MIG1-SSN6, indicating
that Mig1 and Ssn6 collectively act for the inhibition of
maltose-utilizing genes. Thus, co-gene deletion of MIG1
and SSN6 could significantly enhance leavening ability of
baker’s yeast. These advantages are consistent with the re-
quirement for the leavening ability of an industrial baker’s
yeast strain. With minimal transformation, SSN6 or MIG1
single-gene deletion is necessary to obtain a baker’s yeast
strain with rapid maltose metabolism.

Conclusion
The results of this study show that the glucose repres-
sion involved in the maltose metabolism can be modu-
lated at different levels through the different mutations
of MIG1 and/or TUP1 and/or SSN6. The deletion of
TUP1 was negative to alleviate glucose repression to fa-
cilitate the maltose metabolism. In contrast, deletions of
MIG1 and/or SSN6 were efficient to relieve glucose re-
pression, therefore, promoting maltose metabolism and
the leavening ability of baker’s yeast in lean dough.
Hence, such baker’s yeast has excellent commercial and
industrial applications.

Materials and methods
Strains and vectors
Table 3 summarizes the genetic properties of all strains
and plasmids used in this study.

Growth, cultivation and fermentation conditions
Recombinant DNA was amplified in Escherichia coli
DH5α, which was grown at 37°C in Luria–Bertani
medium (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L



Figure 3 Concentration of residual sugar in parental strain and
triple-gene mutants in LSMLD medium. Fresh yeast cells were
inoculated into (A) glucose LSMLD medium, (B) maltose LSMLD
medium and (C) glucose-maltose LSMLD medium, and sampled at
suitable intervals. Data are average of three independent experiments
and error bars represent ± SD.
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NaCl) supplemented with 100 μg/mL ampicillin. The
plasmid was obtained using a Plasmid Mini Kit II
(D6945, Omega, USA).
The yeast strains were maintained in yeast extract

peptone dextrose (YEPD) medium (10 g/L yeast extract,
20 g/L peptone, and 20 g/L glucose) at 30°C. Over the
next enrichment of the molasses medium, cells were
harvested through centrifugation (4°C, 1500 ×g, 5 min)
and were washed twice with sterile water at 4°C in the
succeeding fermentation experiments. To investigate
the degree of repression between the three repression
factors under different concentrations of extracellular
maltose, we used the low sugar model liquid dough
fermentation medium [LSMLD fermentation medium,
2.5 g/L (NH4)2SO4, 5 g/L urea, 16 g/L KH2PO6, 5 g/L
Na2HPO4, 0.6 g/L MgSO4, 0.0225 g/L nicotinic acid,
0.005 g/L Ca-pantothenate, 0.0025 g/L thiamine, 0.00125 g/L
pyridoxine, 0.001 g/L riboflavin, and 0.0005 g/L folic
acid], containing one of the three specified carbon sources
(40 g/L glucose, 38 g/L maltose, and 33.25 g/L maltose
mixed with 5 g/L glucose).
To select Zeocin-resistant yeast strains, 500 mg/L Zeocin

(Promega, Madison, United States) was added to the
YEPD plates for the yeast culture. Then, the YEPG
medium (10 g/L yeast extract, 20 g/L peptone, and
20 g/L galactose) was used for Cre expression in the
yeast transformants.

Construction of plasmid and yeast transformants
Genomic yeast DNA was prepared from the industrial
baker’s yeast strain BY14-α17 using a yeast DNA kit
(D3370-01, Omega, USA). The PCR primers used in
this work are listed in Table 4.
An upstream homologous fragment of the TUP1 gene

was amplified by PCR using BY14-α17 genomic DNA as
template with TA-U and TA-D primers. A downstream
homologous fragment was similarly amplified using TB-U
and TB-D primers. Then, the PCR products were digested
using the appropriate endonucleases and were cloned to
the pUC19 cloning vector at EcoR I and Kpn I sites, and
Sal I and Sph I sites, respectively, to construct plasmid
pUC-AtBt. The KanMX cassette, which was amplified by
PCR using pUG6 as the template with the primers Kan-U
and Kan-D, was cloned to construct pUC-AtBt after being
digested with the appropriate endonucleases to produce
the final plasmid, which was designated as pUC-KAtBt.
Based on the aforementioned strategy, the pUC-KAsBs
plasmid was constructed by inserting the upstream hom-
ologous fragment SSN6A, KanMX cassette, and down-
stream homologous fragment SSN6B into the pUC19
cloning vector.
Baker’s yeast transformation was achieved through

lithium acetate/PEG method [36]. The deletion cassette
of TUP1A-loxP-KanMX-loxP-TUP1B was amplified and



Table 2 Growth properties of the parental strain and the transformants

Strains Specific growth rate (h−1) Biomass yield (g/L)

Glucose Maltose Glucose-maltose Glucose Maltose Glucose-maltose

BY14-α17 0.19 ± 0.01 0.19 ± 0.00 0.16 ± 0.02 6.2 ± 0.20 6.1 ± 0.21 5.9 ± 0.18

B-MIG1 0.16 ± 0.03 0.18 ± 0.02 0.17 ± 0.02 5.9 ± 0.23 6.0 ± 0.19 6.0 ± 0.20

B-TUP1 0.17 ± 0.02 0.16 ± 0.03 0.16 ± 0.01 5.9 ± 0.18 5.8 ± 0.23 5.9 ± 0.23

B-SSN6 0.21 ± 0.02 0.17 ± 0.01 0.18 ± 0.01 6.3 ± 0.21 6.1 ± 0.23 6.1 ± 0.21

B-MIG1-TUP1 0.16 ± 0.01 0.15 ± 0.04 0.18 ± 0.03 6.0 ± 0.22 5.9 ± 0.21 6.0 ± 0.21

B-MIG1-SSN6 0.17 ± 0.02 0.18 ± 0.01 0.18 ± 0.02 5.8 ± 0.21 6.0 ± 0.20 6.1 ± 0.20

B-TUP1-SSN6 0.20 ± 0.03 0.20 ± 0.02 0.15 ± 0.00 6.3 ± 0.19 6.2 ± 0.22 5.8 ± 0.18

B-MIG1-TUP1-SSN6 0.16 ± 0.02 0.14 ± 0.05* 0.16 ± 0.01 6.0 ± 0.21 5.8 ± 0.20 5.1 ± 0.24*

Values shown represent averages of at least three independent experiments (data are means ± SD). Significant difference of B-MIG1-TUP1-SSN6 from the parental
strain was confirmed by Student’s t-test (*P < 0.05, n = 3).

Lin et al. Microbial Cell Factories 2014, 13:93 Page 7 of 9
http://www.microbialcellfactories.com/content/13/1/93
transformed into the industrial baker’s yeast BY14-α17.
The fragment was integrated into the chromosome at the
TUP1 locus of BY14-α17 by homologous recombination
to construct the TUP1 deletion strain. The selection of
TUP1 deletion strain was performed using the YEPD
medium supplemented with 800 mg/L G418. After selec-
tion, recombinant strains were verified with the primers
listed in Table 4. Cre recombinase was expressed and
KanMX was excised after introducing the plasmid pSH-
Zeocin into the TUP1 deletion strain, thus resulting in
B-TUP1. The same procedure was utilized to construct
B-MIG1 and B-SSN6. Based on the aforementioned strat-
egy, the double-gene mutation strains B-MIG1-TUP1,
B-MIG1-SSN6 and B-TUP1-SSN6 were constructed by
transforming the second deletion cassette into the single-
gene mutation strains. The triple-gene mutation strain
B-MIG1-TUP1-SSN6 was constructed by transforming
SSN6A-loxP-KanMX-loxP-SSN6B into B-MIG1-TUP1.
Figure 4 CO2 production by parental strain and positive
mutants in lean dough. We mixed 280 g of flour, 150 mL of water,
4 g of salt, and 8 g of fresh yeast into a fermentograph until steady
gas formation was achieved. Data are average of three independent
experiments and error bars represent ± SD.
Finally, all of the transformants were verified through
PCR with the primers listed in Table 4.

Determination of specific growth rate and biomass yield
After incubating for 24 h, the mixtures of cell culture and
medium were mixed in a specific pore plate in appropriate
proportions, and the growth curve was detected using
bioscreen automated growth curves (Type Bioscreen C,
Finland). The specific growth rate was determined with
the ratio of the growth velocity to cell concentration.
Nitrocellulose filters with a pore size of 0.45 mm

(Gelman Sciences, Ann Arbor, MI, USA) were pre-dried
in a microwave oven at 150 W for 10 min and were subse-
quently weighed. Harvested cells were obtained from
10 mL of cell culture, washed twice with isometric distilled
water, and dried at 105°C for 24 h. The biomass yield was
determined from the slopes of the plots of biomass dry
weight versus the amount of consumed sugar during
exponential growth. Experiments were conducted at
least thrice.

Determination of leavening ability
The leavening ability of yeast cells was assayed by meas-
uring the CO2 production in lean dough. Lean dough
consisted of 280 g of flour, 150 mL of water, 4 g of salt,
and 8 g of fresh yeast. The dough was evenly and quickly
mixed for 5 min at 30 ± 0.2°C, and placed inside the box
of a fermentograph (Type JM451, Sweden). CO2 produc-
tion was recorded at 30°C. Experiments were conducted
at least thrice.

Analysis of sugar consumption
For extracellular sugar measurements, cultures were
sampled at 30°C at suitable intervals for 4 h. The mal-
tose content was measured through 3,5-dinitrosalicylic
acid method (DNS). HPLC with a refractive index de-
tector and an Aminex® HPX-87H column (Bio-Rad,
Hercules, CA, USA) was utilized at 65°C with 5 mM
H2SO4 as the mobile phase at a flow rate of 0.6 mL/min



Table 4 Primers used in the present study (restriction
sites are italics)

Primers Sequence (5’ → 3’)

For plasmid
construction

TA-U CCGGAATTCAAATGAAATAATACGGGAAGAGCG

TA-D CGGGGTACCCGGTAGCGATAATGTAAGAGGGTT

TB-U ACGCGTCGACGAACAGAACACAAAAGGAACAC

TB-D ACATGCATGCGAACCGCAATATTCAGAAACAC

SA-U CCGGAATTCCTTATAACGTGGGCCATGTCAT

SA-D CGCGGATCCCTAGTGACGTTGTCGTATTTGG

SB-U CGCGGATCCTCAACGAGAAATGTTGTGTAGC

SB-D CCCAAGCTTACATATGCTCATCGGGAAAACC

Kan-U CGCGGATCCCAGCTGAAGCTTCGTACGC

Kan-D CGCGGATCCGCATAGGCCACTAGTGGATCTG

For PCR verification

YT-U TCTTGTCTGTCTGCTTCTTCACTGT

YT-D AAAGAGTGTGAAGTGACGGCTATG

YS-U CACACTCCGTTCTTAGTGGTTGTT

YS-D ATCCACCGTAGAACCCAAAGCATT

K-U CTTGCTAGGATACAGTTCTCACATCA

K-D CGCATCAACCAAACCGTTATTCATTC

Z-U CCCACACACCATAGCTTCA

Z-D AGCTTGCAAATTAAAGCCTT

Table 3 Characteristics of strains and plasmids used in the present study

Strains or plasmids Relevant characteristic Reference or source

Strains

E. coli DH5α Φ80 lacZΔM15 ΔlacU169 recA1 endA1 hsdR17 supE44 thi-1 gyrA relA1 Stratagene

BY14-α17 MAT α, Industrial baker’s yeast This study

B-MIG1 MAT α, ΔMIG1:: loxP This study

B-TUP1 MAT α, ΔTUP1:: loxP This study

B-SSN6 MAT α, ΔSSN6:: loxP This study

B-MIG1-TUP1 MAT α, ΔMIG1:: loxP, ΔTUP1:: loxP This study

B-MIG1-SSN6 MAT α, ΔMIG1:: loxP, ΔSSN6:: loxP This study

B-TUP1-SSN6 MAT α, ΔTUP1:: loxP, ΔSSN6:: loxP This study

B-MIG1-TUP1-SSN6 MAT α, ΔMIG1:: loxP, ΔTUP1:: loxP, ΔSSN6:: loxP This study

Plasmids

pUG6 E. coli/S. cerevisiae shuttle vector, containing Amp+ and loxP-kanMX-loxP disruption cassette [34]

pUC19 Apr, cloning vector Invitrogen

pSH-Zeocin Zeor, Cre expression vector [35]

pKAB Apr, Kanr, Am-KanMX-Bm [10]

pUC-KAtBt Apr, Kanr, At-KanMX-Bt This study

pUC-KAsBs Apr, Kanr, As-KanMX-Bs This study
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[37] to analyze the mixed sugars filtered through 0.45 μm
pore size cellulose acetate filters (Mil-lipore Corp,
Danvers, MA, USA). The maltose utilization efficiency
in maltose LSMLD medium was determined by the ra-
tio of the consumed maltose in 240 min and the total
maltose. The maltose utilization efficiency in glucose-
maltose LSMLD medium was determined by the ratio
of the consumed maltose, when glucose was exhausted,
and the total maltose. Based on the consumption curves
of glucose and maltose in the glucose-maltose LSMLD
medium, the time span between the point when half of
the glucose and that of the maltose had been consumed
was determined. Experiments were conducted at least
thrice.
Statistical analysis
Data were expressed as mean ± SD, and were accom-
panied by the number of experiments independently
performed. The differences of the transformants com-
pared with the parental strain were confirmed by Student’s
t-test. Differences at P < 0.05 were considered significant
differences in statistics.
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