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Abstract 

Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. 
Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type com-
pounds with diverse structural motifs and various biological properties. With the continuous improvement and exten-
sive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters 
(BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics 
of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic 
logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in eluci-
dating their biosynthetic pathways.
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Introduction
Fungal non-ribosomal peptide synthetases (NRPS) are 
large modular multifunctional enzymes that generate 
compounds by sequential condensation of amino acids 
and hydroxycarboxylic acid units [1]. Fungal NRPS-
encoding products are a prolific source of bioactive com-
pounds, some of which have been commercially used as 
therapeutic agents, such as cyclosporin A, echinocandins 
and emodepsides [2, 3]. As one of the most common fila-
mentous fungi in nature, Fusarium is well-known for its 
potential of production of NRPS products with a wide 
array of biological properties [4–6]. With a substantial 
increase in fungal genome sequences and the incremental 

optimization of software tools (e.g., anti-SMASH, NCBI, 
UniProt), bioinformatic analysis of the link between sec-
ondary metabolites (SMs) and their biosynthetic gene 
cluster (BGCs) has become simple and efficient [7–9]. 
A growing number of Fusarium-derived NRPS products 
and their BGCs have been isolated and characterized [6, 
10, 11]. However, the biosynthetic pathways of these SMs 
have not been well unveiled till now. By extensive litera-
ture search and analysis, this review comprehensively 
summarizes 15 biosynthetic pathways of NRPS-type 
compounds from Fusarium spp., highlighting the key 
enzymatic domains involved in their biosynthetic path-
ways. Additionally, the supporting information summa-
rizes some of the common methods, which can provide 
valid references for further research.

Canonical NRPS‑encoding compounds
One fungal NRPS module usually consists of at least 
three essential domains including the adenylation (A), 
the thiolation (T) and the condensation (C) [12–15]. The 
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other family members also can replace the C domain in 
the biosynthesis or work together with C domain, includ-
ing the epimerization (E) domain, the heterocyclization 
(Cy) domain, the CT domain (a subset of the C domain) 
etc., which can meet diverse and novel functions [16, 17]. 
The released products are subsequently further modi-
fied by additional enzymes, which are encoded by genes 
located near the NRPS and thus form the final product 
[18, 19].

Fusahexin
Fusahexin (1), originally derived from strain F. gramine-
arum PH-1, represents a cyclic hexapeptide consisting 
of six amino acid residues and containing an uncom-
mon ether bond between the C-δ of proline and the C-β 
of threonine [20, 21]. Phytopathological investigation 
showed that this substance plays a key role in hyphal 

growth, attachment, water–air interface penetration and 
plant infection through regulation of surface hydropho-
bicity of conidia and the cell wall as well as hydrophobin 
rodlet formation in Aspergillus nidulans [22–25].

Knockout and overexpression experiments revealed 
that an NRPS4 cluster in F. graminearum was respon-
sible for the production of compound 1 [22, 26]. This 
cluster contains four genes that respectively encode for 
glucoside hydrolase, NRPS synthetase (gene NRPS4), 
ABC transporter and major facilitator superfamily (MFS) 
transporter (Fig. 1A). The NRPS4 enzyme consists of five 
modules, in which modules 1–4 are respectively respon-
sible for linking D-alanine, L-leucine, D-allo-threonine, 
and L-proline, and module 5 is serially reusable in assem-
bly of D-leucine and L-leucine (Fig.  1B) [20]. However, 
the function of other three enzymes in the NRPS4 cluster 
had not yet been characterized till now.

Fig. 1 Proposal biosynthetic pathway for fusahexin (1). A The NRPS4 gene cluster in F. graminearum PH-1; B The biosynthetic logic of 1 
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Fusaoctaxin
Fusaoctaxins A (2) and B (3), two unusual linear and 
C-terminally reduced octapeptide with D-amino acid-
rich residues, were novel virulence factors during wheat 
infection and were firstly derived from strain F. gramine-
arum PH-1 [27, 28]. The N-terminal residue of com-
pound 2 is γ-aminobutyric acid (GABA) unit, while it is 
replaced by guanidoacetic acid (GAA) in compound 3 
[28, 29].

Two core NRPS genes nrps5 and nrps9 together with 
six adjacent genes located in the fg3_54 cluster responsi-
ble for the biosynthesis of compounds 2 and 3 (Fig. 2A) 
were identified by laser microdissection and microar-
ray approach [29, 30]. The essentiality of the fg3_54 gene 
cluster was unambiguously verified through cluster dele-
tion and individual knockout of several biosynthesis-
associated genes including FG-Δnrps9, and FG-Δnrps5, 
FG-Δfgm4, FG-Δfgm3 and FG-Δfgm1 [28]. The func-
tions of the two key enzymes, NRPS9 and NRPS5, were 
further characterized by overexpression experiments 
[31]. The NRPS9 is a M1(A1-T1) di-domain protein that 
acts as a load module for initiating unit binding, while 

the NRPS5 harbors seven similar extension modules, 
M2(A2a-C2-A2b-T2)-M3(C3-A3-T3-E3)-M4(C4-A4-T4-E4)-
M5(C5-A5-T5-E5)-M6(C6-A6-T6-E6)-M7(C7-A7-T7-E7)-
-M8(C8-A8-T8-R) and collaborates with the NRPS9 to 
biosynthesize octapeptides. These enzymes utilize GABA 
or GAA as a starting unit and extend the sequence with 
additional units including L-Ala, L-allo-Ile, L-Ser, L-Val 
and L-Leu residues (Fig. 2B) [32]. Each residue attached 
to the module containing the E domain (M3–M7) can 
undergo epimerization to acquire a D-configuration 
before transpeptidation. The peptidyl elongation was 
terminated by L-Leu through binding mediated by mod-
ule M8, where the release (R) domain catalyzed a four-
electron reduction to offload the octapeptide from the 
assembly line [29, 33].

Overexpression of genes fgm1, fgm2 and fgm3 
along with their diverse combinations in Pichia pas-
toris GS115 showed these genes are responsible for 
the formation of GAA (Fig.  2C), which is a guanosine 
residue that serves as the initiating unit for the biosyn-
thesis of compound 3. Fgm1, Fgm2 and Fgm3 respec-
tively encode cytochrome P450, metallo-dependent 

Fig. 2 Biosynthetic pathway of fusaoctaxin A (2) and B (3). A The fg3_54 cluster in F. graminearum PH-1; B Model of the assembly line for 2 and 3. C 
Enzymatic biosynthesis for the formation of GAA 



Page 4 of 22Huang et al. Microbial Cell Factories           (2024) 23:93 

amidohydrolase, pyridoxal-5′-phosphate (PLP)-
dependent lyase. Fgm1 oxidizes L-Arg to 4(R)-hydroxy-
L-Arg (4), which selectively enables the activation of 
inert C4 atom by hydroxylation for subsequent C3-C4 
cleavage [34]. Fgm3 catalyzes the cleavage of the  Cβ-Cγ 
bond in 4 to produce 5 and L-Ala [35]. Fgm2 effectively 
hydrolyzes glycociamidine (6) to produce linearized 
GAA. The pathway for GAA formation in F. gramine-
arum differs significantly from the well-known path-
way that utilizes the L-Arg:L-Gly aminidotransferase 
(AGAT) to transfer amino group between L-Arg and L-
Gly residues. Instead, it relies on L-Arg as a precursor 
through a series of chemical reactions including inert 
C−H bond activation, selective C−C bond cleavage, 
cyclization-based alcohol dehydrogenation, and amido-
hydrolysis-associated linearization [36].

Gramillin
Gramillins A (8) and B (9) are two host-specific viru-
lence factors initially isolated from several F. gramine-
arum strains [37]. They possess a fused bicyclic structure 
in which the main peptide ring is cyclized through the 
carboxylic group of glutamic acid and the side chain of 

2-amino adipic acid [38–40]. It was the first occurrence 
of anhydride bond being involved in the cyclization of a 
cyclic peptide [37, 41].

The functions of the NRPS8 gene cluster were deter-
mined through targeted gene disruption [42]. Gene 
GRA1 encodes a multi-modular NRPS synthase that 
contains seven A and C domains [43]. GRA2 encodes a 
transcription factor (TF) and is responsible for the regu-
lation of cyclic peptide production (Fig. 3A) [44, 45]. By 
combining the Stachelhaus model and analyzing the con-
servation of the two adjacent A domains, the probable 
pathway for gramillins biosynthesis was identified. The 
biosynthetic pathway begins with Glu or 2-amino adipic 
acid and sequentially connects to Leu, Ser, HO-glutamine 
(HO-Gln), 2-amino decanoic acid, cysteine B (Cys B), and 
Cys A via other modules (Fig. 3B) [46, 47]. However, the 
functions of the other genes still need to be confirmed 
through additional specific experiments.

Chrysogine
Chrysogine (10) is a natural pigment that was first 
obtained and studied in Penicillium chrysogenum [48]. 
Although this substance does not possess remarkablely 

Fig. 3 The biosynthetic logic for gramillins A (8) and B (9). A The NRPS8 gene cluster in F. graminearum; B proposed biosynthesis of compounds 8 
and 9 
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biological property, its core scaffold, 4(3H)-quina-
zolinone, is the primary functional group in various 
first-line antitumor or sedative agents such as idelalisib, 
raltitrexed, and methaqualone and other marketed drugs 
(e.g. nolatrexed, albaconazole, and halofuginone) for 
treatment of malarial, inflammatory, HIV and diabetic 
diseases [49–52].

In the past decade great progress had been made in 
the biosynthetic investigation of 10 in F. tricinctum 
CGMCC 3.4731, which offers an alternative synthetic 
pathway for constructing the 4(3H)-quinazolinone scaf-
fold [50, 53]. A highly homologous NRPS gene cluster 
named ftchy (Fig.  4A) was identified and confirmed to 
be responsible for the formation of 10 through het-
erologous expression in Aspergillus nidulans and 
in  vitro incubation experiments in E. coli [50, 54, 55]. 
The results also indicated that gene ftchyA encodes 
a fungal two-module NRPS (ftChyA) for the bio-
synthesis of 11, and the genes ftchyC, ftchyD, ftchyE, 
ftchyH, and ftchyM respectively encode a dehydroge-
nase (ftChyC), an amidotransferase (ftChyD), a trip-
eptide hydrolase (ftChyE), a flavin-dependent oxidase 

(ftChyH), and α-ketoglutaratedependent dioxygenase 
(α-KGD; ftChyM) [56, 57]. The enzyme ftChyD cataly-
ses the amidation of 11 to 12 and 13 to 14 by utiliz-
ing inorganic ammonium ions or amides of L-Gln 
and ftChyE transforms 12 to 14 [48]. An unfamiliar 
α-KGD (ftChyM) catalyses the oxidative cleavage of the 
C-N bond for the production of 15 from 12. The oxi-
dase ftChyH only catalyses the dehydrogenation reac-
tion and corrects the additional reduction of ftChyC 
towards 15, ensuring the primary pathway (15 → 16) in 
the rapid construction of the 4(3H)-quinazolinone scaf-
fold. These additional branching pathways depended 
on the nonenzymatic cyclization of ftChyM (17 → 10) 
or promiscuous substrate selectivity (18 → 16 → 10) 
(Fig. 4B).

Beauvericin
Beauvericin (BEA, 19) is a cyclic hexadepsipeptide that 
consists of a repetitive linkage between a D-hydroxy-
isovaleryl (D-Hiv) and an N-methyl-phenylalanyl residue. 
It was firstly obtained from Beauveria bassiana and com-
monly discovered in several pathogenic Fusarium spp. 

Fig. 4 The proposed complex pathways for generating chrysogine (10). A The ftchy gene cluster in F.tricinctum CGMCC 3.4731; B the biosynthetic 
pathway for 10 
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[58, 59]. Bioassay results suggested that this alkaloid dis-
plays a wide range of biological activities including cyto-
toxic, apoptotic, anti-inflammatory, antimicrobial, and 
nematicidal activities [60–66].

A deeper understanding of the compound 19 biosyn-
thesis gene cluster (bea cluster) in F. proliferatum LF061 
was achieved by knocking out the specified genes using 
Agrobacterium AGL-1 mediated transformation (ATMT) 
protocol [67, 68]. A gene of 9413 bp (BEA1) responsible 
for encoding a hexadepsipeptide synthetases (NRPS22) 
was revealed, and the kivr gene encodes a novel NADPH-
dependent 2-ketoisovalerate reductase (KIVR) respon-
sible for the metabolism of pyruvate to D-Hiv was also 
unveiled [69]. Sequence analysis of other genes showed 
that orf1, orf3, orf4, orf5, orf6, and orf10 respectively 
encode putative thioesterase, triacylglycerol lipase, chi-
tinase, zinc-dependent metalloproteinase, furinase, and 
multidrug transporter [70, 71].

The small two-gene cluster for BEA biosynthesis 
in strain LF061 consists of an NRPS gene and a KIVR-
encoding gene [72]. D-Hiv is recognized by the  A1 
domain in module 1 of NRPS22 and attached to the  T1 
domain as a thioester. L-Phe is specifically activated by 
the  A2 domain and is loaded to the twin  T2 domain in 
module 2. An integrated N-methyltransferase domain 
is also present in NRPS22, which is responsible for the 
methylation of the L-Phe residue (Fig.  5) [67, 71]. This 
serves as a classic example of acting through the core 

NRPS synthase and provides valuable insights for subse-
quent studies [60].

Sansalvamide A
Sansalvamide A (20) is a cyclic pentadepsipeptide com-
posed of an α-hydroxyisocaproic acid (α-HICA) unit and 
four protein amino acids (L-Val, L-Leu, L-Phe, L-Leu). 
It was originally discovered in the crude extract of an 
unknown Fusarium strain, which was collected from the 
surface of the seagrass Halodule wrightii [73–75]. Bio-
assay tests indicated that compound 20 is an effective 
cytotoxin in the colon cancer cell lines COLO 205 and 
HCT116 and the melanoma cell line SK-MEL-2 [75, 76].

The BGC NRPS30, which is responsible for the forma-
tion of compound 20 in F. solani FGSC 9596, was char-
acterized through a gene knockout experiment using 
the ATMT approach [77, 78]. This cluster contains at 
least four genes that encode NRPS30 synthetase (gene 
NRPS30), oxidoreductase, short-chain dehydrogenase/
reductase, and MFS transporter (Fig.  6A). Among the 
five modules of the NRPS30 enzyme, only the first amino 
acid of the  A3 domain is glycine, while the remaining four 
are aspartic acid [46, 79]. This suggests that α-HICA is 
loaded as the third substituent during the biosynthesis of 
compound 20, as the lack of an acidic residue in the first 
position is only observed for A domain with non-amino 
acid substrates [80]. NRPS30 utilizes L-Phe as a starting 

Fig. 5 The scheme of BEA (19) biosynthesis and the bea cluster in F. proliferatum LF061
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unit and extends the sequence with additional units, 
including L-Leu, α-HICA, L-Val, and L-Leu (Fig. 6B).

Apicidin F
Apicidin F (APF, 21) is a cyclic tetrapeptide produced by 
F. fujikuroi [81]. Structurally, APF consists of N-meth-
oxy-L-tryptophan (25), L-2-aminooctanedioic acid (26), 
D-pipecolic acid (D-pip; 23) and L-phenylalanine [82, 
83]. Biological evaluation showed that this compound 
has the ability to inhibit histone deacetylase and is a ther-
apeutic agent for antimalarial treatment against Plasmo-
dium falciparum [84, 85].

A highly homologous NRPS gene cluster named APF 
was uncovered through homologous comparison and 
genomic sequence analysis (Fig.  7A) [86, 87]. Further 

exploration of the APF cluster and targeted gene replace-
ment of APF1 revealed that Apf1, a key NRPS enzyme, 
is responsible for the biosynthesis of compound 21 [88–
90]. The deletion of other functional genes suggested that 
the APF gene cluster consists with APF2, APF3, APF4, 
APF5, APF6, APF7, AFP8, APF9, APF11, and APF12, 
which respectively encode a transcription factor (Apf2), a 
putative Δ1-pyrroline-5-carboxylic acid reductase (Apf3), 
an aminotransferase (Apf4), a fatty acid synthase (Apf5), 
an O-methyltransferase (Apf6), two cytochrome P450 
oxidases (Apf7/Apf8), a FAD-dependent monooxygenase 
(Apf9), a MFS transporter (Apf11), and a cytochrome 
b5-like reductase (Apf12).

The comparison of metabolite profile of the knockout 
mutants revealed that only six genes (APF1, APF3, APF4, 

Fig. 6 The proposed biosynthetic pathway for sansalvamide A (20). A The NRPS30 cluster in Fusarium solani FGSC 9596; B the compound 20 
biosynthesis logic
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APF5, APF6, APF7/AFP8/APF9) directly participate 
in the biosynthesis of APF [85]. Apf3 reduces L-lysine 
to L-piperidinic acid (22), which is subsequently con-
verted to 23 by Apf1. L-tryptophan is initially oxidized 
to N-hydroxyl-L-tryptophan (24) by one of the two P450 
enzymes (Apf7/Apf8), followed by conversion to 25 by 
Apf6. Apf5 is responsible for the condensation of three 
malonyl-CoA units and an acetyl-CoA into the octanoic 
acid backbone, which is then oxidized to form 28 by a 
P450 oxygenase. Apf4 catalyzes the exchange of the keto 
group of 28 with the amino group to form 27. Apf7/Apf9 
may be involved in the conversion of 27 to 26. Ultimately, 
APF is generated by combining the four precursors in the 
presence of Apf1 (Fig. 7B). This represents a unique case 
of NRPS synthase function, where the NRPS enzyme is 
not fully functional until the final step.

Fusarochromene (NRPS‑like)
Fusarochromene (29) firstly isolated from F. sacchari has 
structural similarities to fusarochromanone (30), which 
is a lead compound for cancer treatment [91, 92]. Com-
pound 30 demonstrates a wide range of biological activi-
ties, such as angiogenesis inhibition, prevention of cell 
reproduction, and induction of apoptosis in numerous 
cancer cells, especially COS7 and HEK293 cells [93, 94].

Retro-biosynthetic analysis and 13C-labelled trypto-
phan experiments suggested that compounds 29 and 
30 were actually obtained through oxidative cleavage of 
tryptophan [91]. The fsc gene cluster was identified by 
searching the genome of F. equiseti for potential tryp-
tophan dioxygenase (TDO) and dimethylallyl diphos-
phate transferase (DMAT) genes. Through homologous 
comparison, the functions of these genes showed that 
fscA, fscB, fscC, fscD, fscE, fscF, fscG, fscH, fscI, and fscJ 
respectively encode two oxidoreductases (FscA, FscI), a 
TF (FscB), an NRPS-like enzyme (FscC), a dioxygenase 
(FscD), two P450 enzymes (FscE, FscF), a DMAT enzyme 
(FscG), a kynurenine formamidase-like hydrolase (FscH), 
and an aromatic peroxidase/chloroperoxidase (FscJ) 
(Fig. 8A) [95, 96].

A biosynthetic pathway for 29 and 30 is proposed 
in Fig. 8B. L-tryptophan is converted to D-tryptophan 
(36) in the presence of FscC, and subsequently hydrox-
ylated by FscE to yield 6-hydroxytryptophan (35) [97]. 
The pyrrole ring undergoes cleavaged by FscD and is 
finally converted to 4-hydroxykyrunenine (34). FscA 
reduces the carboxyl group to primary alcohol (33) 
and FscG, a DMATS-type prenyltransferase, performs 
prenylation to 32 with the formation of a chromene 
ring. 32 is catalyzed by FscJ, leading to the formation 

Fig. 7 Proposed biosynthetic pathway of APF (21) A The APF gene cluster in F. fujikuroi IMI58289; B The biosynthesis logic of APF (21)
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of desacetyl-fusarochromene (31). Epoxidation (FscF) 
and rearrangement reactions of chromene double 
bonds convert compound 31 to 30. Although specific 
acetyltransferases were not found near the fsc BGC, 
several predicted enzymes containing the N-acetyl-
transferase superfamily domain were discovered in the 
genome of F. equiseti. These predicted enzymes may 
have the potential to convert compound 31 to 29 [98].

Hybrid PKS‑NRPS products
Polyketide synthase (PKS) and NRPS hybrid systems 
typically rely on intricate protein–protein interac-
tions to enable the seamless transfer of intermediates 

between these multimodular enzymes [99–102]. The 
PKS in Fusarium strain includes the β-keto syn-
thase (KS) domain, the acyltransferase (AT) domain, 
the β-keto reductase (KR) domain, dehydrogenase 
(DH) domain, methyltransferase (MT) domain, enoyl 
reductase (ER) domain and acyl carrier protein (ACP) 
domain.

Fusaristatin A
Fusaristatin A (37) is a lipopeptide composed of three 
amino acid residues (glutamine, dehydroalanine, and 
β-aminoisobutyric acid) along with their attached polyke-
tide chains. It was originally separated from Fusarium sp. 

Fig. 8 The putative biosynthetic pathway for fusarochromene (29) and fusarochromanone (30). A The fsc cluster identified in the genome of F. 
equiseti; B proposed assembly path to compounds 29 and 30 
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YG-45 and lately detected in Phomopsis longicolla S1B4 
and other Fusarium strains including F. graminearum, 
F. avenaceuma and Fusarium sp. FN080326 [103–107]. 
Cytotoxic assay indicated that compound 37 displays 
growth-inhibitory activity against lung cancer cells LU 65 
with an  IC50 value of 23 μM [103, 108].

As shown in Fig.  9A, the FGSG cluster in F. gramine-
arum consists of at least five genes: PKS6, NRPS7, FGSG-
A, FGSG-B, and FGSG-C. Deletion of NRPS7/PKS6 
resulted in the absence of 37, confirming that PKS6 and 
NRPS7 are the two key enzymes jointly responsible for 
its production. Additionally, FGSG-C is predicted to 
encode a cytochrome P450 monooxygenase, FGSG-A 
encodes an aminotransferase, and FGSG-B encodes a 
putative protein containing a stress response A/B bar-
rel domain [108]. The biosynthetic pathway of product 
37 is mainly accomplished by PKS6 and NRPS7. As the 
FGSG cluster lacks acyltransferases, the polyketide syn-
thesized by PKS6 is directly transferred to NRPS7. Then 
module 1–3 of NRPS7 sequentially adds Ala, Gln, and 
β-aminoisobutyric acid, and is finally released through 

cyclization (Fig.  9B). Although the β-aminoisobutyric 
acid units are most likely not freely available to the 
NRPS7, the FGSG cluster harbors cytochrome P450 and 
aminotransferases, which could potentially obtain it from 
thymidine.

W493 B
W493 B (38) is a lipopeptide consisting of six amino acid 
residues [D-allo-Thr, L-Ala, D-Ala, L-Gln, D-Tyr, and 
L-valine/isoleucine (Val/Ile)], which are linked to a pol-
yketide chain of 3-hydroxy-4-methyltetradecanoic acid. 
It was initially isolated from Fusarium sp. and displayed 
inhibitory effect on the growth of Venturia inaequalis, 
Monilinia mali, and Cochliobolus miyabeanus [109, 110].

The FPSE cluster, consisting of at least four genes 
(PKS40, NRPS32, FPSE-A, FPSE-B), was identified 
in F. pseudograminearum through the analysis of the 
conserved genes [108]. These genes were respectively 
predicted to encode a PKS enzyme (PKS40), a NRPS 
enzyme (NRPS32), an acyl-CoA ligase and a thioester-
ase (Fig.  10A). The biosynthetic pathway of W493 B 

Fig. 9 Proposed biosynthetic pathway of fusaristatin A (37). A The FGSG gene cluster in F. graminearum; B The PKS6 and NRPS7 collaborative model 
of the biosynthetic logic of 37 
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is primarily catalyzed by PKS40 and NRPS32, which 
respectively play important roles in the formation of 
4-methyltridecanoic acid thioester and a hexapeptide 
(Fig.  10B). The  T1 domain of NRPS32 is responsible 
for accepting threonine, which is adenylated by the 
 A1 domain and then combined with D-allo-threonine 
formed by the  E1 domain. Five consecutive modules 
bind Ala, Ala, Gln, Tyr, and Val/Ile to form the final 
product and release it through the cyclization domain 
[108]. The biosynthetic pathways of compounds 37 and 
38 provide a comprehensive overview of lipopeptide 
biosynthesis.

Fusaric acid
Fusaric acid (FA, 39), formed by adding a butyl group 
to the 5-position C of 2-picolinic acid, is a mycotoxin 
produced by numerous Fusarium species, including F. 

oxysporum, F. heterosporum, F. verticillioides, and F. fuji-
kuroi [111, 112]. FA is a broad-spectrum plant toxin with 
high phytotoxicity, and exhibits potent acanthamoebi-
cidal activity and inhibits HIV-1 tat-induced transactiva-
tion and apoptosis [113–117].

The FUB cluster in F. fujikuroi was identified through 
targeted gene deletion, complementation, and overex-
pression experiments (Fig. 11A) [118–120]. These experi-
ments suggest that a total of 12 genes are responsible 
for FA biosynthesis [121]. As illustrated in Fig. 11A, the 
functions of these genes showed that FUB1-12 respec-
tively encode a PKS enzyme (FUB1), a putative protein 
(FUB2), an aspartate kinase (FUB3), a serine hydrolase 
(FUB4), a homoserine O-acetyltransferase (FUB5), a 
NAD(P)-dependent dehydrogenase (FUB6), an O-acyl-
homoserine (thiol) lyase (FUB7), an NRPS-like enzyme 
(FUB8), a flavin mononucleotide (FMN)-dependent 

Fig. 10 The proposed biosynthetic pathway of W493 B (38). A The FPSE gene cluster in F. pseudograminearum; B the PKS40 and NRPS32 
collaborative model of the biosynthetic logic of 38 
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dehydrogenase (FUB9), two fungal-type Zn(II)2Cys6 
transcription factors (FUB10 and FUB12), and a MFS 
transporter (FUB11) [122, 123].

The FA biosynthetic pathway has been proposed in 
Fig. 11B. With the combined action of FUB3 and FUB5, 
L-aspartate is converted to O-acetyl-homoserine (42). 
FUB1 generates the triketide trans-2-hexenal (41), which 
is potentially released by FUB4 and linked to the NRPS-
bound amino acid precursor by Fub6. After further modi-
fication by FUB7, the NRPS-bound amino acid precursor 
is released by FUB8 to form 40, which is finally oxidized 
by FUB9 to form FA.

Hybrid PKS/NRPS products
The compounds generated by PKS/NRPS hybrid mega-
enzymes are especially intriguing due to their structural 
complexity [124, 125]. This hybrid megaenzymes con-
sists of an NRPS module and a PKS module together.The 
PKS module synthesizes the linear polyketide backbone, 
which is released after ligating with amino acids through 
the action of the NRPS module [126–129]. It is then 

further converted to more complex metabolites by oxi-
dase or other enzymes.

Fusarin C
Fusarin C (43), a representative of substituted 2-pyr-
rolidinone metabolites, was firstly isolated in F. monili-
forme and is widely present in Fusarium spp., including 
F. graminearum, F. oxysporum, F. verticillioides and F. 
fujikuroi [130–135]. Biological assays suggested that 
compound 43 acts as an estrogenic agonist, which stimu-
lates the growth of the breast cancer cell line MCF-7 in 
concentrations ranging from 0.1 to 20  μM and inhibits 
its growth in concentrations exceeding 50 μM [136, 137]. 
Interestingly, 43 was found to induce esophageal and 
forestomach carcinoma in mouse and rat models, while 
this effect was not observed by Gelderblom and co-work-
ers [138–141].

Gene knockout experiment showed that the fus clus-
ter in F. fujikuroi consists of nine coregulated genes, of 
which fus2-fus9 are adjacent to gene fus1 (the hybrid 
PKS/NRPS; Fus1) [142–144]. Fus2 is related to a puta-
tive α/β hydrolase, which is probably involved in the 

Fig. 11 The proposed biosynthetic pathway of fusaric acid (39). A The FUB gene cluster in F. fujikuroi IMI58289; B the fusaric acid biosynthesis logic



Page 13 of 22Huang et al. Microbial Cell Factories           (2024) 23:93  

2-pyrrolidone ring formation. Deduced proteins show 
similarity to a subunit of elongation factor (Fus3), a 
peptidase A1 (Fus4), a serine hydrolase family (FSH; 
Fus5), a major facilitator superfamily transporter (MFS; 
Fus6), an aldehyde dehydrogenase (Fus7), a cytochrome 
P450 (Fus8), a characterized methyltransferase (Fus9) 
(Fig. 12A) [135].

The intermediates of compound 43 were only identi-
fied in the Δfus2, Δfus8, Δfus9, and Δfus2-9 mutants, 
suggesting that the genes fus3, fus4, fus5, fus6, and fus7 
are largely uninvolved in the production of fusarin C. The 
proposed fusarin C biosynthetic pathway is as follows: 
Fus1 is responsible for the condensation of one acetyl-
CoA with six malonyl-CoA and homoserine to form pre-
fusarin (47). Fus8 then oxidizes 47 to form 46, which is 
an essential reaction until Fus2 catalyzes the formation 
of 20-hydroxy-prefusarin (45). 45 is further oxidized to 
produce 44 by Fus8. The final step involves the methyla-
tion of the hydroxyl group of C-21 by Fus9, resulting in 
the production of fusarin C (Fig. 12B). The co-cultivation 
of different mutants and intermediates analysis further 

confirms that Fus1, Fus2, Fus8, and Fus9 are sufficient for 
the biosynthesis (see Additional file 1).

Oxysporidinone
Oxysporidinone (48), a novel antifungal product with 
4-hydroxy-2-pyridone backbone and a unique hydroxy-
substituted cyclohexane ring, was firstly isolated from F. 
oxysporum [145, 146]. The oxysporidinone biosynthesis 
gene cluster (osd cluster) was identified in F. oxysporum 
ACCC 36465 by regulator activation and gene knockout 
studies (Fig.  13A) [147]. The osd cluster, containing 21 
putative encoding genes (osdA-P and orf1-5), includes 
a core PKS/NRPS hybrid enzyme (OsdE), a trans-enoyl 
reductase (OsdF), two short-chain dehydrogenases/
reductases (SDR; OsdB and H), four methyltransferases 
(MT; OsdA, C, D and K), four P450 monooxygenases 
(OsdG, I, J and M), a fungus-specific transcription fac-
tor (OsdL), a flavin oxidoreductase/nicotinamide adenine 
dinucleotide (NADH) oxidase (OsdN), a flavin adenine 
dinucleotide (FAD)-conjugated oxidoreductase (OsdO), 
a cycloheximide lyase (OsdP), an ankyrin (ORF3), a 

Fig. 12 Proposed biosynthetic pathway of fusarin C (43). A The fus gene cluster in F. fujikuroi IMI58289; B the biosynthesis logic of 43 
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f-box protein (ORF2) and three unknown proteins 
(ORF1,ORF4,ORF5).

The biosynthetic pathway of 48 was proposed through 
heterologous expression and in  vitro enzyme assays 
[147–149]. In the presence of PKS/NRPS enzyme (OsdE) 
with OsdF, six malonyls and four SAMs combine to 
form the backbone structure of tetrameric acid (52). 
Compound 52 undergoes a classic ring-expansion reac-
tion catalyzed by OsdG to produce 2-pyridone (51). The 
formation from 51 to 50 is catalyzed by OsdH-J. OsdK 
is responsible for the N-methylation process, which con-
verts 50 to form 49. Compound 49 is then converted to 
53 by OsdM, a TenA-like cytochrome P450 enzyme that 
oxidizes the phenol ring and forms a [6–5–6] ring system. 
OsdN carries out two consecutive reduction steps to pro-
duce 54. Finally, OsdM adds another hydroxyl group to 
54, resulting in the formation of compound 48 (Fig. 13B). 
Two enzymes (OsdM, OsdN) repeatedly act on the phe-
nol moiety in the substrate. This pathway enhances the 

current understanding of the mechanism of enzymatic 
phenol dearomatization.

Fusaridione A
Fusaridione A (55) is an unstable tyrosine-derived 
2,4-pyrrolidinedione produced by F. heterosporum 
[150–153]. Genomic analysis has revealed a silence gene, 
fsdS, which consists of a hybrid PKS and NRPS mod-
ule. The putative biosynthesis pathway of fusaridione A 
was unveiled by fsdS gene knockout experiments [154]. 
The polyketide chain is first synthesized by the addition 
of seven acetyl-CoA units. Each extension requires the 
involvement of the KS, AT, KR, DH and ACP domain. 
Then, the tyrosine is activated and attached to the pol-
yketide chain in the presence of the C, A and T domains. 
Compound 55 is finally released through the Dieckmann 
cyclase R* domain [16, 155]. The unstable pyrrolidin-
edione ring is opened by a reverse Dieckmann reaction, 
resulting in the formation of product 56 (Fig. 14) [156]. 

Fig. 13 Proposed biosynthetic pathway of oxysporidinone (48). A The osd gene cluster in F. oxysporum ACCC 36465; B the scheme of the assembly 
line for 48 
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Further exploration is required to elucidate the genes that 
are closely related to gene fsdS.

Equisetin
Equisetin (58) is an HIV-I integrase inhibitor isolated 
from strain F. equiseti NRRL 5537 [157, 158]. Compound 
58 and its N-desmethyl derivative trichosetin (57) rep-
resent tetramic acids, which are also widely present in 
several Fusarium species, including F. heterosporum, F. 
fujikuroi, and Fusarium sp. FN080326 [150, 159]. These 
compounds exhibit a broad spectrum of biological activi-
ties, including antibacterial, antiviral, antifungal, phyto-
toxic, and cytotoxic effects [158–163]. Gene deletion and 
overexpression experiments revealed that the trichosetin 
biosynthesis gene cluster in F. fujikuroi did not contain 

N-methyltransferase (EqxD), resulting in the isolation of 
the terminal product 57 [151, 162]. The comparison of 
gene functions for the biosynthesis of equisetin and its 
derivatives in F. heterosporum, F. fujikuroi and Fusarium 
sp. FN080326 is presented in Fig. 15A and Table 1.

The proposed biosynthetic scheme for compound 58 
and its derivatives involves the utilization of an acetyl-
CoA, seven malonyl-CoA, two S-adenosyl-L-methionine 
(SAM) and L-serine to form the backbone [164]. The 
PKS module of EqxS catalyzes with the enoyl reductase 
(EqxC) to produce a polyketide unit followed by conju-
gation with a L-serine (in red) through the condensation 
of the NRPS module. The Dieckmann cyclase domain 

Fig. 14 The fsd gene cluster in F. heterosporum ATCC 74349 and proposed biosynthetic logic of fusaridione A (55)
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Fig. 15 Proposed biosynthesis logic for equisetin (58) and fusarisetin A (59). A The biosynthetic gene cluster related to equisetin biosynthesis in F. 
heterosporum, F. fujikuroi and Fusarium sp. FN080326; B the proposed biosynthetic pathway of 58 to 59 in Fusarium sp. FN080326
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activity (R*) leads to the release of 57. Compound 57 is 
then N-methylated by EqxD to form 58, which was fur-
ther converted to fusarisetin A (59) in Fusarium sp. 
FN080326 (Fig. 15B).

Conclusions
Fusarium is one of excellent producers of NRPS prod-
ucts with a wide range of biological properties. To 
the best of our knowledge, over 800 SMs produced by 
Fusarium strains have been recorded in the Diction-
ary of Natural Products (DNP) database and nearly 300 
chemicals related to NRPS pathway [165]. This review 
highlights only fifteen biosynthetic pathways that linked 
NRPS products with their corresponding BGCs identi-
fied in Fusarium. Therefore, most of these NRPS com-
pounds linked to their BGCs need to be investigated. 
More efforts should be made to apply genetic engineer-
ing approaches to elucidate the biosynthetic pathways of 
other Fusarium NRPS-encoding compounds and to char-
acterize their key genes and functions.
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