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Abstract

Insufficient availability of molecular chaperones is observed as a major bottleneck for proper protein folding in
recombinant protein production. Therefore, co-production of selected sets of cell chaperones along with foreign
polypeptides is a common approach to increase the yield of properly folded, recombinant proteins in bacterial cell
factories. However, unbalanced amounts of folding modulators handling folding-reluctant protein species might
instead trigger undesired proteolytic activities, detrimental regarding recombinant protein stability, quality and
yield. This minireview summarizes the most recent observations of chaperone-linked negative side effects, mostly
focusing on DnaK and GroEL sets, when using these proteins as folding assistant agents. These events are dis-
cussed in the context of the complexity of the cell quality network and the consequent intricacy of the physiologi-
cal responses triggered by protein misfolding.

Review
Poor product quality is a common event in the biologi-
cal synthesis of target proteins and a major cause for
recombinant enzymes and pharmaceuticals to be
excluded from the market [1]. Recombinant protein
misfolding and the triggering of the consequent cell
responses are both general events among microbial cell
factories [2]. Although what protein quality means
might be highly controversial [3-5], it is in general
assumed that the soluble protein version, despite the
potential occurrence of soluble aggregates [4,6-10] and
the presence of functional protein species in protein
aggregates [4,11-15], is the most desirable form of the
final product of a protein production process. Tradition-
ally, gaining solubility has been approached by tuning-
down the production rate (e.g. by decreasing tempera-
ture), reducing recombinant gene dosage or the strength
of the promoter, or supplying additional amounts of
host chaperones, as they are seen as limiting during the
overproduction of misfolding-prone protein species
[16,17].
Under the high substrate load context of recombinant

cells, chaperones, main players in the quality control
system, might be over-titrated and therefore their

protein targets excluded from folding pathways leading
to the native conformation, accumulating as refractile
particles called inclusion bodies (IBs) [13,18]. Therefore,
several individual chaperones or chaperone sets have
been selected for overproduction along with the target
recombinant protein. In Escherichia coli (E. coli), most
of these approaches have involved the two main cytoso-
lic chaperones, namely DnaK and GroEL, as well as
some of their co-chaperones [6,19]. However, the fine
examination of physiological responses to protein pro-
duction in bacteria and other microorganisms
[2,10,20-22], has revealed that chaperone co-production,
as a quality-addressed strategy, might eventually show
undesirable side effects regarding protein yield and qual-
ity (Table 1). Here we summarize the main indications
pointing out the chaperone side-effects, mainly focusing
on DnaK, GroEL and their cooperating folding
modulators.

DnaK
DnaK, homolog of the eukaryotic Hsp70, is the major
cytosolic chaperone in E. coli, and plays an important
role in the control of conformational quality. In fact,
DnaK is involved in different activities such as preven-
tion of aggregation, folding and refolding of misfolded
species and protein disaggregation [23-27]. For this rea-
son, DnaK has often been used in co-production
approaches, either together with its co-chaperone DnaJ
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[20,28] or both with DnaJ and their nucleotide exchange
factor GrpE [6,29-36] to minimize aggregation and to
enhance solubility of the recombinant protein [37-40].
Co-chaperones have been observed as necessary because
over-expression of dnaK gene alone is toxic for the cell,
leading to growth inhibition and abnormal septation
[41]. Although this approach has proven to be useful in
many cases [34,42], this set of folding modulators has
not been consistently successful to enhance solubility of
target recombinant proteins [43-45] and solubility has
been often enhanced at expenses of protein yield
[29,32,34]. This fact has been attributed both to cell
growth inhibition [31,35,46] and to the proteolysis of
the recombinant protein [20,31,35]. Besides its men-
tioned activities, recent publications describe that DnaK
is also involved in the degradation of aggregation-prone
but functional (or suitable to be activated) polypeptides
by targeting them to proteases such as Lon and ClpP
[47-49]. In fact, absence of a functional DnaK results in
increased proteolytic resistance of a target protein, the
half-life of which is increased up to three-fold in these
conditions [21]. Hence, this dual role of the chaperone,
which acts both as a folding modulator and as proteoly-
tic enhancer, contributes to explain the divergence of
results obtained upon its co-production. Although
recombinant protein solubility can be improved by high
levels of DnaK and its co-chaperones, protein quality
might be compromised since an important part of this
effect is obtained by increasing soluble aggregate species
[9,21] with variable specific activity. In addition, yield of
recombinant protein decreases due to the proteolysis sti-
mulation carried out by DnaK [22]. The occurrence of
such a DnaK-mediated side effect proves that strategies
developed to optimize recombinant protein production
processes have to be redefined, considering that solubi-
lity and conformational quality are independently
controlled.

Moreover, because DnaK is also a negative regulator
of the heat shock response [50], an enhanced concentra-
tion of DnaK above physiological levels can result in
down-regulation of other heat shock proteins. Actually,
decreased levels of GroEL chaperone have been reported
in DnaK-overproducing cells [28,51]. Thus, taking into
account that selection of the appropriate set of folding
modulators is still a trial and error process, this scenario
may then result in a more pronounced folding impair-
ment for proteins that not only require interaction with
DnaK but also with the GroEL system.

GroEL(S)
The GroELS heat shock chaperone team is of vital
importance for E. coli with GroEL being an essential
protein for growth at all temperatures [52]. Co-produc-
tion of this chaperone team has been widely applied to
improve the solubility of proteins which tend to form
IBs, in many cases with remarkable success
[37,38,53,54]. However, also failures of GroELS to
improve solubility have been reported, mostly the
impact of GroELS was neutral, namely without increas-
ing the amount of properly folded protein [55,56] or
decreasing the amount of IB-deposited target protein
[57]. In particular, failures of GroELS co-production for
improved target protein solubility have been observed
when aiming for production of large proteins [55]. This
is a comprehensible finding as large proteins can not
enter the cavity formed by the GroEL chaperone [58]
thus leading to a preference of GroEL for substrate pro-
teins in the molecular mass range of 10/20 - 55/60 kDa
[59-61].
In addition, past studies also indicated that GroEL is

involved in promoting proteolytic degradation through
target protein binding [62-65]. In fact, the natural role
of GroEL not only includes chaperoning functions but
also encompasses a vital role in fostering proteolytic

Table 1 Main undesired side effects observed during chaperone co-production on the quality and yield of
recombinant proteins produced in E. coli, as exemplified by representative studies

Chaperone/Chaperone set Recombinant protein Effects on protein production References

DnaKJE Horseradish peroxidase Growth inhibition [31]

DnaKJ Aggregation-prone GFP Proteolyis, reduced yield and lower conformational
quality

[20,21]

DnaKJE and/or Trigger Factor Guinea pig liver transglutaminase Reduced specific activity [74]

DnaKJE, ClpB and GroELS Basic fibroblast growth factor Reduced yield [22]

DnaKJE-GroELS-ClpB and Trigger
Factor

Human protein kinase catalytic
domains

Increased soluble aggregate formation [43]

GroELS Basic fibroblast growth factor Proteolysis, reduced yield [22]

Trigger Factor and GroELS N-acyl-D-amino acid amidohydrolases Reduced specific activity [75]

GroELS Fab Antibody Fragment Reduced yield [46]

GroELS scFv antibody fragment Reduced solubility [76]

GroELS Cyclodextrin glycosyltransferase Reduced specific activity [32]

Martínez-Alonso et al. Microbial Cell Factories 2010, 9:64
http://www.microbialcellfactories.com/content/9/1/64

Page 2 of 6



degradation. For example, GroEL plays a central role in
promoting proteolytic degradation of a regulatory pro-
tein to reduce potentially detrimental effects of non-
tuned gene expression [66]. In addition, GroELS is also
involved in “protein trash removal”, namely fostering
proteolytic degradation of endogenous protein aggre-
gates generated during heat shock [67].
A detailed study on the involvement of GroELS in tar-

get protein degradation was carried out during tempera-
ture-induced production of basic fibroblast growth
factor [22]. Temperature-induced production leads to
the formation of soluble growth factor and growth fac-
tor deposited in the form of IBs [68]. Protein purified
from the soluble cell fraction of temperature-induced
cells is biologically active as determined by mitogenic
activity measurements [69]. Co-production of GroELS
does not prevent IB formation but leads to complete IB

dissolution followed by proteolytic degradation of basic
fibroblast growth factor [22]. In this case, IB dissolution
followed by proteolytic degradation of the target protein
was more efficient with GroELS than with the DnaKJ/
GrpE system.

Solving chaperone-promoted proteolysis
Despite the mentioned reports indicating DnaK-induced
proteolysis upon recombinant protein production, it is
difficult to find in the literature any attempt to solve
this problem. Even in E. coli genetic backgrounds
knockout for the main cytosolic protease gene (Lon),
proteolytic activity is still a hurdle to recombinant pro-
tein production probably by induction of other proteoly-
tic systems [70]. However, in a recent study [71] we
addressed this issue by re-hosting DnaK and its co-cha-
perone DnaJ into a system lacking orthologs of the

Figure 1 Aimed to increase recombinant quality and solubility, co-production of individual chaperones or chaperone sets has been a
common strategy since the role of these proteins in quality control has been solved, mainly involving protein holding to prevent
aggregation, folding or refolding activities and disaggregation from inclusion bodies. Many studies report on the positive effects of
chaperone gene co-expression, regarding solubility, yield, secretion ability and specific activity (green box). However, it is also true that this
strategy has been largely controversial and the eventual success seen as highly product- and/or process-dependent. Also, more recent studies
reveal that an excess of certain chaperones has negative effects on protein yield and other parameters related to protein quality (red box),
mainly due to the role of chaperones in promoting proteolysis of folding reluctant proteins. This promotion of proteolysis seems to be
mechanistically linked to the disaggregation activities ruled by DnaK [21,77].
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bacterial proteases responsible for the protein degrada-
tion mediated by DnaK. The goal of such approach was
to uncouple the valuable folding activity of DnaK from
its other activities linked to proteolysis. Because DnaK
has been highly conserved in evolution (DnaK homologs
can be found in all kingdoms of life) the reasoning was
that its folding activity could be conserved in other
organisms, but not so the associated proteolytic activity
because it is dependent on the bacterial proteases Lon
and ClpP. Insect cells were chosen as the host for the E.
coli DnaKJ chaperone pair, which was introduced in the
production system upon infection of the cells with
recombinant baculovirus vectors carrying the corre-
sponding genes. In this eukaryotic system, chaperone
gene co-expression resulted in enhanced yield and biolo-
gical activity of a reporter protein, which also showed
increased stability in presence of the bacterial chaper-
ones, indicative of absence of DnaK-mediated proteoly-
sis. This was in marked contrast to what had previously
been described in E. coli for the production of the same
protein and chaperone combination [21]. The same
study also showed positive effects of the set of bacterial
folding modulators on the production of three other
recombinant proteins in the insect cell-baculovirus sys-
tem, namely VP1 and VP2 from the capsid of Foot-and-
Mouth Disease Virus, and human a-galactosidase. A
later, related study [72] extended this approach to an in
vivo model by using the recombinant baculoviruses
encoding the bacterial chaperones to infect insect larvae,
a system of use as a biofactory but where yields are
usually reduced due to protein aggregation. In this sys-
tem, absence of DnaK-induced proteolysis was also evi-
dent, and co-production of the bacterial chaperones
boosted protein solubility by almost 100%. Taken
together, these studies not only show how the effective
discrimination of activities has been a suitable strategy
to exclude the undesirable effects of the DnaKJ chaper-
one pair, but also prove that bacterial folding modula-
tors are functional in other recombinant systems.

Conclusions
Despite their proven success as folding modulators in
protein production processes, bacterial chaperones
(mainly DnaK and GroEL and associated cofactors) also
show undesired side effects related to their activities in
promoting proteolysis of target proteins (Figure 1). This
fact might account, at least partially, for the inconsistent
results reported upon the use of these chaperones in
years of exploitation of microbial cell factories for protein
production. Because of the lack of coincidence and the
divergent control of protein solubility and quality
observed in bacteria [3,21], chaperone co-production
might have enhanced solubility as a consequence of an
undesired reduction of recombinant protein yield.

Probably, most failures of chaperone gene co-expression
on target protein solubility have not been reported in the
scientific literature (including our own observations) and,
in some cases, a supposed positive effect of chaperone
co-production might just reflect the presence of soluble
aggregates but not of functional protein [43]. Moreover,
over-production of chaperones as over-production of any
other protein can contribute to the metabolic burden
thereby leading to growth rate reduction as well as
decreased final biomass yields [73]. As a first example,
re-hosting of bacterial chaperones has proven to be a way
to disconnect folding assistance and proteolysis. How-
ever, further studies are still needed to explore other
alternative ways to systematically minimize chaperone
side effects in protein production, keeping their desired
activities on folding-reluctant recombinant proteins.
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