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Abstract
Background: Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation into fuel
ethanol has oftentimes relied on insertion of a heterologous pathway that consists of xylose
reductase (XR) and xylitol dehydrogenase (XDH) and brings about isomerization of xylose into
xylulose via xylitol. Incomplete recycling of redox cosubstrates in the catalytic steps of the
NADPH-preferring XR and the NAD+-dependent XDH results in formation of xylitol by-product
and hence in lowering of the overall yield of ethanol on xylose. Structure-guided site-directed
mutagenesis was previously employed to change the coenzyme preference of Candida tenuis XR
about 170-fold from NADPH in the wild-type to NADH in a Lys274→Arg Asn276→Asp double
mutant which in spite of the structural modifications introduced had retained the original catalytic
efficiency for reduction of xylose by NADH. This work was carried out to assess physiological
consequences in xylose-fermenting S. cerevisiae resulting from a well defined alteration of XR
cosubstrate specificity.

Results: An isogenic pair of yeast strains was derived from S. cerevisiae Cen.PK 113-7D through
chromosomal integration of a three-gene cassette that carried a single copy for C. tenuis XR in wild-
type or double mutant form, XDH from Galactocandida mastotermitis, and the endogenous xylulose
kinase (XK). Overexpression of each gene was under control of the constitutive TDH3 promoter.
Measurement of intracellular levels of XR, XDH, and XK activities confirmed the expected
phenotypes. The strain harboring the XR double mutant showed 42% enhanced ethanol yield (0.34
g/g) compared to the reference strain harboring wild-type XR during anaerobic bioreactor
conversions of xylose (20 g/L). Likewise, the yields of xylitol (0.19 g/g) and glycerol (0.02 g/g) were
decreased 52% and 57% respectively in the XR mutant strain. The xylose uptake rate per gram of
cell dry weight was identical (0.07 ± 0.02 h-1) in both strains.

Conclusion: Integration of enzyme and strain engineering to enhance utilization of NADH in the
XR-catalyzed conversion of xylose results in notably improved fermentation capabilities of
recombinant S. cerevisiae.
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Background
Rising oil prices and a growing awareness of a possible cli-
mate change caused by greenhouse gas emission have
recently led to rekindled interest in bioethanol as a CO2-
neutral liquid fuel. Lignocellulose will be the prime
choice of feedstock for the production of bioethanol if
major technical problems in its conversion can be over-
come [1,2]. One notable difficulty has been in the devel-
opment of robust microbial strains capable of fermenting
efficiently all types of sugars present in the cellulose and
hemicellulose fractions of the raw material [3-6]. While
Saccharomyces cerevisiae is a top candidate to be used in the
fermentation of D-glucose and the hemicellulose-derived
hexoses D-galactose and D-mannose, the organism in its
wild-type form cannot utilize the pentoses D-xylose and
L-arabinose [3,4,6-11] which constitute ≥ 80% of the total
sugar contained in typical hemicellulose hydrolyzates
[12]. The particular deficiency of S. cerevisiae is caused by
an insufficient expression of pathways which in other
yeasts deliver either of the two sugars as D-xylulose 5-
phosphate into the central metabolism (Figure 1).

Initial efforts of strain engineering in S. cerevisiae targeted
expansion of the substrate spectrum towards D-xylose and
involved heterologous expression of Pichia stipitis genes
encoding xylose reductase (XR) and xylitol dehydroge-
nase (XDH) [13-15]. Overexpression of an endogenous
xylulose kinase (XK) gene was used to eliminate a putative
kinetic bottleneck in the phosphorylation of D-xylulose

[16-18]. Ethanol yields obtained with this first generation
of xylose-fermenting strains were far below the theoretical
maximum of 0.51 g/g xylose, because a large part of the
xylose consumed was excreted as xylitol. This was attrib-
uted to an imbalanced coenzyme utilization in the steps
catalyzed by a dual specific, NADPH-preferring XR and a
strictly NAD+-dependent XDH [reviewed in [1-6,10]], a
fundamental problem recognized before in seminal stud-
ies of xylose utilization by yeasts [13,19-21]. Strategies to
decrease xylitol formation have included re-oxidation of
excess NADH by external electron acceptors [22], manip-
ulations of the yeast central metabolism at various
NADP(H) or NAD(H)-dependent steps outside the xylose
pathway [23-27] and more recently, engineering of the
coenzyme specificity of XR [28,29] or XDH [30-32]. The
conceptually most compelling approach is replacement of
XR and XDH by a xylose isomerase (XI), so that xylose can
be directly transformed into xylulose [33,34]. However,
identification of a candidate XI for high-level functional
expression in S. cerevisiae proved difficult [35]. Pronk and
coworkers isolated a novel XI from a fungal source (Pyro-
myces sp. ATCC 76762) [32] and succeeded in construct-
ing a xylose-fermenting yeast strain based on this enzyme
[36-38]. High ethanol yields of 0.42 g/g and almost no
xylitol formation were observed in batch fermentations
on 20 g/L xylose [36]. A recent comparison of xylose-fer-
menting yeast strains carrying the P. stipitis XR-XDH path-
way or the Pyromyces XI pathway revealed that the XR-
XDH strategy resulted in a 2.6-fold faster ethanol produc-
tion rate although the overall ethanol yield (0.33 g/g) was
significantly lower than in the strain carrying XI (0.43 g/g)
[39]. An engineered XR-XDH pathway in which formation
of excess NADH is reduced while the fluxional efficiency
of the wild-type pathway is retained could therefore be the
key to the construction of new xylose-fermenting strains
that combine both good yield and productivity.

We have recently employed structure-guided site-directed
mutagenesis to change the coenzyme preference of Cand-
ida tenuis XR from NADPH (33-fold) in the wild-type
enzyme to NADH (5-fold) in a Lys274→Arg Asn276→Asp
double mutant (K274R-N276D) [40]. According to its
kinetic parameters, K274R-N276D is expected to fully
substitute for the wild-type enzyme during NADH-
dependent reduction of xylose in a recombinant strain of
S. cerevisiae. Results of in vitro assays suggest that the dou-
ble mutant will probably show indiscriminate usage of
NADH and NADPH under physiological reaction condi-
tions [41]. This work was carried out to verify the pre-
dicted in vivo function of K274R-N276D and analyze
consequences in xylose-fermenting S. cerevisiae that result
from a well defined change in XR coenzyme specificity.

Pathways for utilization of D-xylose and L-arabinose in fungiFigure 1
Pathways for utilization of D-xylose and L-arabinose 
in fungi. 1, aldose reductase (EC 1.1.1.21); 2, xylitol dehy-
drogenase (EC 1.1.1.9); 3, xylulose kinase (EC 2.7.1.17); 4, L-
arabinitol 4-dehydrogenase (EC 1.1.1.12); 5, L-xylulose 
reductase (EC 1.1.1.10).
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Results
Development of stable xylose-fermenting strains of S. 
cerevisiae expressing C. tenuis XR in wild-type or K274R-
N276D double mutant form
Two isogenic yeast strains were derived from the labora-
tory strain S. cerevisiae CEN.PK 113-7D. Single copies for
the genes encoding CtXR in wild-type (strain BP000) or
K274R-N276D double mutant form (strain BP10001)
and XDH from Galactocandida mastotermitis (GmXDH)
were inserted in the URA3-locus of the yeast genome
together with an extra copy of the endogenous XK gene
(Table 1). Both strains grew aerobically on xylose with
nearly identical specific growth rates of about 0.07 h-1.
Their specific rates of growth and substrate consumption
during aerobic and anaerobic conversion of glucose were
also very similar. As expected, the reference strain S. cere-
visiae CEN.PK 113-7D was unable to utilize xylose for aer-
obic growth or as fermentation substrate (data not
shown). Table 2 summarizes specific activities of XR,
XDH, and XK in cell extracts of BP000 and BP10001 culti-
vated aerobically in mineral medium containing 20 g/L of
each glucose and xylose. However, xylose could be omit-
ted from the medium without any effect on the specific
activity of each of the three enzymes. For reasons we do
not understand, BP10001 showed a significantly, about
1.8-fold higher level of XR activity than BP000, irrespec-
tive of various growth conditions and times of cell harvest
used. The specific activity of XK was also higher (≈ 40%)
in BP10001 than in BP000. The levels of XDH activity
were comparable in the two strains. Cell extracts prepared
by using Y-PER contained 1.4-fold higher specific XR
activity than others obtained by disrupting exactly compa-
rable cell material in a French Press. While the result is
explicable on account of XR activity enhancement by the
detergents present in Y-PER (data not shown; see ref. [42]
for the effect of non-ionic detergents on activity and sta-
bility of CtXR), it also provides a note of caution regarding
the comparison of enzyme activities that are based on dif-
ferent methods of yeast cell disruption.

Figure 2 compares XR activities of BP000 and BP10001
recorded at three concentrations of NADH and NADPH.
The relative decrease in enzymatic rate in response to low-
ering the level of NADH from 350 µM to 7 µM was similar
in the two strains. By contrast, the drop in activity caused
by the same change in the concentration of NADPH was

much more significant in BP10001 than in BP000. These
results are in excellent agreement with expectations from
the Km values of purified wild-type (NADH: 38 µM;
NADPH: 3 µM) and K274R-N276D (NADH: 41 µM;
NADPH: 128 µM) [40]. They also serve to verify func-
tional expression of the double mutant in BP10001.

Oxygen-limited conversion of xylose in shake-flask 
cultures
Batch conversions of xylose by glucose-grown resting cells
of BP000 and BP10001 were carried out under oxygen-
limited reaction conditions ([O2] ≤ 20 µM) in shake flasks
using a mineral medium that contained 20 g/L sugar. Typ-
ical fermentation time courses are shown in Figure 3 and
parameters derived from their analysis are summarized in
Table 3. No biomass was formed under these conditions.
In a carbon balance calculated from the data in Figure 3
whereby CO2 was inferred from the ethanol and acetate
values, only ≤ 7% of the carbon from xylose remained
unaccounted for. In comparison with the reference strain
BP000, the XR double mutant strain BP10001 showed
40% enhanced ethanol yield. Its production of xylitol and
glycerol was decreased by 53% and 30%, respectively. The
yield of acetate was generally low in both strains, how-
ever, enhanced by about 50% in BP10001.

Anaerobic conversions of xylose in bioreactor experiments
To verify the results of shake flask experiments under well
controlled fermentation conditions where in particular
the concentration of dissolved oxygen was monitored
continuously, we compared anaerobic conversions of
xylose (20 g/L) by BP10001 and BP000 carried out in a
Braun Biostat bioreactor. Results are summarized in Fig-
ure 4 and Table 3. For both strains, the physiological
parameters measured in the bioreactor were in good
agreement with the ones obtained in shake flask. The glyc-
erol yield was an exception as bioreactor experiments gave
significantly lower values in this case. Likewise, the acetate
yield for strain BP10001 was lower in bioreactor com-
pared to shake flask cultivations and identical to the cor-
responding acetate yield for the control strain (0.019 g/g).
Therefore, positive effects in the XR double mutant strain
on xylose fermentation in shake flask could be scaled up
fully to the laboratory bioreactor.

Table 1: Relevant genotypes and phenotypes of strains BP000 and BP10001

Strain Relevant genotype Phenotype

BP000 CEN.PK 113-5D ura3::(GPDp-XKS1-CYC1t, GPDp-CtXRWt-CYC1t, 
GPDp-GmXDH-CYC1t)

Produces CtXR wild type + GmXDH, overexpresses XKS1

BP10001 CEN.PK 113-5D ura3::(GPDp-XKS1-CYC1t, GPDp-CtXRDm-CYC1t, 
GPDp-GmXDH-CYC1t)

Produces CtXR K274RN276D double mutant + GmXDH, 
overexpresses XKS1

GPDp and CYC1t stand for the S. cerevisiae TDH3 promoter and CYC1 terminator, respectively.
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Discussion
Protein engineering to improve coenzyme recycling in the 
metabolic steps catalyzed by XR and XDH
Biochemical constraints dictate that anaerobic conversion
of xylose into ethanol is possible only when XR and XDH
have matching coenzyme specificities [19,21,43]. The
xylose pathway from Pichia stipitis which has served as
point of departure for the construction of numerous
xylose-fermenting strains of S. cerevisiae [4,6] does not ful-
fill this requirement well. Its XDH is strictly specific for
NAD+ [44] while the XR strongly prefers NADPH over

NADH [45,46]. Using known natural enzymes, the assem-
bly of a chimeric pathway in which XR and XDH show
exactly comparable utilization of NADP(H) and NAD(H)
appears to be currently out of reach.

Protein engineering has therefore been pursued to make
the coenzyme specificity of XR or XDH better compatible
with that of the corresponding partner enzyme of the
xylose pathway. Following the early studies by Metzger
and Hollenberg [47], Makino and coworkers succeeded in
creating a NADP(H)-dependent version of P. stipitis XDH
through rational design [32]. A notable feature of the best
improved multiple mutant of XDH was a catalytic effi-
ciency for the NADP+-dependent reaction that exceeded
about 3.8-fold the corresponding efficiency of the wild-
type using NAD+. While XDH from yeast and fungal
sources is typically a Zn2+-dependent enzyme evolution-
ary related to medium-chain dehydrogenases/reductases
[48,49], bacterial polyol dehydrogenases possessing activ-
ity with xylitol do not use an active-site metal in catalysis
and are found with the short-chain dehydrogenase/
reductase superfamily of proteins [50]. Ehrensberger and
Wilson [51] determined a 1.9 Å crystal structure of XDH
from Gluconobacter oxidans based on which they were able
to convert the NAD+-dependent wild-type enzyme into a
strictly NADP+-specific variant that had retained about
14% of the original catalytic efficiency for oxidation of
xylitol.

Successful creation of a highly active XR mutant featuring
a substantially lower preference for NADPH than the
wild-type enzyme has strongly benefited from crystal
structures of the enzyme from C. tenuis bound with
NADP(H) [52] and NAD(H) [53]. Some of the mutations
found to be useful in CtXR [40] were later also introduced
at homologous positions of the amino acid sequence of
XR from P. stipitis [28,29,54] (see later). Selection of the
K274R-N276D doubly mutated CtXR for the in vivo exper-
iments reported herein was based on a detailed steady-

Table 2: XR, XDH and XK activities in crude cell extracts of BP000 and BP10001. Cells were grown aerobically on a mixed sugar 
substrate containing 20 g/L of each glucose and xylose and were then disrupted with Y-Per.

Strain XR activity U/mga XDH activity U/mg XK activity U/mg

BP000 NADH 0.15 ± 0.01b 1.1 ± 0.1 1.7 ± 0.2
NADPH 0.18 ± 0.01

BP10001 NADH 0.26 ± 0.01 1.3 ± 0.1 2.4 ± 0.1
NADPH 0.33 ± 0.01

Cen.PK 113-7D NADH n.d.c n.d. 0.14 ± 0.04
NADPH 0.008 ± 0.003

a Activities measured using a coenzyme concentration of 350 µM and a xylose concentration of 700 mM
b Mean values ± S.D. from three independent experiments including cultivation and disruption of cells and measurement of protein and activity
c n.d. not detectable.

Comparison of XR activities of BP000 and BP10001 at differ-ent cofactor concentrationsFigure 2
Comparison of XR activities of BP000 and BP10001 
at different cofactor concentrations. Cells were grown 
aerobically on 20 g/L glucose and 20 g/L xylose and disrupted 
with Y-Per reagent. One hundred % specific activity of strain 
BP000 corresponds to values of 0.15 U/mg with NADH and 
0.18 U/mg with NADPH. In strain BP10001, the specific 
activities are 0.26 U/mg with NADH and 0.33 U/mg with 
NADPH.
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state kinetic characterization of a series of single and mul-
tiple-site variants of CtXR [40] and included analysis of
mixed coenzyme utilization in the presence of physiolog-
ical concentrations of NADPH and NADH [41]. The dou-
ble mutant eliminates the 33-fold preference of the wild-
type for reaction with NADPH; however, it is clearly not a
perfectly NADH-dependent enzyme. With the desired
application for xylose fermentation in mind, it was impor-
tant to also consider the possible effect of the mutated XR
on the fluxional efficiency of the xylose pathway. The
K274R-N276D double mutant was expected from its
kinetic parameters to substitute the wild-type enzyme in

the NAD(H)-dependent conversion of xylose without
introducing an extra kinetic bottleneck.

Metabolic consequences of altering the coenzyme 
preference of XR in a xylose-fermenting strain of S. 
cerevisiae
The discussion will focus on physiological effects
observed in stable xylose-fermenting strains of S. cerevisiae
where the relevant genes were integrated into the yeast
genome. Note, however, that preliminary reports have
been published in which xylose fermentation by yeast
strains expressing mutated P. stipitis XR or XDH from
multi-copy plasmid vectors was investigated. They sup-

Table 3: Comparison of xylose fermentation by the recombinant S. cerevisiae strains BP000 and BP10001

BP000 BP10001

Shake flask (oxygen limited) Bioreactor (anaerobic) Shake flask (oxygen limited) Bioreactor (anaerobic)

qxylose
a 0.07 0.06 0.07 0.08 d

Yethanol
b 0.24 0.24 0.34 0.34

Yxylitol 0.35 0.39 0.17 0.19
Yglycerol 0.091 0.048 0.063 0.021
Yacetate 0.019 0.019 0.031 0.020
C-recovery 93%c 101% 94%c 96%

a Xylose uptake rates (q) are given in g/g CDW/h
b Yields (Y) are given in g/g xylose.
c For the calculation of the carbon balance, it was assumed that one mole of CO2 was formed per mol of ethanol or acetate
The given values were obtained by analyzing samples taken in the range 45 – 60% xylose consumption. Shake flask experiments were done in 
triplicates, bioreactor experiments in duplicate. Mean values are shown. Their relative S.D. was < 5% with the exception of values of qxylose and 
Yacetate from shake flasks experiments whose S.D. was ≤ 14%. d he S.D. for this value was about 30%.

Xylose utilization and product formation during oxygen-limited shake flask cultivation of BP000 (panel A) and BP10001 (panel B)Figure 3
Xylose utilization and product formation during oxygen-limited shake flask cultivation of BP000 (panel A) and 
BP10001 (panel B). Xylose (full squares), ethanol (triangles), xylitol (circles), glycerol (stars) and acetate (empty squares) 
were analyzed by HPLC. The biomass concentration was constant at 1.4 ± 0.1 g/L for BP000 and 1.5 ± 0.1 g/L for BP10001. 
Error bars show the S.D. of triplicate fermentation experiments.
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port the general idea that enhanced recycling of NADH
[28,29] or NADPH [30,31] in the XR-XDH pathway helps
decreasing xylitol formation and can eventually increase
the ethanol yield. However, two independent studies, in
which exactly the same mutants of P. stipitis XDH were
examined, reached opposite conclusions regarding the
effect on ethanol yield resulting from the usage of NADP+

instead of NAD+ in the XDH step [30,31]. These results
emphasize the possible ambiguity in tracing back changes
in strain physiology to the modification of the cosubstrate
specificity of XR or XDH.

Therefore, the relevant phenotypes of the two isogenic
yeast strains constructed in this work were carefully ana-
lyzed. Gene expression under control of the TDH3 pro-
moter yielded levels of specific activity for XR (utilizing
NADH), XDH, and XK that were about half those
obtained by other groups who used the phosphoglycerate
kinase 1 promoter for expressing the genes of the Pichia
stipitis xylose pathway along with the endogenous XK gene
[17,55,56]. (The comparison is relevant because purified
CtXR [42] and GmXDH [57] display similar specific activ-
ities as the corresponding P. stipitis enzymes [44-46].) The
observed ratio of the specific activities of XR-NADH,
XDH, and XK was 1: ≈5–7: ≈10 and lies within the win-
dow of operation recommended by Hahn-Hägerdal and
co-workers [55,58].

We were concerned about the difference in specific XR and
XK activities found in strains BP000 and BP10001 that
was substantially larger than expected from the estimated
experimental error of 15 – 20% for the entire procedure of
cell disruption and activity measurement. A gene copy

number effect can be ruled out considering that (1) chro-
mosomal integration of the three overexpressed genes
occurred in a single step; and (2) unlike XR and XK, the
specific activity of XDH was identical in both strains.
However, for the purpose of strain comparison for xylose
fermentation it may be noted that the specific uptake rates
for the xylose substrate were very similar in BP000 and
BP10001. We therefore regarded the two yeast strains as a
suitable system for examining metabolic consequences
resulting from the change in XR coenzyme specificity. The
unknown source of variation in the specific enzyme activ-
ities was not further pursued.

The 52% decrease in xylitol yield resulting from the
genetic replacement of wild-type CtXR by the K274R-
N276D double mutant is quite significant in comparison
to the success other metabolic engineering strategies have
had in suppressing xylitol formation [for comprehensive
reviews, see [1-5]], not only in terms of the magnitude of
the effect but also because it was accompanied by similar
changes in ethanol yield (42% increase) and glycerol yield
(57% decrease). The acetate yield in bioreactor cultiva-
tions of the two strains was not affected within limits of
the experimental error. Therefore, alteration of XR coen-
zyme specificity appears to have caused a global meta-
bolic response, which contributes to a comprehensive
improvement of the distribution of fermentation prod-
ucts.

It is interesting to bring into comparison these data with
results of a detailed study by Jeppson et al. [56] who
examined the effect of substituting wild-type XR from P.
stipitis by a Lys270→Met mutant thereof, which according

Xylose utilization and product formation during anaerobic bioreactor cultivation of BP000 (panel A) and BP10001 (panel B)Figure 4
Xylose utilization and product formation during anaerobic bioreactor cultivation of BP000 (panel A) and 
BP10001 (panel B). Xylose (full squares), ethanol (triangles), xylitol (circles), glycerol (stars) and acetate (empty squares) 
were analyzed by HPLC. The biomass concentration was constant at 1.6 ± 0.1 g/L for BP000 and 1.8 ± 0.1 g/L for BP10001.
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to studies of Lee and co-workers [59] exhibits a 17-fold
higher Km for NADPH than the native enzyme. The analo-
gous site-directed replacement in CtXR, Lys274→Met,
caused improvement of the coenzyme selectivity, NADPH
compared to NADH, from a value of 33 in the wild-type
enzyme to 5.5 in the mutant [40]. However, it was also
accompanied by a more substantial, 20-fold decrease in
catalytic efficiency for the NADH-dependent reduction of
xylose [40].

Despite the expected strong impairment of XR physiolog-
ical function resulting from the mutation Lys270→Met
[59], the yeast strain harboring a single gene copy for P.
stipitis mutant XR consumed xylose in batch fermenta-
tions as fast as the isogenic control strain that contained
native XR, and it produced less xylitol (0.17 vs. 0.29; 42%
decrease) and more ethanol (0.36 vs. 0.31; 16% increase)
[56]. Formation of acetate and glycerol was, however,
enhanced by about 40% in the mutant XR strain under
these conditions. Interestingly, the effect of altered cosub-
strate specificity of P. stipitis XR on ethanol yield was not
clearly visible in strains that harbored two copies of the
respective XR gene and hence consumed xylose about 1.5-
fold faster than the corresponding single-copy strains.

In a continuous culture that used a mixed sugar substrate
(10 g/L glucose, 10 g/L xylose), the strain harboring a sin-
gle gene copy for the K270M mutant produced 8% more
ethanol (0.40 g/g) and 41% less xylitol than the corre-
sponding control strain. It was suggested from results of
metabolic flux analysis that xylose conversion by the
K270M mutant took place exclusively via NADH-depend-
ent reaction while the wild-type form of P. stipitis XR
showed balanced utilization of NADH and NADPH under
these conditions (see later). Unfortunately, significant dif-
ferences in physiological parameters for the native XR
strains BP000 (YEtOH/xylose = 0.24; qxylose = 0.06 h-1, where Y
is a yield coefficient and q is the specific uptake rate) and
TMB3001 (YEtOH/xylose = 0.31; qxylose = 0.145 h-1 [56]) set a
limit to the quantitative evaluation of the possible benefit,
particularly on YEtOH/xylose, originating from the use of the
K274R-N276D double mutant of CtXR (this work) com-
pared to the K270M mutant of the P. stipitis enzyme [56].

Notwithstanding, if we assume that quantitative informa-
tion about XR performance under in vivo conditions can
be gleaned from the results of relevant in vitro assays
[40,41], the CtXR double mutant is expected to be a much
superior catalyst with regard to both coenzyme selectivity
and efficiency. Unfortunately, the large preference for
NADPH seen with isolated preparations of native P. stipitis
XR [45,46] is very difficult to reconcile with the suggestion
from metabolic flux analysis that a very substantial frac-
tion of xylose (≈ 50%) is consumed by the enzyme in vivo
via the NADH-dependent pathway [56,60]. Therefore,

while further systematic integration of XR protein engi-
neering into the development of novel xylose-fermenting
strains of S. cerevisiae would seem to be a promising
approach, it also requires that the apparent conflict in
findings for in vitro and in vivo experiments be sorted out
in future studies.

Methods
Strains and plasmids
Escherichia coli strain TOP10 (Invitrogen, Carlsbad, CA,
USA) was used as bacterial host for subcloning. Saccharo-
myces cerevisiae strain CEN.PK 113-7D (MATαMAL2-8c
SUC2) was used for the isolation of yeast genomic DNA
and as reference. Recombinant yeast strains were derived
from uracil-deficient S. cerevisiae strain CEN.PK 113-5D.
Plasmids pET11-CtXRWt [61] and pET11-CtXRDm [40]
carry the genes encoding native and K274R-N276D dou-
ble mutant forms of XR from Candida tenuis CBS4435,
respectively. Plasmid pBTac1 [62] carries the gene encod-
ing XDH from Galactocandida mastotermitis. Construction
of gene cassettes for expression in S. cerevisiae was per-
formed using plasmid pRS416GPD [63]. Yeast integrating
vector YIp5 (DSMZ, Braunschweig, Germany) [40] was
used for chromosomal insertion of the respective gene
cassette.

Media
Bacterial transformants were selected on Luria-Bertani
medium agar plates supplemented with 112 mg/L ampi-
cillin. Prior to transformation, yeast cells were grown in
YPD medium. Transformants were selected on yeast syn-
thetic complete media agar plates prepared from Yeast
Nitrogen Base (Sigma, St. Louis, MO, USA) that contained
Yeast Synthetic Drop-out Medium Supplements (Sigma)
lacking uracil. Xylose fermentations in shake-flask and
bioreactor cultivations were performed using a defined
mineral medium containing vitamins and trace elements
[56]. The medium was supplemented with 0.01 g/L ergos-
terol, 0.42 g/L Tween 80 (dissolved in boiling 96 vol%
ethanol), and 100 mM sodium citrate buffer, pH 5.5.

Construction of yeast integrating vectors
Restriction enzymes were from MBI Fermentas (St. Leon-
Roth, Germany) or New England Biolabs (Beverly, MA,
USA). Pfu DNA polymerase was from Promega (Madison,
WI, USA). QIAprep Spin Miniprep Kit from Qiagen (Qui-
agen GmBH, Hilden, Germany) was used for plasmid
preparation, and QIAquick Gel Extraction Kit was used for
DNA extraction from agarose. Genomic DNA was isolated
with the DNEasy Tissue Kit from Quiagen. Standard tech-
niques of recombinant DNA technology and molecular
biology were used.

In a first step, the promoterless genes for native or K274R-
N276D CtXR, GmXDH, and the endogenous yeast XK1
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were amplified from pET11-CtXRWt or pET11-CtXRDm,
pBTac1, and genomic S. cerevisiae DNA, respectively.
Polymerase chain reactions were performed using forward
and reverse oligonucleotide primers whose 5'-ends con-
tained a BamHI and SalI restriction site, respectively (see
Table 4). Amplification products were digested with
BamHI and SalI and inserted into the multiple cloning site
of pRS416GPD, situated between the TDH3, formerly
glyceraldehyde 3-phosphate dehydrogenase (GPD) pro-
moter and the cytochrome-c-oxidase (CYC1) terminator.
Gene cassettes were constructed where each of the target
genes (XRWt, XRDm, XDH, and XK) was integrated sepa-
rately between a TDH3 promoter and CYC1 terminator.
Correct insertion was verified by sequencing. In a second
step, the gene cassettes were amplified by PCR using oli-
gonucleotide primers containing restriction sites at their
respective 5'-end that are unique for YIp5 (see Table 4, Fig-
ure 5). The XK gene cassette was cloned into the AatII site,
resulting in vector YXKS1. Third, the XDH gene cassette
was inserted into the ClaI site of YXKS1, resulting in
YGmXDH/XKS1. Fourth and finally, the gene cassette for
either XRWt or XRDm was cloned into the EcoRI site of
YGmXDH/XKS1, resulting in YCtXRWt/GmXDH/XKS1
and YCtXRDm/GmXDH/XKS1. Correct orientation of the
inserted gene cassettes was verified after each step of inte-
gration using PCR screening with a pair of oligonucleotide
primers matching a sequence upstream of the cloning site
in the target vector and a sequence of the inserted gene.

Transformation
Transformation of plasmids into Top10 competent cells
was done by electroporation. Yeast integrating plasmids
YCtXRWt/GmXDH/XKS1 and YCtXRDm/GmXDH/XKS1
were cleaved by SdaI within the URA3 gene. The linearized
vectors were transformed into S. cerevisiae CEN.PK 113-
5D using the lithium acetate method [64], resulting in the
strains BP000 and BP10001 that express the gene encod-
ing wild-type CtXR and the K274R-N276D double mutant
thereof, respectively. Selected yeast strains were stored in
15% glycerol at -80°C.

Fermentation of xylose under oxygen-limited culture 
conditions in shake flasks
Oxygen limitation during batch conversion of xylose by
BP000 and BP10001 was achieved using 300-mL baffled
shake flasks that were tightly closed with rubber stoppers.
Two glass tubes were inserted in the stopper, one with a
valve for purging with nitrogen and another containing a
narrow slit at its closed far end which served as gas outlet.
A magnetic stirrer bar (3 cm in diameter) was added to
each shake flask. A fluorescence-based fiber-optic sensor
(PreSens GmbH, Regensburg, Germany) was used to
measure the concentration of dissolved O2 in the medium
each time when a sample was taken. The O2 concentration
never exceeded a value of 20 µM.

Yeast cells were grown overnight at 30°C and 110 rpm
using a defined mineral medium that contained 20 g/L
glucose. They were harvested by centrifugation (10 min;
4400 g) and after washing twice with 0.9% NaCl used for
inoculation, to give a final optical density of ≈ 4. The
working volume of each shake flask was 280 mL, and
mineral medium containing 20 g/L xylose was used. The
concentration of xylose at the start of the fermentation
was increased in some cases to about 21 g/L as result of
evaporation during the sterilisation. Note that reported
data is always from measurements of the actual sugar con-
centrations. Shake flasks were purged with N2 containing
less than 5 ppm O2 for 15 minutes before and 5 minutes
after the inoculation. Further incubation of the sealed
flasks was carried out at 30°C and 100 rpm using a Sarto-
rius incubator. Care was taken that during withdrawing a
sample (≈ 3 mL) from the shake flask, the biomass was
homogeneously suspended. This was achieved by mag-
netic stirring and done under nitrogen purging. Work-up
of samples and analytical procedures are described in a
separate section, Analyses. Xylose fermentations were
done in triplicate for each strain, and the results show
mean values and the corresponding S.D. (Table 3, Figure
3)

Fermentation of xylose in anaerobic bioreactor 
cultivations
A Braun Biostat C bioreactor equipped with two six-
bladed disc impellers was used. The bioreactor had a
working volume of 4 L. The ratio of impeller to reactor
diameter was 0.4. Fermentations were carried out under
conditions exactly comparable to the ones used for shake-
flask experiments. The stirrer speed was set to a constant
value of 200 rpm. The reactor was sparged with N2 at a
flow rate of 0.5 L/min. The pH was controlled at a value
of 5.0 through automatic addition of 1 M NaOH.

Carbon balance and ethanol evaporation
Carbon balances for xylose fermentation in shake flasks
are based on the assumption that 1 mole of CO2 is formed
per mole of ethanol and acetate. For carbon balances for
fermentations in the bioreactor, CO2 was calculated from
the off gas analysis. Due to sparging with N2, ethanol is
evaporated from the bioreactor. The rate of ethanol evap-
oration was determined at a N2 flow rate of 0.5 L/min,
measuring by HPLC the decrease in the ethanol concen-
tration as a function of time. Mineral medium lacking bio-
mass was supplemented with 3 concentrations of ethanol
between 1 and 4.5 g/L. Time-dependent loss of ethanol
from this mixture could be described by a first-order decay
function with a rate constant of 4.4 10-3 h-1. Reported val-
ues for the ethanol produced include the calculated evap-
orated alcohol.
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Analyses
Cell growth and cell dry weight
Optical density at 600 nm (OD600) was used to monitor
cell growth. Cell dry weight (CDW) was determined by fil-
tering 50 mL sample through a 0.45-µm cellulose acetate
membrane filter (Sartorius type 111, 47 mm diameter;
Satorius, Göttingen, Germany) that had been dried
(110°C, 12 h) and weighed prior to use. After two washes
of the filter cake with deionized water, the filter was dried
overnight at 105°C and then weighed. The relationship
between OD600 and CDW was carefully calibrated.

Off gas analysis
The concentrations of CO2 and O2 in the bioreactor off gas
were measured with an IN1313 acoustic gas analyzer
(Innova AirTech Instruments, Ballerup, DK) according to
instructions by the instrument supplier.

Extracellular products
Samples taken from shake flasks or the bioreactor were fil-
tered with a Satorius Minisart RC4 filter and unless used
immediately, stored at -20°C. The product distribution
resulting from xylose fermentation was analyzed by

HPLC. A Merck-Hitachi LaChrome HPLC System
equipped with an Aminex HPX-87H (Biorad, Richmond,
CA, USA) column, a Merck-Hitachi LaChrome L-7250
autosampler and a Merck L-7490 RI detector was used.
The system was operated at 65°C, using a flow rate of 0.6
mL/h for the eluent (5 mM sulfuric acid). Under these
conditions, glucose, xylose, xylitol, glycerol, ethanol and
acetate could be analyzed quantitatively.

Determination of intracellular enzyme activities
Yeast cells were grown in shake flasks under aerobic con-
ditions at 30°C using a defined mineral medium that con-
tained 20 g/L glucose and was optionally supplemented
with 20 g/L xylose. Agitation was at 140 rpm. They were
harvested in the mid-exponential growth phase using cen-
trifugation (10 min; 4400 g). After washing twice with
saline, the cell material was treated with the lysis reagent
Y-PER (Pierce, Rockford, IL, USA) according to instruc-
tions of the supplier or disrupted in a French Press (SLM-
Aminco French Press Mini Cell; 19000 psi internal cell
pressure, two passages). The crude cell extract obtained by
either of the two methods was used for determination of
total protein, employing the Roti-Quant protein assay

Table 4: Cloning strategy for the construction of yeast integrating plasmids YCtXRWt/GmXDH/XKS1 and YCtXRDm/GmXDH/XKS1. 
The shown primer sets were used to amplify the target sequences from the template plasmids. The amplification products were 
cloned into the corresponding restriction sites of the target plasmid.

Target sequence Template plasmid Primers 
(restriction sites underlined)

Target plasmid Restriction sites Resulting plasmid

1 CtXRWt gene pET11-CtXRWt Fwd:
5'-GGTGGTGGATCCATGAG
CGCAAGTATCCGAGAC-3'

pRS416GPD BamHI
SalI

pRS416GPD-CtXRWt

CtXRDm gene pET11-CtXRDm Rev:
5'CTAGTGGGTCGACTTAAAC
GAAGATTGGAATGTTGTC-3'

pRS416GPD BamHI
SalI

pRS416GPD-CtXRDm

GmXDH gene pBTac1 Fwd:
5'-GGTGGTGGATCCATGTCT
ACTCCTGAAAACTTATCT-3'

pRS416GPD BamHI
SalI

pRS416GPD-GmXDH

Rev:
5'-CTAGTGGGTCGACTTAC
TCAGGGCCGTTAATGATG-3'

XKS1 gene Genomic S. cerevisiae DNA Fwd:
5'-GGTGGTGGATCCATGTTG
TGTTCAGTAATTCAGAGA-3'

pRS416GPD BamHI
SalI

pRS416GPD-XKS1

Rev:
5'-GGTGGTGTCGACTTAGAT
GAGAGTCTTTTCCAGTTC-3'

2 Gene cassettea XKS1 pRS416GPD-XKS1 Fwd:
5'-CATGGTGACGTCAGTTTATC
ATTATCAATACTCGCCATTTC-3'

YiP5 AatII YXKS1

Rev:
5'-GGTGGTGACGTCGGCCGCA
AATTAAAGCCTTCG-3'

3 Gene cassette GmXDH pRS416GPD-GmXDH Fwd:
5'-CATGGTATCGATAGTTTATC
ATTATCAATACTCGCCATTTC-3'

YXKS1 ClaI YGmXDH/XKS1

Rev:
5'-GGTGGTATCGATGGCCGCA
AATTAAAGCCTTCG-3'

4 Gene cassette CtXRWt pRS416GPD-CtXRWt Fwd:
5'-GGTGGTGAATTCAGTTTATC
ATTATCAATACTCGCCATTTC-3'

YGmXDH/XKS1 EcoRI YCtXRWt/GmXHD/XKS1

Gene cassette CtXRDm pRS416GPD-CtXRDm Rev:
5'-GGTGGTGAATTCGGCCGCA
AATTAAAGCCTTCG-3'

YGmXDH/XKS1 EcoRI YCtXRDm/GmXHD/XKS1

a Gene cassettes contain S. cerevisiae TDH3 promoter (labeled GPD in the Table) – target gene – S. cerevisiae CYC1 terminator
Page 9 of 12
(page number not for citation purposes)



Microbial Cell Factories 2008, 7:9 http://www.microbialcellfactories.com/content/7/1/9
(Carl Roth GmbH, Karlsruhe, Germany) referenced
against BSA fraction 5, and for enzyme activity measure-
ments. Standard spectrophotometric assays for XR, XDH,
and XK activity were described previously. Briefly, initial
rates of XR-catalyzed reduction of xylose (700 mM) were
measured, unless indicated otherwise, in the presence of
350 µM NADH or NADPH [40]. The XDH activity was
determined using 150 mM xylitol and 2 mM NAD+ [65].
The continuous coupled enzymatic assay for XK activity
contained 5 mM ATP and 4.3 mM D-xylulose [66]. Rele-
vant controls were recorded in all cases, and reported val-
ues are corrected for the blank readings. When measuring
XK activity, it was particularly important to take into
account the blank resulting from the XDH-catalyzed
reduction of D-xylulose by the NADH present in the assay
mixture. A Beckman Coulter DU 800 UV/Vis spectropho-
tometer was used to monitor enzymatic rates of formation
(XDH) or depletion of NADH (XR, XDH) and NADPH
(XR) at 340 nm.
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