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Abstract
With advances in robotics, computational capabilities, and the fabrication of high quality glass slides
coinciding with increased genomic information being available on public databases, microarray
technology is increasingly being used in laboratories around the world. In fact, fields as varied as:
toxicology, evolutionary biology, drug development and production, disease characterization,
diagnostics development, cellular physiology and stress responses, and forensics have benefiting
from its use. However, for many researchers not familiar with microarrays, current articles and
reviews often address neither the fundamental principles behind the technology nor the proper
designing of experiments. Although, microarray technology is relatively simple, conceptually, its
practice does require careful planning and detailed understanding of the limitations inherently
present. Without these considerations, it can be exceedingly difficult to ascertain valuable
information from microarray data. Therefore, this text aims to outline key features in microarray
technology, paying particular attention to current applications as outlined in recent publications,
experimental design, statistical methods, and potential uses. Furthermore, this review is not meant
to be comprehensive, but rather substantive; highlighting important concepts and detailing steps
necessary to conduct and interpret microarray experiments. Collectively, the information included
in this text will highlight the versatility of microarray technology and provide a glimpse of what the
future may hold.

Review
Introduction
Although, the principles behind microarray technology
were conceived almost 20 years ago and developed from
Southern blotting, they did not gain wide spread attention
for nearly a decade when researchers were first able to uti-
lize high quality slides with precision robotics resulting in

reproducible results [1-3]. For instance, a quick pubmed
search with the words, 'microarray and 1995' results in 13
total articles, 5 of which are review articles. Similar
searches with the words, 'microarray and 2000' and
'microarray and 2005' result in 288 total articles (78
review articles) and 3906 total articles (1037 review arti-
cles), respectively. Despite this relative surge in microar-
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ray-related articles, few recent publications address core
issues regarding design, implementation, and subsequent
data analysis. In covering these and related issues, the
present text aims to illustrate the strengths, weaknesses,
and application of microarrays, especially to those unfa-
miliar with the technology.

Today's arrays are vastly superior to their predecessors in
terms of quality, probe density, and structural layout
[2,3]. Before dealing with these and other characteristics,
it is important to discuss, at some length, what microar-
rays are as well as the fundamental concepts behind the
technology. The term microarray is both descriptive and
somewhat ambiguous as it is commonly used to describe
a variety of platforms including protein microarrays and
tissue microarrays [3,4]. A microarray is typically defined
as a collection of microscopic spots arranged in an array
or grid-like format and attached to a solid surface or mem-
brane, hence the term [4,5]. These spots typically referred
to as probes, are designed such that each probe binds a
specific nucleic acid sequence corresponding to a particu-
lar gene through a process termed hybridization [3]. The
sequence bound to a probe, often referred to as the target,
is labeled with some kind of detectable molecule or dye
such as a fluorophore [4]. The level of binding between a
probe and its target is quantified by measuring the fluores-
cence or signal emitted by the labeling dye when scanned.
This signal, in turn, provides a measure of the expression
of the specific gene containing the target sequence [2,3].

Although, there are several different types of DNA micro-
arrays, for the purposes of this text only two will be con-
sidered; spotted microarrays and oligonucleotide
microarrays [1]. Details regarding these two platforms are
highlighted in Table 1. Spotted microarrays are often
referred to as dual-channel or two-color microarrays
because two samples, each labeled with a different fluoro-

phore, are hybridized onto a single slide [3,6]. As a result
of combining two samples onto a single slide, only rela-
tive expression levels can be determined using spotted
arrays [1]. The probes in spotted arrays are oligonucle-
otides, complementary DNA (cDNA), or fragments of
polymerase chain reaction (PCR) products; each type con-
ferring different properties to the spotted array. Despite
these differences, all spotted arrays are similar in terms of:
array construction, target preparation, and data analysis
[2,7]. In contrast, oligonucleotide microarrays also
referred to as single-channel microarrays are hybridized
with only one sample and therefore generate absolute
expression levels. These arrays utilize probes designed to
complement mRNA sequences and are produced using
various methods including in situ synthesis, some type of
deposition method, or photolithography [3,4].

As alluded to earlier, two important elements of microar-
ray technology are target preparation and probe construc-
tion. Depending on the type of microarray being used,
different cellular components can be used for target gen-
eration including: RNA, genomic DNA, cDNA, comple-
mentary RNA (cRNA), and PCR products [6,7]. Regardless
of which of these are used, ensuring the quality, stability,
and reproducibility of the generated targets is paramount
for subsequent processing. Similarly, probes can consist of
any of the following: cDNA, oligonucleotides, fragments
of PCR products, restriction-enzyme digested fragments,
oligomers, or expressed sequence tags (ESTs) [1,2,6]. Irre-
spective of the exact composition of the probes, they all
serve the same basic function; binding very specific
sequences. Although, probes are constructed in a variety
of ways, depending on the type of array and the specific
application, the same public databases are referenced for
sequencing information [2,5,7]. Typically, arrays are fab-
ricated with duplicates of each probe, enhancing the like-
lihood of observing hybridization for each gene.

Table 1: Comparison of cDNA and oligonucleotide microarrays

Feature Oligonucleotide microarrays Spotted microarrays

Typical probe length 18 – 30 mers 500 – 1000 base pairs (cDNA) 25 – 100 mers (oligo)
Spot density > 500,000 features per slide ≤ 80,000 spots per slide
Hybridization Specificity High specificity Not as specific with possible cross-hybridization
Expression levels Normalized for single-channel system Ratio-based normalization for dual-channel system
Advantages • Large-scale production

• Highly reproducible
• Detection of alternative splice variants
• Precise measurements
• Information can still be generated for genes without 
expression in the reference/control sample

• Lower costs
• Signal amplification is not needed
• Independent of genome sequence
• Elimination of artifacts from spotting

Disadvantages • Expensive
• Few producers of necessary equipment and buffers
• Difficulty detecting low abundance transcripts

• Hybridization is dependent upon length of sequences spotted
• Labeling efficiency of dyes is an issue
• Little information is generated for genes without expression 
in the reference/control sample
• Handling of clones
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A simple schematic of the entire process for a spotted
cDNA microarray experiment can be seen in Figure 1A[8].
Briefly, total RNA, once isolated from a sample, is reverse
transcribed to produce cDNA, labeled with fluorescent
dyes, and then hybridized onto the spotted array [5,8].
Hybridization is quantified using the intensities of the flu-
orescent dyes at particular wavelengths. By comparing flu-
orescence intensities, genes that are differentially
expressed between the two samples can be identified,
along with the direction of that difference (i.e. over-
expression or under-expression relative to a control) [2,3].
For example, Figure 1B illustrates the significance of each
color when the test sample is labeled with Cy5 and the
control sample is labeled with Cy3. In this case, black rep-
resents no binding (i.e. no signal), green indicates greater
binding of the control sample than of the test sample
referred to as down-regulation, yellow indicates equal
binding between the two samples, and red indicates
greater binding of the test sample than of the control sam-
ple referred to as up-regulation. If the dyes are used in
reverse (i.e. Cy5 is used to label the control sample and
Cy3 is used to label the test sample) the colors would have
the opposite representations [3,7].

Biological Systems
Although a multitude of microarrays are commercially
available, each designed for a specific species or general
family of organisms; these arrays are limited by the infor-
mation available in genomics databases [2,9]. Though,
the genomes of only a few species have been entirely
sequenced and made available to the public, microarrays
for a large number of species are available [10,11]. For
instance, checking the website for Affymetrix reveals
genome-wide arrays are available for the following
microbes: Bacillus subtilis, Escherichia coli, Pseudomonas aer-
uginosa, members of the genus Plasmodium, Staphylococcus
aureus, and members of the genus Saccharomyces.

Small, custom arrays can be designed for many more spe-
cies as long as genomic sequences are available for a par-
ticular organism or family of organisms [2,9,11].
Continued genome exploration has resulted in the need
for frequent updating and re-organization of spotted
arrays. With more information constantly coming online,
microarrays are continually refined to enhance reproduc-
ibility and detection levels of weak signals by modifying
the positioning and sequences of the ESTs spotted [2,10].
As previously mentioned, ESTs are essentially unique seg-
ments of cDNA identical to a portion of a gene, thereby
acting as binding domain. In addition, valuable informa-
tion can still be ascertained by hybridizing samples onto
arrays designed for other species [12,13]. So, even without
an entire genome being spotted onto commercially avail-
able arrays for a given species, microarray experiments can
still yield important results.

Limitations, Pitfalls, and Design Considerations
Any discussion regarding microarray technology would be
incomplete without a detailed examination of the various
limitations and complexities inherently present. Such a
discussion is vital to properly conduct microarray experi-
ments and analyze microarray data; overcoming techno-
logical limitations in the process. Before conducting
microarray experiments, the following questions need to
be addressed: what are the goals of the experiment, what
biological comparisons are most relevant to these goals,
how should the experiments be designed and performed
taking into account the various sources of variability,
which platform should be used, what controls need to be
in place, and how can the results be verified [14,15]. In
approaching these and other relevant questions, a great
deal of information regarding microarray technology can
be ascertained.

To answer the first two questions regarding goals and rel-
evant comparisons, a number of resources can be refer-
enced. Several organizations such as the Microarray Gene
Expression Data (MGED) Society and the European Bio-
informatics Institute (EBI) have established guidelines to
aid researchers in the design and implementation of
microarray experiments [8,9,16]. In general, narrowing
the objectives of a microarray study can provide insight
into which biological samples should be compared. Clear
and concise goals also help define the scope of the study,
providing a framework within which subsequent experi-
ments can be proposed and implemented. One of the
most commonly sited proposals is the Minimum Infor-
mation About a Microarray Experiment (MIAME) that
includes a series of recommendations and standards on
collecting and analyzing microarray data [16,17]. This
document was designed to allow data generated by micro-
array experiments to be interpreted and reproduced with
certainty. In addition, repositories such as the Gene
Expression Omnibus (GEO) created by the National
Center for Biotechnology Information (NCBI) and
ArrayExpress created by the EBI have been established to
store and share gene expression data [16,17].

Microarray experiments are typically constructed using
one of several different design layouts including loop, ref-
erence, and saturated [17]. Each of these designs specifies
the number of samples needed and the manner in which
samples should be compared in order to obtain a desired
level of accuracy and reproducibility. The loop design is
relatively simple and involves minimizing the number of
duplicates while retaining pertinent comparisons. This
setup can be problematic because failure of a single array
can greatly magnify error and statistical variance [17].
Another scheme is the reference design in which a com-
mon reference sample is used with each hybridized array.
This system allows any array to be compared to any other
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(A) Schematic highlighting the major steps in a cDNA microarray experiment [8]Figure 1
(A) Schematic highlighting the major steps in a cDNA microarray experiment [8]. Briefly, RNA from biological samples is iso-
lated and checked for purity. Of the two RNA samples shown, one is considered the 'test' and the other the 'control'. Each 
sample is labeled with a different fluorescent dye, indicated by the green and red colors. The two samples are then mixed and 
hybridized onto a spotted microarray slide. Once the slide is washed, it is scanned at two different wavelengths, each corre-
sponding to one of the dyes. (B) Image of scanned microarray wherein a number of distinct colors can be seen. Each color is 
representative of a certain amount of binding. For the image shown, the test sample was labeled with Cy5 and the control sam-
ple was labeled with Cy3.
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Black-colored spots 
signify no hybridization; 
no detectable signal

Red-colored spots indicate 
greater binding of the test 
sample than the control 
sample; up-regulation Green-colored spots 

indicate less binding of 
the test sample than 
the control sample; 
down-regulation

Yellow-colored spots 
indicate equal binding 
between samples; 
constant regulation
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array even extending to other experiments as long as the
same reference sample is used [16,17]. However, this
setup can become costly if the goals of the experiment
require multiple comparisons to be made. In contrast, the
saturated design involves making every possible compari-
son exactly once [17]. This approach is balanced and sim-
ple to establish, however, it is not applicable to all
conditions and is not appropriate when a series of experi-
ments are planned. Ultimately, the design selected must
address the goals and requirements of the experiment
being conducted. Without these and other considerations,
errors in analysis including the identification of false pos-
itives can result, masking underlying patterns and incor-
rectly deciphering biological behavior.

There are multiple sources of variability such as differ-
ences in: arrays, dye labeling, efficiency in reverse tran-
scription, and hybridization [10,14]. Some of these issues
relate back to the actual production of arrays and how
probes are prepared; elements of quality control on the
part of the manufacturer. The remaining issues are best
overcome by: incorporating replicates to generate statisti-
cal significance (i.e. averages and variance), performing
dye-swapping experiments, and pooling samples to mini-
mize biological variation [6,7,14]. Both technical and bio-
logical replicates are commonly employed, each with a
different purpose in mind. Technical replicates aim to
quantify procedural variations such as sample preparation
and handling [16]. In contrast, biological replicates aim to
identify variation in the biological system being studied
[16]. Similarly, dye swapping involves switching the dyes
used for labeling in a manner that prevents one type of
sample from being labeled by a single dye. This setup
helps account for the dye effect; an important systematic
error that stems from differences in the properties of the
dyes. The pooling of samples also reduces inherent varia-
tion in biological samples while at the same time generat-
ing sufficient sample quantities for subsequent processing
[17].

As discussed earlier, there are two main platforms to con-
sider when designing microarray experiments; spotted
microarrays and oligonucleotide microarrays. The advan-
tages and disadvantages of each are outlined in Table 1
along with examples of when a particular platform is most
beneficial [2,3]. For example, oligonucleotide microarrays
are ideal for time-course experiments because each array is
hybridized with only one sample, allowing any array to be
compared to any other array. This translates into requiring
a smaller number of total samples for the same number of
duplicates while at the same time more accurately repre-
senting the control for a given condition. Similarly, for
static conditions in which a basic comparison between
treated and untreated cell populations is needed, dual-
channel microarrays may be the best fit. Each application

has its own set of criteria that should be carefully evalu-
ated to determine the best platform to use [1,15]. For
instance, if specific genes are to be investigated, it should
be verified that the platform includes those particular
genes with the desired number of replicates. A simple
search online will reveal a multitude of companies that
manufacture microarrays and allow customers to con-
struct their own custom arrays using specialized software.

In addressing the various sources of error, systematic or
otherwise, proper controls need to be implemented. There
are two types of controls, as they pertain to microarray
technology; internal controls and external controls [1,18].
Internal controls check for the quality of the printed
microarray whereas external controls account for perform-
ance in terms of sensitivity and robustness. The internal
controls often used include: hybridization controls, poly-
A controls, normalization control sets, and housekeeping
genes [10,18]. Each type of control is commonly found in
commercially available arrays and serves a distinct func-
tion relating to one specific aspect of microarray process-
ing. In addition, samples can be spiked with particular
agents to isolate or quantify detection limits, non-specific
noise, and similar parameters [17].

Similarly, a number of approaches can be taken to mini-
mize external variables such as discrepancies in: growing
and preparing biological samples, isolating and purifying
RNA, cell synchronization, hybridization protocols, and
target preparation [14,19]. In general, standardizing pro-
cedures can greatly reduce these errors introduced during
the course of the experiment. Although, the preparation of
control samples used in a microarray experiment is typi-
cally not critical, the samples must be stable throughout
the experiment and be reproducible. To verify the quality
of purified RNA and/or cDNA gel electrophoresis and/or
spectrophotometry should be used. With regards to cell
synchronization, whole-culture methods such as serum
starvation (a method in which cells are deprived of animal
serum, a commonly used media supplement, to direct
cells towards quiescence) and DNA arrest (a general
method of using chemical or pharmacological agents to
prevent one or more phases of DNA replication, suspend-
ing cells in a particular stage of the cell cycle) are typically
used [20,21]. However, selective methods such as mitotic
shake-off, a method that involves shaking a flask or plate
to remove cells undergoing mitosis because these cells are
loosely attached, have also been used due to questions
about the validity of whole-culture methods [20,21].
Whatever synchronization method is used should be
applied to all of the biological samples to ensure a valid
comparison is being made.

Typically to validate microarray results any one of a
number of techniques such as RT-PCR, Northern blotting,
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Western blotting, and even the use of multiple microarray
platforms can be employed [10,14,18]. Figure 2 illustrates
which of these methods are relevant to which aspects of
microarray analysis. As mentioned earlier, verification is
critical in order to assign distinct expression patterns to
specific genes with certainty (i.e. statistical significance)
because of the inherent variability present in microarray
data. Since a single microarray experiment evaluates the
expression levels of tens of thousands of genes simultane-
ously, it would be extremely impractical to verify each and
every gene using any of the methods listed above. Instead,
what is typically done is that a number of key genes are

verified depending on the purpose and scope of the exper-
iment [2,5]. In addition, not every gene can be assayed
using each verification method because the necessary
components may not be available such as monoclonal
antibodies necessary for Western blotting or labeled prim-
ers for RT-PCR. As a result, multiple methods are often
used to verify the results of microarray experiments.

Normalization and Statistical Methods
As described previously, expression levels for a given gene
are determined using intensity values. One distinction
between dual-channel microarrays and single-channel

Common steps employed to ensure quality and validity of microarray resultsFigure 2
Common steps employed to ensure quality and validity of microarray results. From a quality control standpoint, replicates 
should be performed using RNA samples prepared at the same time under the same conditions. Various features of the arrays 
being used should also be known, especially the controls. To verify the results generated from microarray experiments, a com-
binatorial approach is usually needed; checking the statistical significance associated with the expression levels of specific genes, 
reviewing the literature, and conducting additional experiments such as RT-PCR or Northern blotting.
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microarrays is that the former generates relative expres-
sion levels whereas the latter generates absolute expres-
sion levels [1,6]. This distinction stems from the fact that
dual-channel microarrays are hybridized with two differ-
ent samples; one considered the test sample and the other
considered the control sample. As a result, the expression
level determined for a specific spot or gene is dependent
upon both samples and is a ratio of the form:

Therefore, the expression level for a gene in a dual-chan-
nel microarray is relative, not absolute. In contrast, single-
channel arrays are hybridized with only one sample and
therefore the expression level for a given gene is absolute
[2,4].

Once a scanned image for a hybridized microarray has
been generated, visual inspection of the data can proceed,
prior to normalization. This entails using imaging soft-
ware to exclude specific spots with poor signaling and
adjust the size/shape of grids that encompass the spots
[10,22]. Next, normalization procedures can be applied to
the data. Essentially, normalization accounts for differ-
ences in labeling efficiencies and detection levels for the
fluorescent dyes as well as differences in the quantity/
quality of RNA samples [4,10,23]. As such, normalization
can be thought of as the first level of filtering applied to
the data. Advanced statistical software packages offered by
companies such as Partek and Acuity are commonly used.
Private research institutes such as The Institute for
Genomic Research (TIGR) and The Sanger Institute along
with academic facilities around the world also provide
free software for microarray analysis [22].

Although a number of normalization techniques can be
applied to microarray data, the most commonly used are:
total intensity, regression, and ratio statistics [18,23,24].
All three of these techniques assume that for some group
of genes on the array, the average expression ratio is equal
to one [10]. Total intensity normalization assumes both
samples (test and control) are comprised of the same
amount of RNA and the total amount of RNA hybridized
from each sample is the same. Therefore, the total inten-
sity calculated from all the spots on an array should be the
same for both fluorescent dyes (channels) [5,10]. Con-
versely, normalization using regression presumes that a
significant number of genes are expressed to the same
extent in both samples; a reasonable assumption for sam-
ples that are fairly similar [22]. If the labeling and detec-
tion efficiencies for the two samples were equivalent, then
the slope of the plot shown in Figure 3 would be one
[10,22]. Figure 3 was constructed from unnormalized
data obtained from a single, spotted cDNA array. Two dif-

ferent samples were hybridized onto the array, each
labeled with a different dye. The graph illustrates inherent
differences between the dyes in terms of labeling and
detection efficiencies due to the characteristics of each dye
such as stability. Using regression techniques, the best-fit
slope is calculated and modified to be equal to one by
adjusting gene intensities. Lastly, normalization using
ratio statistics assumes that there exists some subset of
genes with the same expression levels in both samples
[10,23]. These housekeeping genes, as they are often
referred to, are used to calculate probability densities
which in turn allow the mean expression ratio to be
adjusted to one. Each of these techniques calculates a nor-
malization factor that is then used to scale the data,
accounting for the variations previously mentioned
[4,9,10].

Following normalization the data can be probed using a
host of statistical techniques that evaluate and ultimately
decipher microarray data. For the purposes of this text,
only two types will be touched upon briefly; clustering
and hypothesis testing [6]. In general, both types of statis-
tical methods strive to categorize, shape, and illuminate
underlying patterns and therefore can be very useful in
analyzing microarray data [23,25]. However, both meth-
ods rely on different underlying principles and assump-
tions that directly influence their employment.

Clustering algorithms rely on calculating some kind of
'distance metric' to position gene expression levels into a

Expression level
test sample intensity

control sample inten
=

ssity

Scatter plot of measured intensities for both fluorescent dyes on a log-log scale prior to normalizationFigure 3
Scatter plot of measured intensities for both fluorescent dyes 
on a log-log scale prior to normalization. The measured 
intensities are in arbitrary units. Each point in the graph rep-
resents a single spot on a hybridized microarray. In addition, 
the red line shown is the best-fit line calculated for the data 
with a slope that is close to unity.
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matrix of sorts with a certain level of commonality [10].
Both differentially expressed genes and groups of genes
with similar expression patterns can be highlighted using
clustering techniques. The most widely used clustering
algorithms include: hierarchical, self-organizing maps
(SOMs), k-means, and principle component analysis
(PCA) [8,10,18]. The mathematical formulations behind
each of these methods are too complex and lengthy to be
dealt with here, and so for the sake of brevity, very basic
information will be covered in this text with a strong rec-
ommendation to consult specific references [10,18,23].
Typically, these and other algorithms are used to create a
more accurate and meaningful interpretation of the data.
Figure 4 illustrates how four different algorithms (when
applied to the same data set) can generate vastly different
groupings; each providing a different perspective on pat-
terns present in the data. The data shown in Figure 4 was
obtained by hybridizing human cell lines grown under
varying conditions onto cDNA microarrays. By applying
clustering algorithms in sequence, one after another, syn-
ergy is possible, lessening the shortcomings in each indi-
vidual method. For example, it is common to apply PCA
to data prior to analysis with either k-means clustering or
SOMs in order to generate an estimate for the number of
clusters to be formed [10].

Hierarchical clustering, quite possibly the most com-
monly used clustering algorithm, links every gene in an
array to every other gene through a series of expanding
brackets that collectively form a dendrogram [22]. Genes
deemed to be closely associated, referring back to the con-
cept of a distance metric which in fact can be computed
using several different statistical frameworks, are con-
nected by a node [18,23]. Each node links to other nodes
of various sizes, in a repetitive process until every possible
pair of genes are linked, as illustrated in Figure 4B. This
type of clustering is popular due to its simplicity and abil-
ity to visualize the data. However, the statistical frame-
work has several disadvantages including: not being able
to account for multiple ways in which expression patterns
can be similar, having difficulty assimilating large quanti-
ties of data, and forcing a hierarchical system upon a data
set that does not truly exhibit a hierarchical lineage
[10,23].

Unlike hierarchical clustering, SOMs require initialization
and are much less rigid in terms of structure while at the
same time remaining robust and unique. Initialization
involves defining a particular geometry, typically a grid or
ring, with a specified number of groups or nodes [10,23].
These nodes are mapped into a high dimensional space
and successive iterations, usually tens of thousands, look
to reduce the number of dimensions [10]. The algorithm
also makes use of weighted vectors to select and group
similar data entries together, essentially training itself

after each phase. The end result of this process is a self-
organized network that can be visualized [4,6]. These and
other features make SOMs a powerful tool in exploratory
studies with an emphasis on visualization.

Similarly, k-means clustering aims to partition gene
expression data into a specified number of disjoint clus-
ters. Again, a distance metric is used in these calculations
and can be specified by the user. Genes within a cluster are
deemed similar to one another, but clusters are deemed
dissimilar to one another producing a series of clusters
that are not related or connected, opposite of the structure
produced in hierarchical clustering [7,10]. Essentially,
each gene is placed in one of the clusters initially specified
and distances between clusters are calculated. Next, genes
are moved from one cluster to another until a local stabil-
ity is reached in which the distance between clusters is
maximized while at the same time minimizing the dis-
tance between members of a given cluster [22,23]. This
method is reliable and relatively simple and therefore is
useful in analyzing data for which there is some prior
knowledge such as classifying serotypes or strains. Ensur-
ing that the partitions constructed using k-means cluster-
ing have some type of real or actual significance is where
the difficulty lies [10].

PCA is an algorithm that relies on visually highlighting
similarities in data in a manner that reduces the number
of dimensions. It can be applied to any number of data
sets from a small group of genes within a single array to
groups of experiments each with a number of arrays
[10,22,23]. As seen in Figure 4A, the plot generated from
PCA allows patterns in data to be visualized by examining
the proximity of clusters. The method implements a series
of calculations to best separate the data and project that
final analysis onto a 2 or 3 dimensional plot [22,23].
When combined with other clustering methods, PCA can
be a very useful tool, as described earlier.

Besides clustering algorithms another statistical approach
typically used to analyze microarray data is hypothesis
testing which aims to establish statistical significance
associated with divergent findings. If a group of genes,
perhaps genes that constitute a particular pathway, are dif-
ferentially expressed between two samples, hypothesis
testing can quantify the extent of those differences.
Hypothesis testing is comprised of the following steps:
specify the null hypothesis and the alternative hypothesis,
select a significance level, calculate a statistic analogous to
the parameter designated in the null hypothesis, calculate
the probability value (p-value), compare the p-value with
the significance level, and finally accept or reject the null
hypothesis [7,26]. At the end of these steps, an observed
outcome is associated with a statistical likelihood indicat-
ing whether or not the observed outcome is the result of
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Visualizations generated from the following clustering algorithms: (A) Principle component analysis (PCA), (B) Hierarchical, (C) K-means, (D) Self-organizing maps (SOMs)Figure 4
Visualizations generated from the following clustering algorithms: (A) Principle component analysis (PCA), (B) Hierarchical, (C) 
K-means, (D) Self-organizing maps (SOMs). Each image depicts the results of a specific clustering algorithm applied to the same 
set of genes, approximately 700 genes. The data shown was generated from cDNA microarrays hybridized with human cells 
grown under varying conditions. Each algorithm segregates the data differently, based on specific parameters and conditions.
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chance and not some real difference or phenomenon [26].
Application of hypothesis testing is most useful when
evaluating microarray data with specific genes or groups
of genes in mind as opposed to discovery or exploration.

Current Uses
A large number of microarray-related studies in the past
have aimed to either characterize diseased cells in com-
parison to healthy cells or highlight the genes involved in
a particular biological pathway [4,8]. Infrequently, studies
were undertaken for other purposes such as gene discov-
ery or examining distinct cellular properties [5,6]. How-
ever, in recent years, the number of studies utilizing
microarrays in some capacity has increased greatly. More
and more studies are relying on microarrays to provide
insight into observed physiology, essentially using micro-
arrays to further characterize biological systems [3,9]. In
most of these cases, microarray analysis has generated
interesting results, but also raised additional questions
requiring further investigation, limiting its successful
implementation.

For instance, the application of bio-informatics tools such
as microarrays to characterize microbial populations
exposed to toxins and pollutants has been explored [27].
Being able to understand the catabolism of xenobiotics
could enhance bioremediation processes with a direct
impact on pollution control and environmental organiza-
tion [27]. In addition, the exploration of previously
uncharacterized microbes using microarrays could iden-
tify novel genes with relevant functionality [27]. In this
context, a number of studies have focused on specific
issues such as investigating how Candida albicans, a
human fungal pathogen, is able to protect itself from the
toxic effects of nitric oxide produced by the immune sys-
tem [27,28]. Microarray analysis revealed a group of nine
genes were over-expressed during exposure to nitric oxide.
Of these nine genes yhb1, which produces a flavohemo-
globin that detoxifies nitric oxide, was the most highly
expressed [28].

Evolutionary studies using microarrays have also gained
prominence with the use of species-specific arrays in par-
allel. For example, researchers hybridized DNA from the
progeny of two yeast strains, one with a particular evolved
trait (i.e. mating discrimination) and the other without,
onto oligonucleotide microarrays [29]. The arrays used in
this study were designed to detect a multitude of polymor-
phisms between the two strains. Adaptive mutations were
identified by linking polymorphisms to the evolved
parental strain [29]. Investigators then mapped known
genes and constructed a computer simulation capable of
evaluating various parameters impacting mapping preci-
sion [29]. Finally, the researchers applied their method to
yeast strains adapting to a changing glucose-galactose feed

illustrating mutations in the same gene can lead to paral-
lel adaptation [29]. Similarly, scientists compared com-
munity-acquired invasive Staphylococcus aureus strains to
isolates from healthy people using microarray constructed
from 7 previous sequencing projects [30]. Ten dominant
lineages were identified; each with a distinct group of
genes with potential functions related to virulence and
resistence. Subsequent analysis suggested a common
ancestor could be traced back for all of the strains studied,
but evolutionary divergence must have occurred early on
[30].

The development of therapeutics has also benefited from
the implementation of microarrays as evidenced by a
number of recent publications. For example, scientists
examined gene expression profiles from patients with
chronic drug abuse, intending to better understand addic-
tion and therefore formulate better treatments [31]. Anal-
ysis of the array data revealed very little overlap in the
expression patterns for heroin and cocaine users [31].
These findings were contrary to widely held views regard-
ing the shared effects of heroin and cocaine on dopamine,
thus prompting reassessment of previous assumptions
[31]. Another study, examined the mechanism behind
acquired nisin resistance in bacteria [32]. Researchers
found genes involved in the following pathways to be
expressed differentially between resistant and non-resist-
ant Lactococcus lactis strains: cell wall biosynthesis, energy
metabolism, fatty acid and phospholipid metabolism,
regulatory functions, and metal/peptide transport and
binding [32]. Using this information, the researchers
established mutant strains that either had genes knocked
down or over-expressed and found these mutants had var-
ying levels of nisin resistance as compared to the parental,
wild-type strains [32].

In terms of disease characterization and detection, micro-
arrays are also finding use. For instance, the pathogenicity
of coxasackievirus B3 (CVB3) was examined; in humans
this virus adversely affects the heart muscle [33]. Using
cDNA microarrays, researchers compared murine hearts
infected with the virus against non-infected murine
hearts. In addition, oligonucleotide microarrays were
used to compare infected HeLa cells over time [33].
Together, these experiments identified a number of differ-
entially expressed genes, providing clues as to the precise
sequence of events following infection. Similarly, the use
of custom microarrays to characterize unknown samples
from water treatment centers as part of a quality control
measure was examined [34]. The microarray was con-
structed to target 16S ribosomal RNA (rRNA) from several
groups of nitrifying bacteria and tested against reference
samples with some success [34].
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Using microarrays in the capacity of diagnostics has also
become relatively popular especially in the context of out-
breaks for which rapid diagnostic tools are needed to
quickly evaluate pathogens and identify specific strains or
serotypes [9,35,36]. For example, a microarray was con-
structed specifically to probe single nucleotide polymor-
phisms (SNPs) for foot and mouth disease virus (FMDV)
[37]. The results were classified using statistical methods
in order to develop a procedure to test for specificity with
diagnostic application [37]. Similarly, a study combined
the use of microarrays with reverse transcription-PCR to
differentiate between two genetically similar enterovi-
ruses; enterovirus 71 (EV71) and coxsackievirus A16
(CA16) [38]. This approach had a diagnostic accuracy of
at least 92% for each of the two viruses as compared to
reverse transcription-polymerase chain reaction (RT-PCR)
and neutralization testing [38]. Currently, studies are
being conducted to explore the feasibility and implemen-
tation of similar methods for other pathogens [38,39].

Potential Uses
With advancements in software and robotics technology,
microarrays are becoming inexpensive, robust, and relia-
ble [2,5]. The availability of custom arrays designed to
probe a small subset of genes (usually several hundred) or
specific pathways have also enhanced the potential utili-
zation of microarray technology [1,2,9]. This section was
designed to highlight the latest advances in the technol-
ogy, speculate on novel applications of microarray tech-
nology, and outline areas of research that have just begun
to use microarrays. Together these aspects portray the
potential of microarrays in terms of applications as well as
from a technical standpoint.

Breakthroughs in various aspects of the technology from
fabrication to commercialization are continually influ-
encing the kinds of microarrays and techniques research-
ers are using. Currently, microarray experiments are
conducted in a series of steps with each step being distinct
and in a particular order. However, newly developed chips
equipped with electronic circuitry are circumventing a
number of these steps particularly sample labeling [8,9].
In addition, a number of companies and research facilities
now offer specialized arrays for detection, sequencing,
and/or diagnostic purposes [3,6]. By commercializing
such highly specific arrays, data gathering is being expe-
dited for studies with explicit purposes. An integrated
platform like the lab-on-a-chip (a system that combines
multiple manipulations including sample mixing, labe-
ling, and separation onto a single chip) is also influencing
microarray technology. The miniaturization and auto-
mated techniques used to construct the lab-on-a-chip sys-
tem are being applied to microarrays leading to arrays that
can be readily used for high-throughput applications [7].

One of the most promising areas of research includes clas-
sification; particularly in the context of diseases and/or
pathogens [40-43]. For instance, in 2002 researchers at
the National Cancer Institute used microarrays to organ-
ize biopsy samples of diffuse large-B-cell lymphoma from
more than 200 patients [44]. They identified 3 subgroups
with varying expression of 17 distinct genes; constructing
a model capable of predicting survival rates following
chemotherapy [44]. In another study, researchers used
microarrays to confirm previous classifications of non-
pathogenic, low-pathogenic, and high-pathogenic types
for 94 different Yersinia enterocolitica strains [45].
Researchers identified clusters of genes as being represent-
ative of each type (i.e. being present in one group, but not
in another) with functional implications [45].

Another arena in which microarrays may prove beneficial
is discovery; primarily in the context of gene functions
and the identification of novel organisms. For instance, in
a recent study researchers analyzed an Escherichia coli
strain, A49, with a mutation in the rnpA gene making it
sensitive to temperature and therefore unable to grow at
or above 43°C [46]. Under varying growth conditions,
researchers found a number of genes differentially
expressed. Careful review of these genes revealed RNase P,
the mutated gene product, may have more functions than
what had been proposed previously, especially in the con-
text of handling precursor RNAs [46]. Researchers in 2003
constructed a custom array with highly conserved arrange-
ments from every fully sequenced viral genome available
in GenBank [39]. Next, they hybridized a viral isolate
from a severe acute respiratory syndrome (SARS) patient
onto the array and found a previously unidentified coro-
navirus [39]. Subsequent work involving viral sequencing
verified these findings and showcased the potential of cus-
tom arrays to expedite the identification of pathogens; a
virtual necessity in combating future outbreaks [39].

In terms of biological products, particularly vaccines and
therapeutic proteins, microarrays may also find use. As
detailed in various governmental regulations, slight varia-
tions in a biological process may result in distinct final
products; requiring further testing and validation [9].
Microarrays may very well provide a means of avoiding
these procedures by establishing criteria (i.e. expression
patterns for a small set of genes) that can be used to verify
consistency and reproducibility. Extensive research
would, however, be required to first establish the neces-
sary criteria. In addition, it should be stressed that in this
particular application, microarray results would have to
be viewed in terms of patterns for a group of genes rather
than the expression levels of individual genes [9,15]. This
is because the variability associated with a single gene can
exceed levels needed to verify or validate biological proc-
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esses, whereas the variability in groups of genes where an
overall pattern is decoded is much less [10].

Another area that has and continues to find microarray
technology beneficial is pathway probing; illumination of
biological pathways. Often, microarray data alone cannot
decipher the sequential steps necessary for a particular
mechanism to occur, however, it can provide insight into
what genes or groups of genes should be investigated fur-
ther [15,35]. For instance, a paper published in 2003 used
microarrays together with other experimental techniques
to decipher a pathway responsible for regulating the
expression of cyclooxygenase-2 (COX-2), a pro-inflam-
matory protein associated with arthritis and pain [47]. A
continuation of this work was published in 2005 further
illuminating the pathway and possible feedback mecha-
nisms with important therapeutic implications [48].

Perhaps the greatest potential lies in combining two fields
within the scope of bio-informatics; genomics and pro-
teomics. Genomics is the study of genes and their func-
tion whereas proteomics is the study of proteins and their
functions [42,49]. By utilizing tools from each of these
two disciplines, researchers may be able to construct more
accurate and comprehensive models depicting specific
biological processes. For example, in a recent study both
two-dimensional gel electrophoresis and microarrays
were used to identify genes involved in the acclimation of
changing visible light in cyanobacteria [50]. Focusing on
the organism Fremyella diplosiphon, researchers found
approximately 80 proteins with different levels between
cells grown in green light vs. red light as well as 17 genes
not previously thought to be regulated by light [50]. Fur-
ther exploration revealed a number of these genes had
homologs in other organisms, though their functionality
had not been fully deciphered [50]. In another study, both
microarrays and proteomics were used to evaluate an
Escherichia coli mutant secreting more α-hemolysin
(HlyA) than the parent strain [51]. The researchers found
decreased levels of tRNA-synthetases in the mutant as
compared to the parent strain [51]. Based on this informa-
tion, the researchers designed a modified hlyA gene to
reduce the rate of translation by incorporating rare codons
leading to the same amino acid sequence [51]. When the
parent strain was transformed with this modified hlyA
gene, it secreted even more HlyA than the mutant [51]. In
other words, the study indicated it was possible to engi-
neer cells using an approach that combined genomics and
proteomics.

Conclusion
Microarrays are a powerful genomics tool, designed to
illuminate differences in the expression of genes within
cells. Despite being a relatively new technology, the scien-
tific community has quickly adopted its use in a variety of

fields including drug development, evolutionary biology,
and disease characterization [1,52]. The strength of the
technology rests on the several factors including: ease of
use, availability of platforms and lower cost relative to
other exploratory methods such as Northern blotting or
Ribonuclease Protection Assay (RPA), implementation of
statistical methods for detailed analysis, and most impor-
tantly a global view of a gene expression encompassing an
entire genome.

As previously eluded to, the technological limitations
associated with microarrays manifest themselves in terms
of variability typically seen as systematic errors. Improve-
ments in robotics, array fabrications, and continued
genome sequencing can certainly address these issues, but
not entirely remove them. This places limits on what
microarray technology can achieve, although a compre-
hensive understanding of microarrays can help establish
meaningful and reproducible data. An effort to: properly
design the experiment, establish quality control steps such
as checking RNA purity, analyze the data, and verify the
results can also combat technological challenges
[10,14,53]. In addition, archiving databases and files is a
consideration often overlooked, though quite important
in being able to return to data with new leads and direc-
tions for subsequent research or simply cross-compare
with new data.

There are, of course, other limitations, inherently present
that restrict the scope of microarray analysis just like any
other tool. For example, microarrays only present a snap-
shot of the transcriptome which is continually changing
and responding to cellular needs and signals. As such,
microarrays only illuminate a part of what is going on
inside a cell or a population of cells [3,6]. In addition,
there does not necessarily have to be a tight correlation
between the expression of a gene and the amount of trans-
lated protein. Therefore, differentially expressed genes
may not translate into varying protein levels with func-
tional implications [3]. Furthermore, the complexity of
microarray analysis makes it exceedingly difficult to ascer-
tain meaningful data with real biological significance
without clearly defined goals or targets. An intricate aspect
of genomic analysis is the interplay between genes or
groups of genes (i.e. mechanisms) and that information is
not easily deciphered using microarrays. And finally, the
functionality of a gene cannot be determined solely using
microarrays [2,3]. Indeed, other methods and experimen-
tal tools are needed to decipher the proteome, understand
the varying interactions between genes and/or proteins,
and develop a more complete picture of cellular behavior.

Ultimately, microarrays will continue to be used in a vari-
ety of research areas as more options in the design of cus-
tom arrays become available along with an increase in the
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assortment of species-specific arrays. Technological
advancements may help bring down the cost as well as
enhance reproducibility and reliability promoting the
applicaton of microarrays in new and diverse fields. In the
end, the questions raised by microarray results are often
just as vital as the answers they produce; a key to expand-
ing the role of any scientific method to encompass new
fields.
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