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Abstract
Background: For many microbial processes, the complexity of the metabolisms and the
responses to transient and realistic conditions are difficult to capture in mechanistic models. The
cells seem to have an innate intelligence that enables them to respond optimally to environmental
changes. Some "intelligent" models have therefore been proposed and compared with a
mechanistic model for fed-batch cultures of Ralstonia eutropha.

Results: Two kinds of models have been proposed to describe such cellular behavior. Cybernetic
models are derived through postulates of cellular intelligence and memory, and neural models use
artificial intelligence through neural networks. Some competing models of both kinds have been
compared for their ability to portray and optimize the synthesis of poly-β-hydroxybutyrate by
Ralstonia eutropha in fed-batch cultures with finite dispersion. Neural models enabled the formation
of more of the polymer than cybernetic models, with lesser utilization of the carbon and nitrogen
substrates. Both types of models were decidedly superior to a mechanistic model used as a
reference, thus supporting the value of intelligent descriptions of microbial kinetics in incompletely
dispersed bioreactors.

Conclusion: Neural and cybernetic models describe and optimize unsteady state fed-batch
microbial reactors with finite dispersion more effectively than mechanistic models. However, these
"intelligent" models too have weaknesses, and hence a hybrid approach combining such models
with some mechanistic features is suggested.

Background
Microbial growth, substrate utilization and product for-
mation in bioreactors have traditionally been described
by algebraic or differential equations derived on the prin-
ciples of chemical reactions. These so-called mechanistic
models are adequate for gross descriptions of culture
behavior in small (laboratory-scale) cultivation vessels.
Such bioreactors are usually operated under largely

"ideal" conditions, implying that the fermentation broth
is homogeneous, there are no disturbances, there is
approximately balanced growth, and data acquisition and
control systems are sufficiently elaborate, fast and accu-
rate.

These ideal conditions do not, however, prevail in the
more "real" situations of pilot-scale and production-scale
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bioreactors. These larger reactors have spatial variations
within the vessel, influx of noise from the environment,
and restricted use of monitoring and control devices
because of practical and financial considerations [1,2].
Culture behavior in such "nonideal" situations is often
quite different from that in ideal reactors, and mechanistic
mathematical models developed on the basis of labora-
tory-scale observations become inapplicable or too
approximate or may require frequent adjustments of the
parameters during the fermentation process [3,4].

Ideal descriptions sometimes do not apply even to small-
scale cultures, especially when these are sensitive to fluc-
tuations in the extra-cellular environment and/or com-
plex metabolic processes underlie the macroscopically
observed behavior. The synthesis of the aspartate family
of amino acids in Corynebacterium lactofermentum [5],
cephalosporin C production by Cephalosporium acremo-
nium [6], and even relatively robust processes such as ace-
tic acid production [7] and the biosynthesis of poly-β-
hydroxybutyrate [8] illustrate the limitations of the classi-
cal chemical kinetic approach to the modeling of complex
microbial kinetics.

Recognition of such limitations has led to recent propos-
als for "intelligent" descriptions of microbial cultures in
nonideal bioreactors [9-11]. These are broadly of two
kinds. One kind of description ascribes to living cells the
ability to think, remember and act accordingly. The cells
are thus considered to have some rudimentary intelli-
gence similar to those of higher organisms. This approach
has led to the class of cybernetic models discussed in
recent reviews [11,12]. The second approach utilizes
methods of artificial intelligence (AI) to describe quanti-
tatively the observed behavior of cellular systems and pre-
dict their performance under different conditions.
Commonly used AI techniques include artificial neural
networks, fuzzy logic, expert systems and genetic algo-
rithms, often in combination with some mathematical
equations [13].

The availability of two different streams of intelligent
modeling, and the continuing use of classical mathemati-
cal models, poses the question of which approach to
adopt in a given application. Since there are few compar-
ative studies of intelligent models vis-à-vis mechanistic
models, there is yet no general answer. The present study
provides more information to help formulate guidelines
to choose one or more modeling approaches in a given
situation. The microbial process investigated is the synthe-
sis of poly-β-hydroxybutyrate (PHB) in fed-batch cultures
of Ralstonia eutropha. The reasons for choosing this fer-
mentation and a brief description of it are provided next.

Biosynthesis of PHB
PHB is an energy-storage polymer that is synthesized by
some bacteria under conditions unfavorable to their
growth. It is commercially important because of its simi-
larities with competing polymers such as polyethylene
(PE) and polypropylene (PP) that are produced on a large
scale. PHB can replace PE and PP because, as a copolymer
with polyhydroxyvalerate and similar polymers, PHB has
many properties comparable to those of PE and PP. In
addition, whereas PE and PP are synthesized from petro-
leum sources at high temperature and pressure, PHB can
be produced from renewable resources by microbes under
milder and less energy-consuming conditions.

Petroleum-based chemically synthesized polymers also
present environmental problems since they are difficult to
degrade; by contrast, PHB is biodegradable and biocom-
patible. While the similarity of its properties to those of PE
and PP enable PHB to be used to be used for similar appli-
cations, its compatibility with body tissues widens its
potential uses to medical areas such as surgical sutures,
wound dressings and ocular devices. Recent reviews [14-
16] have discussed these aspects in detail.

In spite of its decisive benefits, industrial production of
PHB is still behind those of PE, PP and other polyalkenes.
Raw material costs and energy consumption obviously
cannot explain this lag. A major reason is the low produc-
tivity of fermentations for PHB. This is due to the inade-
quate and imprecise modeling and optimization of PHB
fermentations under industrially relevant conditions.
Whereas conventional modeling methods work satisfac-
torily for small bioreactors, they have limited validity for
large reactors, where the behavior of both the microbial
culture and the reactor are often significantly different
[15-17]. Such situations requite intelligent models that
can capture subtle variations and function through cumu-
lative knowledge of culture behavior.

Ralstonia eutropha (earlier called Alcaligenes eutrophus and
recently renamed Cupriavidus necator) is possibly the most
widely used organism for PHB production. The genera-
tion of high concentrations of PHB requires good growth
of the cells and a method to induce them to synthesize the
polymer [18,19]. Growth requires adequate supply of a
carbon source, which is usually fructose or glucose. Since
R. eutropha synthesizes PHB (intra-cellularly) under
adverse growth conditions, in a bioreactor the cells are
subjected to stress by depriving them of nitrogen [20] or
phosphorus [21], the former being more commonly
employed. Nitrogen concentration in the bioreactor is
usually controlled by regulating the supply of ammonium
chloride or sulfate. Although a shortage of nitrogen
induces the cells to synthesize PHB, excessive deprivation
retards cell growth [22] and causes depolymerization of
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PHB [23,24]. Both factors contribute to a lowering of the
overall concentration of PHB in the fermentation broth.

Biomass growth obviously requires an adequate supply of
carbon. However, excess of carbon also inhibits growth
[22]. These observations and the metabolic network for
PHB formation [16] indicate that control of the rates of
inflow of nitrogen and carbon is both complex and critical
for high production efficiencies. Therefore, fed-batch fer-
mentation is the preferred mode of operation. However,
the optimum time-dependent flow rates seem to vary
greatly among different studies, depending on the kinetic
model employed and the optimization strategy.

Optimization of the fermentation depends on quantita-
tive modeling of its kinetics. Mechanistic models are the
oldest, still in use but slowly being replaced, at least par-
tially, by intelligence-based models. In this study the well-
established mechanistic model of Lee et al. [25] was used
as a reference to compare with three cybernetic models
and a number of neural network models. These are intro-
duced next, followed by a description of the data genera-
tion method for a simulated nonideal bioreactor.

Introduction of the kinetic models
Recent studies by this author [8,26] have been based on a
mechanistic model formulated by Lee et al. [25], who
monitored the concentrations of four state variables in a
fed-batch culture of R. eutropha: PHB, residual biomass,
glucose (the carbon source) and ammonium chloride (the
nitrogen source). The residual biomass (hereafter called
the biomass for conciseness) is the difference between the
total mass of cells and their PHB content. Given the (time-
dependent) feed rates of the two principal substrates, glu-
cose and ammonium chloride, differential mass balances
may be written for the measured concentrations. A salient
feature of the model was that the specific rates for biomass
growth and polymer (PHB) synthesis included the obser-
vations that (a) viable cells can generate some PHB with-
out ammonium and (b) high intra-cellular concentrations
of the polymer inhibit cell growth [22,27]. The optimized
performance of their bioreactor is compared here with
those described by the intelligent models.

Mechanistic models have a chemical reaction framework
that imparts simplicity but ignores regulatory processes
within the cells and restricts their flexibility to adapt to
dynamic conditions, where disturbances and nonhomo-
geneity may be variable and significant events. Therefore,
such models are wanting in their ability to portray lag
phase behavior, diauxic and triauxic growth, and the tran-
sient responses that follow perturbations to continuous
and fed-batch cultures. Dhurjati et al. [28] proposed the
cybernetic approach as an alternative. Their basic tenet
was that living cells possessed an innate "intelligence",

whereby they could adjust their internal metabolism and
the resulting responses so as to maximize their survival
under varying conditions. This evolutionary concept was
formally expressed by maximizing an objective function
such as the growth rate.

Yoo and Kim's [29] cybernetic model for PHB has been
the forerunner for two other models, all of which have
been evaluated in this study. Like Lee et al. [25], they
divided each cell into two components: residual biomass
and PHB. A key assumption was that the cells allocate the
carbon source to the enzyme synthesis system such that at
all times they have considerable catabolic flexibility under
nitrogen starvation. This aspect is discussed later.

The original cybernetic formalism [28] is based on Herrn-
stein's matching law [30], which requires the fractional
allocation of resources to a set of activities to match the
fractional returns. Since this approach resulted in stiff dif-
ferential equations, Yoo and Kim [29] modified it to a
nonsingular optimal strategy that maximized the cell
mass at each instant of time. Ferraz and coworkers [18]
expanded the model to include different enzymatic induc-
tion and repression strategies, and cells with different
morphological features. The complete equations are avail-
able in their paper, and are not reproduced here. Gadkar
et al. [31] presented a metabolically more structured ver-
sion of Yoo and Kim's [29] model, while retaining the
basic idea of dividing each cells conceptually (a) residual
biomass and (b) PHB. In addition, the reactor mass bal-
ances included a lumped concentration of the internal
metabolites. Gadkar et al. also incorporated Belfares et al's
[32] observation that at high concentrations the biomass
itself becomes self-inhibitory, and they proposed global
competition between glucose uptake and the degradation
of PHB.

To be able to express all the relevant features of a micro-
bial system under different conditions, cybernetic models
tend to be quite complex. For instance, Ferraz et al.'s [18]
model has 53 parameters and 11 dependent variables.
Two other difficulties with these models are: (a) the ina-
bility to establish a correspondence between the key
enzymes in a model and the enzymes in the actual meta-
bolic network and (b) the possibility of more than one
cybernetic goal meeting the desired objective equally well.

Neural networks provide an alternative. Like cybernetic
models, they have a cognitive approach. By learning
directly from the performance of a culture, neural net-
works evolve internal structures and information cycles
that enable them to mimic a real process. Cellular intelli-
gence is ingrained in the architecture of a neural network
through the arrangement of information processing ele-
ments called neurons. The name 'neuron' and the flow of
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information among neurons are intended to mimic the
functioning of biological neurons. Neurons in a network
are arranged typically into an input layer, an output layer
and one or two intermediate layers (called hidden layers).
Figure 1 depicts a network with four neurons each in the
input and hidden layers and two each in the other layers.
The recurrent neurons (R1 and R2) are present only in
some types of networks (the Elman and Hopfield types in
this study) and the bias neurons (B1 and B2) are optional.
Networks differ in the manner in which the neurons are
laid out, their processing functions, and the directions of
the information flow streams.

Since many different configurations of neural networks
are possible, it is important to be able to sift useful config-
urations from ineffective ones at an early stage of applica-
tion. As an aid to this, Patnaik [33] developed a library of
networks used commonly for microbial processes; inher-
ent in this library was a set of rules to screen competing
networks and select a few promising ones for detailed
studies. Both the library and the screening rules may be
updated. Its current version was applied recently [8] to a
fed-batch culture of R. eutropha to maximize PHB forma-
tion at optimum dispersion. Dispersion is an important

nonideal feature. Whereas the fluid in small bioreactors is
usually fully dispersed, this possibility reduces with
increasing size. It was shown recently [17] that PHB pro-
duction is highest at a finite optimum dispersion. The
application of a library of neural networks to such a bio-
reactor revealed that while a recurrent Elman network
generated the highest concentration of PHB, a radial basis
topology (either in stand-alone mode or with generalized
regression) provided faster optimization with slightly
inferior results. These three neural network models were
therefore chosen for the present analysis.

Data generation
Whereas the broth is sensibly homogeneous in small lab-
oratory-scale bioreactors, spatial variations become signif-
icant in the larger pilot- and production-scale vessels
[3,34,35]. In other words, small bioreactors have nearly
complete dispersion while large reactors do not. Achiev-
ing complete dispersion is also impractical in large fer-
mentation vessels. Given this difficulty, it was shown in a
recent simulation study [17] that dispersion correspond-
ing to a Peclet number of Pe = 20 maximizes the produc-
tion of PHB. The Peclet number is defined as:

Pe = uL/De

Here u is the mean velocity of fluid flow in the bioreactor,
L is a characteristic dimension of the vessel and De is the
effective dispersion coefficient. For small bioreactors, with
nearly complete dispersion, De → ∞ and hence Pe → 0.
The other extreme of De → 0 and Pe → ∞ corresponds to
the total absence of dispersion, also referred to as plug
flow. Real reactors have finite non-zero values of Pe.

Proprietary and commercial considerations often restrict
the availability and disclosure of data from real industrial-
scale fermentations. To overcome this difficulty, a com-
mon approach [36-38] is to generate data mimicking such
a fermentation by adding nonideal features to a model
that has been validated with laboratory-scale data. This
approach was followed recently [8,26] for PHB biosynthe-
sis by R. eutropha; the kinetic equations of Lee et al. [25]
were inserted into the standard mass balance equations of
a fed-batch bioreactor [39] and the model was solved with
Pe set at the optimum value of 20 [17].

The plots of the concentrations of glucose, ammonium
chloride, biomass and PHB were then sampled to obtain
data representative of a nonideal (simulated) bioreactor.
Although a uniform sampling interval is easy to imple-
ment, it is not desirable when there are large variations
between different variables and with time for any particu-
lar variable. A fixed interval may then clutter the sample
space with too many points from shallow regions while
omitting important changes in sharply varying regions. As

Schematic diagram of a typical neural networkFigure 1
Schematic diagram of a typical neural network. I1 – I4 = input 
neurons; H1 – H4 = hidden neurons; O1, O2 = output neu-
rons; B1, B2 = bias neurons; R1, R2 = recurrent neurons. 
The numbers of hidden, recurrent and bias neurons are 
adjustable.
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a result, the sampled data do not faithfully portray all the
relevant features of the real process. One useful method to
vary the sampling interval is to make it inversely propor-
tional to the local gradient of the concentration profile.
This generates closely spaced data when there are steep
variations, while fewer data are sampled from mildly
changing regions. This method was adopted here and ear-
lier [40] to generate data simulating an optimally dis-
persed fed-batch fermentation.

Results and discussion
Results from a recent analysis of this system [40] provided
the starting point for the present study. That analysis com-
pared the optimized results for a nonideal (Pe = 20) fed-
batch bioreactor represented by each of seven neural net-
works: feed-forward with backpropagation (FFBP), FFBP
with momentum (FFBPM), FFBP with adaptive learning
(FFBPA), radial basis (RB), RB with generalized regression
(RBG), Elman (ELM) and Hopfield (HOP). While the
ELM configuration generated the highest concentration of
PHB, the two radial basis versions resulted in slight lower
outputs but converged faster to the optimum perform-
ance. Lyapunov exponents of the concentration profiles
also showed that the RB and RBG networks produced a
more stable fermentation than the Elman network. Both
stability and speed of convergence are important for auto-
mated control of large bioreactors because variations in
external conditions may require rapid responses to main
high productivity. Therefore, all three neural models were

Optimal glucose feed rates according to the mechanistic model and the best cybernetic and neural modelsFigure 3
Optimal glucose feed rates according to the mechanistic 
model and the best cybernetic and neural models.
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selected for comparison with the three cybernetic models
discussed before and the mechanistic model of Lee et al.
[25]. The optimized final concentrations (at the end of 50
h of fermentation) for the biomass and PHB are compared
in Fig. 2. While the Elman representation produces deci-
sively higher concentrations, this is negated by much
slower responses, whereas the RBG portrayal has a good
balance of all the important features [40]. Figure 2 shows
that the best cybernetic model (for this fermentation) is
that of Ferraz et al. [18], and the performance it generates
differs from that of the RBG neural model in a number of
significant features. Whereas biomass growth according to
Ferraz et al. is just 2.25% more than by neural optimiza-
tion, PHB outputs are 1 1/2 to 2 times greater (5.91% in
mg/l and 3.60% in g/g biomass). These differences are
even more pronounced between each of these models and
the mechanistic model of Lee et al. [25]. PHB production
by the cybernetic and neural formalisms are 63.28% and
54.17%, respectively, larger for the volumetric concentra-
tion, with marginally lower improvements in terms of
biomass concentration. On the contrary, the biomass

itself does not increase comparably, being just 1.57% for
the RBG neural network and 3.85% for Ferraz et al's [18]
cybernetic description.

These results underline a fundamental advantage of
"intelligent" models over mechanistic models. By being
able to use information on cellular responses to derive
reasoned inferences about the best operating conditions
at any time, neural and cybernetic models manipulate the
control strategies such that ammonium chloride and glu-
cose supplied are channeled more into PHB synthesis
pathways than into cell growth. Owing to its rigid chemi-
cal reaction approach, which ignores intra-cellular regula-
tory controls [12,28] and knowledge-based responses to
evolving environmental conditions [11], the mechanistic
approach is restricted in its ability and flexibility to allo-
cate the available resources optimally to favor polymer
formation more than cell growth [16].

Besides the final concentrations shown in Fig. 2, similar
differences are also seen in the time-variant feed rates of
the two primary substrates. The inflow rates of both glu-
cose (Fig. 3) and the ammonium salt (Fig. 4) are generally
lowest for the RBG neural model and highest for the
mechanistic model. The visual differences are confirmed
by the actual quantities of substrates utilized (Table 1).
The cybernetic approach is seen to be intermediate
between the mechanistic and neural approaches, in terms
of the actual quantities of the substrates as well as their
ratio.

The differences in the ratio of the nitrogen to carbon
sources and the bimodal nature of the feed rate profiles
may be interpreted in terms of the substrate distribution
patterns in the metabolic network for PHB synthesis.
While a detailed discussion of the metabolic system is not
within the scope of this study, metabolic analyses of this
process [41,42] indicate that in a heterogeneous broth
both carbon and nitrogen supply have to be varied within
certain ranges such that an optimum ratio is maintained
all times. Too much of carbon and too little of nitrogen
are detrimental to cell growth [22], while excessive short-
age of either resource triggers depolymerization of PHB
[23,24] since the cells then utilize PHB for their growth
requirements. The optimum carbon: nitrogen ratio varies
nonlinearly with time [8,18,31,38], further highlighting
the complexity of interactions between cellular metabo-

Table 1: Total consumption of substrates by different kinds of models to describe fed-batch biosynthesis of PHB by Ralstonia eutropha.

Type of model Glucose (liters) Amm. chloride (liters) Ratio

Neural 10.250 1.924 0.188
Cybernetic 11.084 2.175 0.196
Mechanistic 17.451 3.680 0.211

Optimal ammonium chloride feed rates according to the mechanistic model and the best cybernetic and neural mod-elsFigure 4
Optimal ammonium chloride feed rates according to the 
mechanistic model and the best cybernetic and neural mod-
els.
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lism and dispersion in the broth. As discussed elsewhere
[17], the degree of dispersion controls the rates of forma-
tion and consumption of acetate, a critical intermediate
that exerts feedback control on the metabolic system
[42,43]. Dispersion also plays a vital role in determining
the balances between the synthesis and the degradation of
PHB.

At high dispersion (Pe → 0), the nitrogen and carbon sub-
strates may be freely accessed by the cells throughout the
broth. The resultant acetate inhibits cell growth, thus
reducing the volumetric productivity of PHB, even though
its intra-cellular concentration may be high [44]. On the
contrary, poor dispersion restricts the availability of the
substrates, thus lowering the synthesis of PHB by the cells.
Dispersion corresponding to Pe = 20 seems to provide the
right balance between these opposing factors; given the
complexities of the metabolic network and the utilization
patterns of carbon, nitrogen and oxygen, intelligent mod-
els may be expected to learn the relevant features more
accurately and reliably, and thus be able to exercise more
effective control of the fermentation process. As the
present results have shown (Fig. 2 and Table 1), this effec-
tiveness is more for neural models than for cybernetic
models, possibly because the former posses greater flexi-
bility to adjust themselves with increasing knowledge of
the process, and they are more robust to fluctuations both
within [45] and outside [36,40] the microbial system.

Concluding observations
This study has explored the relative merits of cybernetic,
neural and mechanistic descriptions of microbial kinetics
in terms of their ability to optimize PHB production by R.
eutropha in fed-batch cultures. To mimic a large nonideal
bioreactor the degree of dispersion of the fermentation
broth was set at Pe = 20, shown earlier [17] to be the best
value.

Under these conditions the best two neural network rep-
resentations, viz. the Elman form and the radial basis net-
work with generalized regression, generated higher
concentrations of PHB than the best cybernetic model
[18]. All these three models were superior to the mecha-
nistic model of Lee et al. [25], used as a reference for data
generation and comparison. The cybernetic and neural
approaches also resulted in lower consumptions of the
nitrogen and carbon substrates. One similarity, however,
was that the feed rates of these substrates by all three
approaches had bimodal distributions over the duration
of the fermentation (50 h). The bimodality is consistent
with the metabolic requirement that the substrate concen-
trations should vary within prescribed ranges for opti-
mum flux distributions and to avoid growth inhibition
and product degradation [22-24].

The superiority of intelligent approaches such as the neu-
ral and cybernetic methods under realistic conditions
points both to the limitations of mechanistic models and
to the complexity of cellular responses to environment
changes. However, the cybernetic and neural methods
also have both weaknesses and strengths, suggesting the
possibility of developing intelligent hybrid descriptions
that combine more than one kind of intelligent model
with a segment of mechanistic modeling. Recent successes
with hybrid neural models, i.e. combinations of mecha-
nistic and neural models, indicate the feasibility of a
hybrid neural-cybernetic-mechanistic approach for micro-
bial kinetics. While this is the subject of future work, an
exploratory analysis [46] has provided a road map for the
development of such models.
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