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Background
Metabolic flux analysis (MFA) and metabolic pathway
analysis (MPA) are today fundamental tools to study cel-
lular metabolism. Such tools can assist the generation of
potential modifications that can alter the cell metabolic
activity toward bioprocess optimisation.

Although MFA and MPA techniques have been mainly
used for metabolic engineering [1], they may also be use-
ful in other phases of the bioprocess development cycle,
namely for advanced bioreactor monitoring and control
[2,3]. A number of methods have been developed to study
the structure of biochemical networks. From a process
optimisation and control point of view, the elementary
flux modes (EFMs) method is particularly attractive since
it reduces network complexity to a minimal set of reac-
tions. EFMs are unique for a given network and can be
considered as nondecomposable steady state flux distri-
butions using a minimal set of reactions.

In previous studies [4], an iterative batch-to-batch optimi-
zation scheme was developed and applied to the optimi-
zation of recombinant BHK-21 expressing the fusion
glycoprotein IgG1-IL2 used in cancer therapy [5]. The
main objective of the present study is complementing the
previous batch-to-batch scheme with knowledge of the
metabolic network of the biological system under consid-

eration. The incorporation of reliable mechanistic knowl-
edge in the batch-to-batch optimisation scheme, namely
of the metabolic network in the form of EFMs, may
increase the 'extrapolation' capacity and thus may contrib-
ute to increase the rate of success of the proposed tech-
nique.

Results
The metabolic network adopted (Fig. 1) is first decom-
posed into EFMs using the FluxAnalyser program [6]. The
system has seven EFMs. The hypothesis of balanced
growth allows the elimination of the intermediate metab-
olites resulting in a simplified set of reactions (Table 1)
connecting extracellular substrates with end-products.

The resulting set of reactions is the basis for the formula-
tion of the following hybrid model structure:

An artificial neural network was used to identify the reac-
tion kinetics from data: the apparent specific growth rate
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(μ-kd), the specific protein synthesis rate (qIgG), and the
EFM kinetics (ρi functions in eq. 1). Measured data of one
batch and four fed-batch runs was used. Figure 2 presents

the identified intracellular flux distribution for one of the
fed-batch runs.

Animal cells metabolic network [2, 7] From the reactions of table 1, it was further assumed that re6=re7 since DNA and RNA are made up of equal parts of purine and pyrimidineFigure 1
Animal cells metabolic network [2, 7] From the reactions of table 1, it was further assumed that re6=re7 since DNA and RNA 
are made up of equal parts of purine and pyrimidine. Therefore, these two reactions were substituted by their sum:
2Glc+5 Gln→Pur+Pyr+4CO2+2Amm
Furthermore, it was considered that the 4th elementary mode has negligible flux, since lactate is mainly produced from glucose.

g

Table 1: Elementary flux modes of the metabolic network considered.

re1: Glucose → 2 Lactate
re2: Glucose → 6 CO2
re3: Glutamine → 2 CO2 + Ammonia+ Alanine
re4: Glutamine → Lactate + 2 CO2 + 2 Ammonia
re5: Glutamine → 5 CO2 + 2 Ammonia
re6: Glucose + 3 Glutamine → Purine + 2 CO2 + Ammonia
re7: Glucose + 2 Glutamine → Pyrimidine + 2 CO2 + Ammonia
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Analyzing such patterns we can take some conclusions.
The most energetic EFM involving glucose and glutamine
are re2 and re5, respectively. Looking at these two EFMs in
figure 2 we can verify that glutamine seems to be the
major source of energy during the growth phase since re5
is almost constant, while the metabolism of glucose grad-
ually changes from a state where it is mostly converted to
lactate (re1, a poor energetic pathway), to a state of com-
plete oxidation of glucose via TCA cycle (re2). Zielke et al.
(1984) have already reported that glutamine becomes the
predominant source of energy at low glucose concentra-
tion. On the other hand, in the death phase (μ-kd<0)
there is a shut down in the most energetic EFMs (re2 and
re5) and the overflow metabolism takes place i.e., the pro-
duction of lactate (re1) and alanine (re3) starts to increase.
These metabolic particularities of animal cells were well
captured by the hybrid model which confirms its potenti-
alities.

Using the developed hybrid model, the process perform-
ance (described as the glycoprotein titre at the end of the
bioreaction, eq. 2) is optimized with respect to glucose
and glutamine feeding using a micro-genetic algorithm
[9].

The final optimization results are presented in Fig. 3. The
optimized strategy suggests to control glucose and
glutamine at low levels while cells are growing (fig. 3a).
During this period cells use both nutrients in an increas-
ingly efficient way: complete oxidation of both glucose
(re2) and glutamine (re5) increases while glucose con-
verted into lactate (re1) and glutamine converted into
alanine (re3) decreases. As shown in figure 3b, the ratios
between the respective EFM and total glucose and
glutamine consumption rates corroborates this metabolic
efficiency improvement. When cells start dying (probably
because ammonia reached toxic levels) the best strategy
seems to be to increase the glutamine concentration. By
doing so, a redistribution in the intracellular fluxes occurs
that favours product formation. The process productivity
may be considerably increased applying the proposed
nutrients feeding strategy. The final product titre predicted
by the model is 25 mg/l against the 15 mg/l that had been
obtained in the fed-batch experiments.

Conclusion
In this work we present a novel bioreactor optimisation
method that incorporates detailed metabolic knowledge

max
u

IgG IL f fJ C t V t= ( ) ( ) ( )−1 2 2

Apparent specific growth rate (μ-kd), specific protein synthesis rate (rIgG) and elementary flux modes kinetics identified by the hybrid modelFigure 2
Apparent specific growth rate (μ-kd), specific protein synthesis rate (rIgG) and elementary flux modes kinetics identified by the 
hybrid model.
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of the biological system under consideration. The method
was applied to a recombinant BHK-21 cell line expressing
a fusion glycoprotein. The method allows to identify met-
abolic fluxes over the runtime of a bioprocess. Such
knowledge allows to better understand metabolic struc-
tural changes by the analysis of the relative importance of
elementary flux modes. The final hybrid model was used
to optimise the flux distribution towards maximising the
final product titre. It was concluded that the process pro-
ductivity can be substantially improved by increasing the
glutamine concentration during the cells death phase
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Optimization resultsFigure 3
Optimization results.
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