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Abstract
The quantitative detection of low analyte concentrations in complex samples is becoming an urgent
need in biomedical, food and environmental fields. Biosensors, being hybrid devices composed by
a biological receptor and a signal transducer, represent valuable alternatives to non biological
analytical instruments because of the high specificity of the biomolecular recognition. The vast
range of existing protein ligands enable those macromolecules to be used as efficient receptors to
cover a diversity of applications. In addition, appropriate protein engineering approaches enable
further improvement of the receptor functioning such as enhancing affinity or specificity in the
ligand binding. Recently, several protein-only sensors are being developed, in which either both the
receptor and signal transducer are parts of the same protein, or that use the whole cell where the
protein is produced as transducer. In both cases, as no further chemical coupling is required, the
production process is very convenient. However, protein platforms, being rather rigid, restrict the
proper signal transduction that necessarily occurs through ligand-induced conformational changes.
In this context, insertional protein engineering offers the possibility to develop new devices,
efficiently responding to ligand interaction by dramatic conformational changes, in which the
specificity and magnitude of the sensing response can be adjusted up to a convenient level for
specific analyte species. In this report we will discuss the major engineering approaches taken for
the designing of such instruments as well as the relevant examples of resulting protein-only
biosensors.

Review
Introduction
Conventional biosensors are hybrid elements consisting
of a biochemical receptor for a given analyte, physically
coupled to a physicochemical transducer that converts
such interaction into a macroscopic, analytically useful
signal [1]. In the last decades, many types of biosensors
have been under continuous development, integrating
biological components such as proteins, nucleic acids,
membranes cells and even tissues acting as receptors, and

different signal transducers devices including microbal-
ances, electrodes, optical components and semiconduc-
tors. Such instruments have been applied into a diversity
of fields but specially for the detection of contaminants in
foods and environment [2]. More recently, and pressured
by the need of more sensitive and specific detection tools
for biomedical applications, in particular diagnosis, new
types of protein-only biosensors are being explored [3],
that contain both the receptor and transducer elements in
a single polypeptide chain. Alternatively, protein-only
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sensors can specifically act as receptors that exploit the
whole living cell where they are synthesised, as a complex
signal transducer, enabling the detection of the analyte
through intricate global activities such as differential
growth or support of viral multiplication among others.
Both type of protein-only biosensors offer very appealing
advantages over classical devices. First, chemical coupling
to the signal transducer is not required as straightforward
bioproduction results in a ready-to-use final product,
either a purified protein of protein-producing cells or cell
extracts. Also, protein engineering procedures such as site-
directed mutagenesis or directed molecular evolution
allow refining the specificity of ligand binding and permit
the development of new receptors for new analytes, as
demanded from medicine or industry.

The mechanics for which a protein responds to a specific
ligand in a macroscopically detectable way would gener-
ally imply variations in its activity, either enhancement or
inhibition, that could be detectable either directly or indi-
rectly through a biological amplification process. In gen-
eral, natural protein-ligand interactions result in
moderate conformational modifications that would be
poorly useful in molecular switching, as they have a lim-

ited impact on protein's activity. Protein engineering
allows the modification of the receptor in a way in which
the interaction with the analyte promotes profound con-
formational modifications. There are many examples of
useful intracellular indicators of molecular interactions,
gene expression or for biological screening [4] that use at
different extent end-to-end fusion proteins, including
two-hybrid systems [5], fluorescence resonance energy
transfer (FRET) [6], and protein fragment complementa-
tion [7] among others. However, insertional protein engi-
neering allows a more versatile combination of functional
modules for the construction of highly responsive mosaic
proteins exhibiting unusual conformational versatility
upon ligand binding [8,9]. Obviously, the protein seg-
ment or domain acting as a receptor element must be con-
veniently displayed on the protein surface to allow a
proper interaction with the analyte. Although some of the
constructs referenced below derive from random inser-
tions and further selection [10,11], the previous identifi-
cation of solvent-exposed permissive sites through
different procedures has allowed a more rational design-
ing procedures based on site directed peptide insertion for
the construction of biosensors and other type of multi-
functional proteins [12-19]. The principles of protein
functionality supporting insertional approaches for bio-
sensor construction are further discussed as exemplified
by representative models and specific applications, being
most of the resulting protein-only biosensors based on
either cleavable (Figure 1A) or allosteric (Figure 1B) pro-
tein platforms. Representative examples of specific sen-
sors and construction approaches are listed in Table 1.

Cleavable platforms
The most dramatic conformational modification that a
given ligand (in this case a protease) might induce on a
target protein is hydrolysis, that mostly result in its func-
tional inactivation but being sometimes a requisite for a
polypeptide reaching the active form, if existing as an
inactive precursor. In fact, targeted proteolysis is a biolog-
ical principle regulating many complex cellular events
[20-22]. Therefore, including a specific protease target site
on a protein's surface would made it susceptible to site-
limited digestion resulting in detectable changes in its
electrophoretic pattern. The successful implementation of
such technology would imply a refined analysis of the
protease target site susceptibility, as peptide display in dif-
ferent solvent-exposed sites could result in distinguisha-
ble digestion efficiencies, since the protein regions
neighbouring the insert seem to have a dramatic influence
on the peptide conformation [23]. This has been exempli-
fied by the insertional mutagenesis of the protease resist-
ant, green fluorescent protein (GFP), to make it
susceptible to trypsin and other proteolytic enzymes [24].
The detection of specific proteases and proteolytic activi-
ties is now of extreme relevance in virology and in partic-

The biosensing principles of the constructs listed in Table 1 are summarized here as split in two groupsFigure 1
The biosensing principles of the constructs listed in Table 1 
are summarized here as split in two groups. In a), the sensing 
principles underlying cleavable platforms are presented in 
which simple hydrolysis of protease target site-bearing hybrid 
proteins by an effector protease (P) result in a macroscopic 
signal. Among others, variations of the migration pattern, 
enzyme activation or inactivation, repressor inactivation, 
enhanced fluorescence by removal of a quencher or dual flu-
orescence emission by FRET modulation. In b), a ligand (L) 
promotes conformational modifications in the sensor either 
multimerization, correct folding or allosteric activation. A 
few enzyme biosensors are inactivated in presence of the lig-
and probably by steric hindrance of the active site.

a)

Repressor inactivation
Electrophoretic pattern changes
Enzyme inactivation
Protein activation by removal 
of a repressing domain

Dual fluorescence

Quencher removal
P

P

P

L

L

Allosteric modulation 
(or steric hindrance)

Proper folding

L Activation by 
oligomer formation

b)
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Table 1: Representative examples of protein only biosensors obtained by insertional mutagenesis.

Holding protein Strategy Insert Analyte Sensing 
mechanism

Signal (factor, 
when activated)

Application 
(proved or 
suggested)

References

β-galactosidase Site directed 
insertion

FMDVa and HIV 
antigenic peptides

Anti-peptide 
antibodies and 
immune sera

Allosteric Enzymatic 
activity up-shift 
(up to 12-fold)

Diagnosis [38,39,43,47
,48,49,59]

β-galactosidase Site directed 
insertion

HIV protease 
substrate

HIV protease Cleavage 
mediated 
inactivation

Enzymatic 
activity down-
shift or 
electrophoretic 
analysis

Antiviral drug 
design and 
screening

[25,26]

Alkaline 
phosphatase

Site directed 
insertion

HIV antigenic 
peptide

Anti-peptide 
antibodies

Probably 
steric 
hindrance

Enzymatic 
activity down-
shift

Diagnosis [46]

Alkaline 
phosphatase

Site directed 
insertion plus site 
directed 
mutagenesis of the 
active site

HIV and HCV 
antigenic peptide

Anti-peptide 
antibodies

Allosteric Enzymatic 
activity up-shift 
(up to 2.5-fold)

Diagnosis [40]

GFP Site directed 
insertion followed 
by random 
mutagenesis

TEM1 β-lactamase TEM1 β-
lactamase 
inhibitor

Allosteric Fluorescence 
emission up-shift 
(not 
determined)

Drug design and 
screening

[41,42]

EGFP Amino acid 
replacement

LPS/LA-binding motif Bacterial LPS Quenching Fluorescence 
emission down-
shift

Quality control 
(endotoxin 
detection)

[60]

TEM β-
lactamase

Random insertion 
and phage-
mediated selection

Random peptides Anti PSA 
antibodies

Allosteric and 
steric 
hindrance 
upon the 
specific 
construct

Enzymatic 
activity down- 
or up-shift (up 
to 1.7-fold)

Diagnosis [10]

p53 Site directed 
insertion plus site 
directed deletion

LF, HA and HSV 
antigenic peptides

Anti-peptide 
antibodies

Dimerization Electrophoretic 
mobility up-shift 
(up to 100-fold)

Diagnosis and 
screening

[28]

p53 Site directed 
insertion

HIV and LF protease 
substrates

HIV protease 
and LF

Auto-
inhibitory 
domain 
removal

Electrophoretic 
mobility up-shift 
(up to > 100-
fold) or in situ 
hybridisation (2-
fold)

Screening [28]

cI lambda 
repressor

Site directed 
insertion

HIV, HCV and SARS 
protease substrates

HIV, HCV and 
SARS proteases

Cleavage 
mediated 
inactivation

Phage plaques 
counting (up to 
50-fold)

Antiviral drug 
design and 
screening

[32,33,61]

MBP Site directed 
insertion eventually 
followed by 
punctual 
mutagenesis

Zinc binding sites Zinc Allosteric Fluorescence 
emission 
modulation (up 
to 8-fold)

Not specified, 
presumably wide

[62]

MBP Random insertion TEM-1 beta-
lactamase segment

Maltose and 
other sugars

Allosteric Enzymatic 
activity up-shift 
(up to 1.7-fold)

Not specified, 
presumably wide

[11]

DHFR Site directed 
insertion eventually 
followed by 
punctual 
mutagenesis

FKBP macrolide- 
binding protein and 
ERα ligand binding 
domain

FK506 and 
estrogen

Binding-
promoted 
thermostabilit
y and 
consequent 
genetic 
complementat
ion

Growth of 
temperature-
sensitive yeast 
under non-
permissive 
temperatures 
(up to 2.5-fold)

Drug design and 
screening

[56]

FynSH3 b Deletion none Proline-rich 
peptide ligand

Ligand 
induced 
protein 
folding

Tryptophan 
fluorescence 
increase (up to 
15-fold)

Not specified, 
presumably wide

[55]

GFP-DsRed 
fusion b

Modular fusion TEV protease 
substrate

TEV protease Cleavage 
mediated 
fluorescent 
tag separation

Dual fluorescent 
emission yield

Antiviral drug 
design and 
screening

[29]

a Abbreviations are explained in the abbreviation list.
b A few examples of protein sensors obtained by either deletion or end-to-end fusion approaches are also shown.
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ular for designing antiviral drugs that inhibit viral protein
processing and therefore multiplication. Beyond the
straightforward electrophoretic analysis of the sensing
protein [25], a rather inconvenient technique from the
analytical point of view, monitoring protease-mediated
reduction of activity (fluorescence emission or enzymatic
activity) would offer a more convenient protease sensing
signal [26]. In a step further, it is known that many natural
proteins are proteolytically activated by the removal of
self inhibitory protein domains [27]. In this context, the
convenient insertional engineering of the carboxy termi-
nus of p53, containing such a regulatory element, has
resulted in a set of p53 variants that are activated upon its
removal mediated by either the lethal factor (LF) or the
human immunodeficiency virus (HIV) protease [28].
Again, in this case, the sensing signal is detectable by up-
shift electrophoretic analysis, since the activated p53 gains
the ability to interact with specific DNA sequences [28].

In an attempt to produce more convenient analytical sig-
nals, protease target sites have been introduced in the
linker between two end-to-end fused proteins that emit
fluorescence at different wavelengths, so the cleavage can
be monitored by variations in the FRET spectra [29-31].
Although being not a standard insertional approach, the
principles governing such engineering processes are simi-
lar to those discussed above. In this context, the protein
hydrolysis splitting a fluorophore and its quencher has
been also a successfully proven biosensing principle [60].

It would be expected that the generation of a signal by a
specific proteolytic attack acted as an all-or-nothing
switcher rather than as a fine sensing tool. However, a very
discriminative monitoring tool for viral proteases activity
was implemented as a high-throughput analytical method
for antiviral drug testing and evaluation of the enzyme
activity. The cI lytic repressor of the E. coli lambda bacteri-
ophage has been engineered to accommodate a selected
target site for proteases from either HIV [32], hepatitis C
virus (HCV) [33] and severe acute respiratory syndrome
(SARS) viruses [34]. The appropriate co-expression of the
engineered cI and the protease promotes lytic lambda
propagation that is reported by plaque counting. This sys-
tem serves not only to test protease inhibitors for antiviral
drug research but also to quantitatively evaluate the activ-
ity of proteases from mutant viruses emerging in patients
treated with antiviral, protease-targeted drugs [35]. The
cascade events supported by the cell as a network signal
transducer permits the quantitative translation of the sta-
tistic cI hydrolysis within the cellular pool, what would be
probably not possible by using a more straightforward sig-
nal transducing system.

Allosteric platforms
The regulatable activity of allosteric enzymes lies on a bio-
logical principle highly matching with the protein-only
biosensing concept [36]. The activity of allosteric enzymes
is modulated upon binding of an effector to a receptor
site, that being different from the active site, can influence
its performance through the conformational impact pro-
moted by the allosteric effector. Since most natural effec-
tors are irrelevant for analytical purposes, both allosteric
and non allosteric enzymes have been engineered to allos-
terically respond to new effectors by insertion of appropri-
ate receptor sites, in some cases accompanied by directed
or random mutagenesis of the enzyme or directed molec-
ular evolution. This straightforward insertional strategy
often requires the identification of permissive sites in
which inserted motives do not disturb irreversibly the
enzyme activity [12,37], and has proven to be efficient in
the engineering of β-galactosidase [38,39], alkaline phos-
phatase [40], β-lactamase [10] and GFP [41,42] as allos-
teric biosensors. As the fine mechanics of the
conformational signal transduction in allosteric activa-
tion is not know, such devices have been constructed by
error-and-trial approaches. Recently [11], a random inser-
tional approach has permitted to newly create two allos-
teric enzymes by domain incorporation, by a strategy, in
principle, with general applicability in biosensor design.
Among enzyme inhibitors and other few ligand species
that activate allosteric biosensors, antibodies have been
noted to be specially efficient allosteric effectors [36] and
the use of antigenic peptides as receptors in only-protein
biosensors would offer appealing tools for the fast molec-
ular diagnosis of infectious diseases [39,43]. Allosteric β-
galactosidases displaying arginine-glycine-aspartic acid
(RGD)-containing antigenic peptides [23], are activated
by anti-peptide antibodies [38] but not by RGD-targeted
integrins binding the same receptor [44]. This fact indi-
cates different conformational constraints in the binding
of both molecules [45] and suggests that the adaptive anti-
body binding could be a major force in sensor activation.

A main problem of allosteric biosensing is the poor sig-
nal-background ratio, that in most of cases does not reach
more than 2-fold (Table 1). Higher activation factors
would be extremely desirable for fine analytical applica-
tions where a wide dynamic range is required. In fact, in a
few examples, the presence of anti-peptide antibodies (the
analyte) even reduces the activity of the enzyme probably
by steric hindrance of the active site, as reported by alka-
line phosphatase [46] or β-lactamase [10], when the anti-
genic peptide was placed in the very close vicinity of the
active site. The inhibition of the enzymatic activity is not
very desirable as an analytical signal since in high-
throughput analysis of complex samples, the presence of
enzyme inhibitors might render false positives. By com-
paring different species of allosteric biosensors sensing
Page 4 of 7
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anti-peptide antibodies, it was recognized that the activa-
tion factor was highly depending on the perturbation that
the inserted peptide receptor had promoted on the activity
of the enzyme platform after insertion [47]. Greater was
the reduction in the specific activity of the enzyme, higher
the activation mediated by the effector, but reaching only
activation factors around 2 that seemed to be a biological
upper limit to allosteric activation [47]. However, a
deeper exploration of β-galactosidase allosteric sensors
has revealed that the signal background ratio can be
enhanced up to more than 10-fold, by alternative or com-
bined approaches such as introducing a higher number of
receptors per enzyme [43,48], optimising the reaction
conditions [49] and selecting the appropriate substrate
[50].

Apart from plain diagnostic utilities, allosteric sensors can
intriguingly perform as tools for the analysis of the
immune response, as they specially recognize antibodies
with a high potential as modifiers of the epitope confor-
mation. In this context, a β-galactosidase sensor display-
ing an HIV gp41 epitope and responsive to human HIV-
immune sera is preferentially activated by the IgG4 anti-
body subpopulation [51]. As at least in the case of HIV
infection the ability of anti-viral antibodies to modify the
epitope's conformation is strongly related to their neutral-
izing activity [52,53] and probably to the progression of
the infection [54], allosteric biosensing could eventually
offer a valuable instrument for high-throughput sera anal-
ysis for prognostic investigation.

Other examples of conformation-dependent sensor 
activation
Conformational changes promoted by molecular interac-
tions may generate signals suitable for biosensing other
than allosteric responses. The correct folding of a deletion
mutant of the human Fyn tyrosine kinase (FynSH3), a
predominantly β-sheet protein, is induced by the binding
of an appropriate proline-rich peptide ligand, and the
folding process monitored in real time by tryptophan flu-
orescence [55]. Temperature-sensitive yeast cells lacking
dihydropholate reductase (DHFR) are complemented by
two mouse DHFR containing foreign different ligand
binding domains [56]. Culture growth is then enhanced
in presence of the respective ligands proving that molecu-
lar binding activates the complementing enzyme.
Although this system can be observed as a generic biosen-
sor [57], its real potential would lie on the selection of
specific or improved ligands by directed molecular-cellu-
lar evolution. On the other hand, the presence of bivalent
antibodies can promote dimer formation of a mutant p53
in which the tetramerization domain has been removed
and antigenic B-cell epitopes of viral origin conveniently
inserted [28]. Since dimers are much more active than
monomers, the presence of antiviral antibodies enables

p53 to bind DNA in an electrophoretically detectable
manner.

Other conformation-linked effects of molecular interac-
tions might also result in detectable activity changes or
phenotypes acting as macroscopic signals for a given ana-
lyte. Gaining further knowledge about enzyme structure
and dynamics would necessarily offer additional possibil-
ities of rational protein engineering [58] for exploitation
of such conformational signals.

Conclusion
Insertion of foreign peptides as receptors of protein-only
biosensors confers the resulting protein construct the abil-
ity to sense analytes by dramatic conformational changes
unusual in the native, non engineered protein. For such a
sensor being efficiently responsive, appropriated permis-
sive sites need to be selected permitting proper receptor
display and signal transduction, and the whole protein
might require further engineering to gain specificity and
response range. Although most protein-only biosensors
derive from trial-and-error engineering approaches,
rational and very clever setting-ups are exemplified by
combinations of sensing protein segments and conven-
iently modified acceptor proteins. Among the diversity of
sensing strategies based on insertional mutagenesis two
protein platforms emerge as the most explored, namely
cleavable sensors responding to proteases or their inhibi-
tors, and allosteric, among whose most efficient effectors
are antibodies. The performance of these two sensor types
has been largely proved in the high throughput screening
of antiviral drugs and for the molecular diagnosis of infec-
tious diseases respectively. Although the potential appli-
cations of protein-only biosensors are diverse and still
have to be fully exploited, they have arisen as valuable
new tools in biomedicine being intriguing alternatives to
classical sensing technologies.
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Abbreviations
DHFR Dihydropholate reductase

DsRed Engineered mutant of red fluorescent protein

EGFP Enhanced green fluorescent protein

FMDV Food-and-mouth disease virus

FRET Fluorescence resonance energy transfer

GFP Green fluorescent protein
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HA Influenza hemaglutinin

HCV Hepatitis C virus

HIV Human immunodeficiency virus

HSV Herpes simplex virus

LA Lipid A

LF Lethal factor

LPS Lipopolysaccharide

MBP Maltose binding protein

RGD Arginine-glycine-aspartic acid tri-peptide

SARS Severe acute respiratory syndrome

TEV Tobacco etch virus

TEM β lactamase

PSA Prostate specific antigen
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