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Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins.
However, very often the target protein accumulates into insoluble aggregates in a misfolded and
biologically inactive form. Bacterial inclusion bodies are major bottlenecks in protein production
and are hampering the development of top priority research areas such structural genomics.
Inclusion body formation was formerly considered to occur via non-specific association of
hydrophobic surfaces in folding intermediates. Increasing evidence, however, indicates that protein
aggregation in bacteria resembles to the well-studied process of amyloid fibril formation. Both
processes appear to rely on the formation of specific, sequence-dependent, intermolecular
interactions driving the formation of structured protein aggregates. This similarity in the
mechanisms of aggregation will probably allow applying anti-aggregational strategies already tested
in the amyloid context to the less explored area of protein aggregation inside bacteria. Specifically,
new sequence-based approaches appear as promising tools to tune protein aggregation in
biotechnological processes.

Review
Introduction
In the last decade, protein aggregation has moved beyond
being a mostly ignored area of protein chemistry to
become a key topic both in medical and biotechnological
sciences [1]. The biological significance of protein deposi-
tion has been shown to be much higher than formerly
thought. First, because the presence of insoluble protein
deposits in human tissues correlates with the develop-
ment of some debilitating human disorders of growing
incidence such as Alzheimer's disease, Parkinson's dis-
ease, type II diabetes and the transmissible spongiform
encephalopathies [2-4]. Second, because it has been
shown than under cellular stress conditions, such us
severe heat, massive protein misfolding exceeds the buff-

ering capacity of the folding quality machinery and results
in the aggregation of proteins, which usually results in cell
death [5,6]. Finally, the use of bacteria as factories for
recombinant expression is limited by their intrinsic ten-
dency to accumulate the target protein into inactive insol-
uble aggregates, called inclusion bodies (IBs). IBs are
dense, amorphous protein deposits that can be found in
both the cytoplasmic and periplasmic space of bacteria [7-
11]. In fact, the formation of IBs is the main bottleneck in
protein production, narrowing the spectrum of relevant
polypeptides obtained by recombinant techniques and
hampering the development of top priority research areas
such as the de novo design of novel proteins, the rational
modification of natural proteins or structural and func-
tional genomics. The rising recognition of the crucial sig-
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nificance of protein aggregation has resulted in a number
of recent reviews [12-19]. This review focuses mainly on
the role played by intrinsic polypeptide properties in pro-
tein aggregation.

One should distinguish between precipitates, in which
proteins maintain the native folded conformation and
aggregates, in which proteins adopt new non-native struc-
tures. The first type of self-assembly is generated during
random precipitation of already native protein due to an
environment promoted reduction of solubility in the
polypeptide chain. Examples of these processes are salting
out by ammonium sulfate or isoelectric precipitation.
Reducing ionic force or shifting solution's pH results in
immediate dissolution of these precipitates. The second
type of macromolecular structures exhibits, without
exception, an increase in β-sheet secondary structure con-
tent relative to the native conformation and very high con-
centrations of denaturants or detergents are needed to
dissolve them into mainly unfolded polypeptide chains.
We will focus our attention on these aggregates, which
include amyloid fibrils, thermal aggregates and bacterial
IBs. The progress made on the control of their aggregation
propensities by means of primary sequence modulation is
discussed.

Protein aggregation is usually a specific process
Protein aggregation has long been considered to be an
unspecific process driven by the establishment of non-
native contacts between proteins in totally or partially
unfolded conformations to form a disordered precipitate.
This idea was sustained in part by the diversity of mor-
phologies of aggregates that were observed by techniques
such as electron microscopy and atomic force microscopy
[20]. This way, the typical amyloid aggregate is a long,
straight and unbranched fibril with a diameter between
40 Å and 120 Å [21], whereas inclusion bodies appear as
bigger globular electro-dense structures seen as refractile
bodies under phase contrast microscopy usually with near
1 micron in diameter [22] and thermal aggregates are usu-
ally amorphous [23]. Recent work shows however that
often aggregation is a much more specific event than pre-
viously expected at least in amyloid fibrils and bacterial
IBs [24-27]. In fact, for many biotechnologically relevant
proteins, isolation of the IBs is an efficient initial step in
the purification process, since they contain usually more
than 90% of recombinant protein [28], other proteins
trapped in the aggregates are proteolytic fragments of the
aggregating protein [29], other aggregation-prone
polypeptides deposited by titration of chaperones during
recombinant expression [30,31] or even contaminants
from the purification process [11]. Similarly in Alzheimer
and related neurodegenerative diseases in vivo amyloid
plaques are composed primarily of the pathogenic aggre-
gating protein rather than resulting from a widespread

recruitment of other amyloidogenic proteins, although
proteins such as proteases or chaperones have been also
found to co-localize in the amyloid deposits [32].

Amyloid fibrils are thought to form trough self-assembly
of protein monomers via a nucleation dependent path-
way similar to the highly ordered process of protein crys-
tallization [33]. This mechanism is also behind
physiological ordered protein aggregation processes as
viral coat assembly, microtubule formation or flagellum
formation [33]. All these processes are characterized by an
initial slow nucleation phase, in which the protein associ-
ates to form ordered oligomeric nucleus followed by a
growth phase, in which the nucleus rapidly growths to
form larger insoluble polymers. Addition of preformed
protein nucleus during the lag time results in immediate
polymerization. All these aggregation processes and in
particular amyloid fibril formation are highly specific.
This way, in the aggregation of β-amyloid protein, islet
amyloid peptide, transthyrretin, and prion protein the for-
mation of amyloid fibrils is not seeded by preformed
fibrils of similar amyloidogenic proteins [34-36].
Although it has been shown that some amyloid fibrils can
accommodate up to 1% of a foreign peptide, indicating
than some co-aggregation can occur [37], the efficiency of
this event decreases rapidly as differences in protein
sequence of co-aggregating proteins increases showing
that specific protein-protein interactions are needed for
amyloid fibril formation to occur [38].

Aggregation into IBs during recombinant protein expres-
sion has been usually though to occur via non-specific
association of hydrophobic patches on the surface of fold-
ing intermediates. However, the reduced number of IBs
(usually one) formed during recombinant protein expres-
sion in bacteria suggested that the may be formed by the
growth of a reduced number of "founder" aggregates in a
nucleation-like mechanism. In this respect, the aggrega-
tion of the P22 coat protein has been extensively charac-
terized [39-42] and it was demonstrated that when
partially folded species of this protein where mixed in vitro
with those of tailspike protein, no co-aggregation occurs,
despite the fact that both form IBs when expressed indi-
vidually in bacteria [43]. The folding intermediates for
each protein preferred to self-associate indicating specifi-
city in the in vitro aggregation process and suggesting that
specific interactions may underlie IBs formation in the
cell. Very recently, we have confirmed this extent by show-
ing that the preformed IBs of an aggregation-prone β-
galactosidase variant are able to act as effective aggregating
cores for the aggregation of its soluble, partially folded
counterpart in a dose-dependent manner [27]. Moreover,
the aggregation process is highly specific as shown by the
fact that preformed IBs promote deposition of homolo-
gous but not heterologous polypeptides. Both protein
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sequence and conformation appear to play a role in the
establishment of specific intermolecular contacts between
aggregating polypeptide chains to form IBs, since aggre-
gated β-galactosidase moiety in IBs do not recognize the
properly folded tetrameric enzyme [27].

Inclusion bodies in mammalian cells, the so-called aggre-
somes, are far more complex structures that those in bac-
teria containing many proteins, including molecular
chaperones, components of the ubiquitin-proteasome
system, centrosomal material, and cytoskeletal proteins
[44]. This suggested that co-aggregation of misfolded,
damaged, or mutant proteins with normal cellular pro-
teins could explain both the presence of multiple proteins
in IBs and the toxicity associated with protein aggregation
in many neurodegenerative diseases [45]. However, also
in this complex system, protein aggregation into IBs
exhibits exquisite specificity even among extremely
hydrophobic substrates expressed at very high levels [46].
Thus, independent of the source, both amyloid fibril for-
mation and IBs aggregation depend, at least partially, on
the formation of specific protein-protein interactions
between non-native species.

Different polypeptides aggregate into similar structures
The formation of amyloid fibrils was initially associated
to a reduced number of proteins related to recognized
pathological situations. Nevertheless, a growing number
of globular proteins not related to disease can be induced
to generate similar fibrils in vitro, albeit in some cases only
in non-native conditions, leading to the suggestion than
the ability to form amyloids is intrinsic to many or all
polypeptides when their normal folding pathways are
compromised [47-50]. This appears to be true for IBs as
well since deposition in such structures has been reported
in the recombinant expression of many, but not all, heter-
ologous genes and in the high level expression of several
endogenous genes [7,51,52].

No sequence or structural similarities are apparent
between any of the proteins that display the ability to
form amyloids. Prior to fibrillation, amyloidogenic
polypeptides may be rich in β-sheet, α-helix, β-helix, or
combine α-helices and β-sheets. They may be globular
proteins with a stable unique conformation in the native
state or belong to the class of natively unfolded proteins.
Despite these differences, the fibrils formed by different
polypeptides display many common properties including
high content of β-sheet secondary structure forming a core
cross-β architecture in which continuous β-sheets are
formed with β-strands running perpendicular to the long
axis of the fibrils [53].

As in the case of amyloids, proteins incorporated in IBs are
not related either structurally or sequentially and deposi-

tion during heterologous expression in bacteria has been
reported for small, large, monomeric or multimeric pro-
teins. The internal architecture of IBs has long thought by
molecular biologists to be amorphous, despite the fact
that several observations in the early 90's pointed to the
presence of ordered structure in IBs [54-56]. The use of
attenuated total reflectance FTIR in IBs formed by all-α,
all-β or α +β showed that in all cases, even for all-β pro-
teins, significant new β structure, compared to that in the
native conformation, was observed. Interestingly, the
amount of secondary structure in the inclusion body var-
ies from one protein to another, as does the amount of
disordered structure. More recently, others and we have
recapitulated these studies in previously unexplored pro-
tein systems, showing clearly that the intermolecular
interactions leading to aggregation in IBs in the cell
involve β-sheet like interactions [27,57]. Although the
exact nature of the intermolecular interactions is
unknown, and could be different in different IBs, the over-
all FTIR data suggest that the newly formed β-sheets in IBs
are tightly packed with short hydrogen bonds providing
them high stability. These features are reminiscent of
those stabilizing the structure of amyloid fibrils [53]. In
addition, Thioflavin-T and Congo red, two dyes used for
the diagnostic of amyloid structures also bind to IBs, con-
firming thus certain resemblance in the internal organiza-
tion of both kinds of aggregates [27]. Also, even if we still
lack structural information on thermal aggregates purified
directly from bacteria under stress conditions, it has been
shown that in vitro heat denaturation leads to the forma-
tion of thermal aggregates that display the β-sheet signa-
ture as analyzed by FTIR [58] and are also able to bind
amyloid dyes [59].

Despite the fact that the different types of aggregates share
similar characteristics, they are obviously not identical
and exhibit a series of distinctive features. First, most amy-
loid fibrils are SDS-insoluble, whereas SDS can usually
dissolve IBs. This observation is in agreement with the
higher extent of β-sheet content of amyloids relative to
that in IBs, in which the presence of some native or disor-
dered structure can be still detected [27,60]. As a result
amyloids would display more and stronger intermolecu-
lar non-covalent interactions that would provide them
with higher order and stability in front of denaturation,
while sharing similar overall connectivity between
polypeptide chains than this present in IBs. Also, the reg-
ulation of amyloid and bacterial aggregates formation in
vivo appears to be somehow different. In this sense, it has
been demonstrated that in yeast the formation of amy-
loids by the Sup 35 prion is highly dependent on the pres-
ence of the Hsp 104 chaperone [61]. In contrast, the role
of the bacterial Hsp 104 homologue, ClpB, in the regula-
tion of inclusion body formation in E. coli is more contro-
versial, some studies indicating that, as in the case of Hsp
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104, it binds preferentially to the hydrophobic surface of
aggregated protein [62], while others suggesting only a
moderate role in the process of aggregation, which is
mainly controlled by the chaperones DnaK and GroEL
[63]. Interestingly, the bacterial chaperone GroEL is able
to modulate both in vitro [64] and in vivo in mammalian
cells [65] the aggregation of proteins involved in amyloid
pathologies, suggesting that in spite of the constrains
imposed by the different cellular contexts some similitude
may still exist between the mechanisms of bacterial and
eukaryotic protein aggregation.

Regardless of the existence of some structural or func-
tional differences between the aggregates formed in bacte-
ria and those in eukaryotic cells, in both cases there is an
inherent tendency to kidnap misfolded protein in the
interior of such supra-molecular structures. It is suggested
that this is a mechanism evolved to reduce the potential
toxicity of partially folded monomers or small oligomers,
which by exposing large hydrophobic surfaces could inter-
act inappropriately with a wide range of cellular compo-
nents, hampering this way cell function [66]. In these
sense, specific aggregation could be a conserved strategy
playing a cellular protective role.

Sequence modulates protein aggregation
One of the major unanswered questions of protein aggre-
gation is the specificity with which primary sequence
determines both the aggregation propensity and the spe-
cific details of the aggregated structure. The hypothesis
that the ability of proteins to form ordered aggregates is a
general property of the polypeptide chain rather to be lim-
ited to a restricted set of proteins [2] seems reasonable,
especially if the main driving force for aggregation is the
formation of an inter-backbone hydrogen-bonded net-
work leading to the above described β-sheets structures,
since all polypeptides regardless of sequence share the
polypeptide backbone. In this regard, IBs and amyloid
formation abilities has not been associated a priori to par-
ticular protein sequences, being this fact, an additional
obstacle to predict the yield of a given protein in a new
production process or its cellular toxicity. However, in
recent times it is coming clear that sequence modulates
aggregation, giving a chance to control the unwanted pro-
tein deposition phenomena.

A first indication that sequence controls deposition comes
from the observation that not all regions of a polypeptide
are equally important for determining the aggregation
propensities. This way, we have proved recently that very
short specific amino acid stretches can act as facilitators or
inhibitors in the incorporation of globular proteins into
amyloid fibrils [67]. These relevant regions are usually
known as aggregation "hot spots". Aggregation-prone
regions are blocked in the native state of globular proteins

because their side chains are usually hidden in the interior
of the protein hydrophobic core or already involved in the
establishment of the network of native contacts that stabi-
lizes a protein. This is the reason why globular proteins
rarely aggregate from their native states. Destabilization
usually results in an increased population of partially
folded molecules and is well established as a trigging fac-
tor in disorders associated with the deposition of proteins
that are globular in their normal functional states [68].

Accordingly, peptides and proteins involved in the most
prevalent human neurodegenerative diseases are mostly
unstructured within the cell [3]. In these disorders, pro-
tein deposition does not require the unfolding of a glob-
ular native conformation and occurs by direct self-
assembly of the unstructured polypeptide chains, in
which aggregation-prone, usually hydrophobic, regions
are already exposed to solvent. The presence of aggrega-
tion "hot spots" have been already described in the pep-
tides and proteins underlying Alzheimer's, Creutzfeldt-
Jakob disease, or some systemic amyloidogenic disorders
[69-71]. Independent of the native conformation and sta-
bility of the protein, the high level of expression during
recombinant production results in a large number of
polypeptides emerging from the ribosome in at least par-
tially unfolded conformations which usually associate to
form IBs. Even if not yet proved, it is thinkable that the
presence of aggregation prone sequences in these con-
formers will influence at least partially the equilibrium
between aggregated and folded protein during recom-
binant expression. Interestingly, it is observed that pro-
teins assembled into amyloid in vitro usually render
insoluble during recombinant protein expression. For
example, this happens for proteins involved in disease
such us Aβ42 amyloid peptide, β-2-microglobulin, mam-
malian prions and human islet amyloid polypeptide [72-
75].

The study of the effects of mutations on the formation of
amyloid fibrils and IBs also point to the role of sequence
as an aggregation controller. Two types of mutations
should be distinguished according to their ability to desta-
bilize or not significantly the native state of the protein. As
stated before, destabilizing mutations favour aggregation
by originating an ensemble of partially unfolded confor-
mations allowing this way the establishment of inter-
molecular interactions. In addition, it has been shown
that punctual mutations can also facilitate aggregation
without affecting the native state stability when they pro-
mote the conversion of already unfolded or partially
folded polypeptides into oligomeric forms that further
aggregate to form insoluble species. In these cases, protein
aggregation has been found to be tuned by mutations that
change the polarity, the secondary structure propensity or
the net charge of the polypeptide. In general, increases in
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hydrophobicity and β-sheet propensity result in increased
aggregation whereas an increase in the overall net charge
decreases this tendency [24,76,77]. There are a good
number of protein systems in which it has been shown
that point mutations may dramatically affect the amount
of aggregate formation; these include the P22 tailspike
protein, single-chain antibodies, interferon-γ, colicin A,
Che Y, immunoglobulin domains, and interleukin-1β for
IBs formation [43,78-83] and SH3-domains, acylphos-
phatase, amylin, prion peptides, α-synuclein, amyloid-β-
peptide and tau for amyloid formation [25,67,84-88].
Notably, mutant proteins with reduced in vitro amyloid
propensity are expressed usually in E. coli as more soluble
proteins than the natural occurring ones [89], whereas
providing a previously in vitro soluble protein increased
amyloid propensity results in accumulation as IBs during
recombinant expression [90,91]. Moreover, when amy-
loid proteins have been designed de novo, all proteins dis-
playing amyloid properties in vitro accumulated in vivo as
bacterial IBs [92], but the rational introduction of point
mutations that convert these aggregation-prone proteins
into monomeric β-sheet forms allowed their expression in
bacteria in soluble forms [93]. These observations
strongly suggest that both aggregation phenomena are
related and depend in last term on tendency to self-aggre-
gate associated to individual protein sequences. This way,
it appears that the study of bacterial models may contrib-
ute significantly in the future to the understanding of pro-
tein misfolding and aggregation, since they are fast,
simple and biologically relevant experimental systems.
Conversely, it is thinkable that the application of success-
ful anti-depositional strategies derived from the numer-
ous studies dealing with amyloid fibril formation to the
less explored area of protein aggregation within the cell
may provide clues to optimize biotechnological protein
production. In this regard, simple sequence-based com-
putational approaches have been developed very recently
which permit to predict with reasonable accuracy the
aggregation propensity of polypeptides [94-97]. In partic-
ular, TANGO a statistical mechanics algorithm based on
the physico-chemical principles of β-sheet formation,
extended by the assumption that the core regions of an
aggregate are fully buried, accurately predicts the aggrega-
tion propensity of a data set of more than 200 different
peptides [95,96]. Without doubt, these new algorithms
born in the sinus of the amyloid area are going to be very
useful tools for the rational modification of polypeptides
for biotechnological applications, opening the door to a
fully automated, sequence-based design strategies to
improve the solubility of proteins of industrial interest.

Perspectives: Towards rational design of protein solubility
There is an increasing need for the efficient production of
genetically engineered proteins as a result of the success of
the genome sequencing projects. From the different host

that may be used to produce this large set of proteins, bac-
teria, mainly E. coli, still appears as the default option, par-
ticularly when the biological activity of the protein does
not depends on post-translational modifications. E. coli is
fast and inexpensive to culture, easy to handle and manip-
ulate genetically and usually renders high levels of recom-
binant products. However, expression of recombinant
proteins in E. coli often results in the accumulation of the
protein product in inactive IBs in the cell. The recovery of
bioactive proteins from IBs is a complex process. Still, IBs
formation is such a frequent phenomena in protein pro-
duction that a large number of in house and commercial
protocols and solutions have been developed in order to
obtain pure, active and soluble protein from IBs [17,98].
Nevertheless, the purification of protein from IBs usually
requires the optimization of refolding conditions for each
individual target, the recovery yields are usually poor and
one should be sure that the refolding procedure does not
affect the integrity and activity of the recovered protein. In
addition, purification of over-expressed soluble proteins
is faster and cheaper than obtaining it in a pure form from
IBs, especially at large scale. Overall, optimizing the levels
of soluble protein is nowadays a more attractive strategy
to increase pure and active protein yield than recovering
highly expressed protein in aggregated form [99].

The observation that natural proteins are usually soluble
in their biological environments may help to maximize
soluble expression levels in recombinant approaches. This
way, nature has provided proteins with a reasonable con-
formational stability in the native state, in which most of
the hydrophobic residues, amide and carboxyl groups and
aggregation-prone sequence stretches are buried or
involved in intra-molecular interactions. This appears as a
very successful strategy used to avoid aggregation, since
few proteins are able to aggregate from its stable native
conformation. Along with this, over-stabilized proteins of
thermophilic organisms are usually expressed in soluble
forms during recombinant protein production [100-102]
and a positive correlation between thermostability and
solubility has been recently reported [103]. In addition,
the analysis of protein databases has shown that highly
aggregating sequences are less frequent in proteins than
innocuous amino acid combinations and that, if present;
they are surrounded by amino acids that disrupt their
aggregating capability [94]. These evidences support the
suggestion that natural protein sequences have evolved in
part to code for structural characteristics other than those
included in the native fold, such as avoidance of aggrega-
tion. According to this, protein aggregation results from a
failure of the natural protective strategies under special
circumstances, such as recombinant protein expression.

Using rational design to engineer target proteins in order
to emulate and reinforce natural anti-aggregation mecha-
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nisms, taking advantage of the above mentioned compu-
tational methods to predict aggregation, appears thus as a
reasonable approach to overwhelm protein deposition
and optimizing the levels of soluble protein in biotechno-
logical processes. Few, but successful experimental steps
have been taken already in this direction. First, improving
thermodynamic stability by rational mutation has been
shown to render more soluble heterologous protein ver-
sions [104]. Second, it has been proven that decreasing
the intrinsic propensity to aggregate of the partially
unfolded state of an aggregation-prone protein by modu-
lating the net polypeptide charge and introduction of elec-
trostatic repulsions also results in increased solubility
[105]. Finally, the analysis, identification and disruption
by mutation of sequential "hot spots" of aggregation has
allowed the recovering from the E. coli supernatant of pre-
viously aggregated polypeptides [67,93,106].

Conclusion
The raising interest to understand the mechanisms under-
lying protein aggregation in the cell has crystallized in a
good number of recent relevant studies in an area whose
biological significance is coming of central importance in
biotechnology. The scenario emerging from these efforts
is especially encouraging because one can foresee a future
in which rational design of protein solubility based on
natural laws will allow to tune aggregation, permitting to
over-pass the main bottleneck in high throughput expres-
sion projects.
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