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Abstract

Industrial development may result in the increase of environmental risks. The enzymatic
transformation of polluting compounds to less toxic or even innocuous products is an alternative
to their complete removal. In this regard, a number of different redox enzymes are able to
transform a wide variety of toxic pollutants, such as polynuclear aromatic hydrocarbons, phenols,
azo dyes, heavy metals, etc. Here, novel information on chromate reductases, enzymes that carry
out the reduction of highly toxic Cr(VI) to the less toxic insoluble Cr(lll), is discussed. In addition,
the properties and application of bacterial and eukaryotic proteins (lignin-modifying enzymes,
peroxidases and cytochromes) useful in environmental enzymology is also discussed.

Introduction

Chromate reductases are a group of enzymes that catalyze
the reduction of toxic and carcinogenic Cr(VI) to the less
soluble and less toxic Cr(III). These proteins have recently
raised enormous interest because of their central role in
mediating chromium toxicity and their potential use in
bioremediation and biocatalysis. Chromate (Cr(VI)) is
generated as by-product of various industrial processes
such as leather tanning, chrome-plating, pigment produc-
tion and thermonuclear weapon manufacture [1]. Its high
water solubility facilitates a rapid leaching, provoking a
wide dispersion capable to contaminate drinking water
supplies. Therefore, the characterization of enzymes that
reduce chromate, as well as the study of their induction
patterns and gene expression are relevant to complete our
understanding of chromium metabolism in order to min-
imize the toxicity of this compound in the environment.

The chromate-reducing activities have been located in the
cell membrane or in the cytoplasm of many bacteria [2].

Their ubiquities in many different organisms suggest that
they might share a common role in, for example, physio-
logical redox sensing or detoxification. Recently, two
novel dimeric flavoproteins with chromate reductase
activity, ChrR (from Pseudomonas putida) and YieF (from
E. coli) have been purified and characterized [1]. These
enzymes were able to transform chromate to the less toxic
Cr(I1T). However, while ChrR was not a pure two-electron
reducer of chromate, YieF was able to catalyze a three-elec-
tron reduction. The role of ChrR and YieF in protection
against chromate toxicity was also investigated and the
results suggested that both enzymes may have an impor-
tant role in protection against chromate toxicity [1].

The ability of some microorganism and their enzymes to
remove toxic pollutants has been recently reviewed [3-6].
The identification and characterization of the degradative
pathways functioning in microorganism have been the
starting point for biotechnological and environmental
applications [3].
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Discussion

The intensive industrial and agricultural development has
been considered as responsible for a widespread contam-
ination of soil, air and groundwater with toxic pollutants,
which are harmful for human health and the environment
[6]. These contaminants enter the environment through
different paths, which may include direct application,
combustion processes and natural emissions. Major con-
taminants are polycyclic aromatic hydrocarbons (PAHs),
petroleum hydrocarbons, phenols, polychlorinated
biphenyls, azo dyes, organophosphorus pesticides and
heavy metals [3]. In particular, Cr(VI) is a common pol-
lutant due to the use of chromium compounds in tanning
and other industries. Chromate shares structural similari-
ties with sulphate ion (SO, 2) and may be introduced in
eukaryotic and bacterial cells by the sulphate transport
system [1]. In bacteria, flavoenzymes such as glutathione
reductase reduce Cr(VI) by a one electron transfer leading
to the formation of the highly unstable radical Cr(V) and
the flavin semiquinone form of the enzyme. Both species
undergo a further redox cycle in which Cr(VI) is re-gener-
ated by one-electron transfer to oxygen, producing and
accumulating reactive oxygen species (ROS). The appear-
ance of relatively large quantities of ROS, and the conse-
quent oxidative stress are responsible for the toxic effects
and cellular damage attributable to the presence of Cr(VI).
On the other hand, trivalent chromium Cr(III) is water
insoluble, less bio-available and less toxic [1]. Thus, the
strategies employed to eliminate chromate toxicity would
involve its reduction to Cr(III) by chemical or biological
means.

While chemical methods are expensive at the large scale
required to decontaminate waste sites, microorganisms
are commonly used for environmental purposes through
the exploitation of their natural catalytic activities. Enzy-
matic treatments have a minimal impact on ecosystems,
as they present no risk of biological contamination. Fur-
thermore, enzymes can act over a wide range of pH, tem-
perature and ionic strength and also may be active in the
presence of high concentrations of organic solvents in
which major pollutant molecules are soluble [6].

Several bacterial enzymes that can be used in bioremedia-
tion have been described; they include mainly oxidative
enzymes such as mono-and dioxygenases but their use is
restricted by the need of cofactors, which can only be effi-
ciently regenerated inside the microorganism [6]. In the
last two decades bioremediation has explored the use of
the catalytic machinery of white rot fungi to remove toxic
pollutants. White rot fungi comprise all those fungi capa-
ble to degrade lignin, a polyphenolic polymer highly
resistant to bacterial biodegradation. Many strains from
the genera Pleurotus, Bjerkandera, Phanerochaete, and Tram-
etes produce extracellular enzymes with ligninolytic activ-
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ity. These enzymes are often referred to as lignin-
modifying enzymes and include mainly Lignin peroxi-
dase, Manganese dependent peroxidase and laccase [4],
though some authors have reported other related enzymes
such as a Mn-independent MnP activity [7]. Besides
lignin-modifying enzymes, several other enzymes such as
the heme-containing peroxidases, chloroperoxidase and
horseradish peroxidase, and the non-enzymatic hemepro-
teins, hemoglobin and cytochrome ¢, are able to oxidize
organic compounds in the presence of hydrogen peroxide.
An interesting feature of these enzymes is their remarkable
low specificity towards substrates that arises from their
own catalytic mechanism. In vivo, peroxidases use endog-
enous low-molecular weight compounds, called media-
tors, to generate free radicals capable to carry out a wide
variety of reactions such as oxidations, bond cleavage,
hydroxylations, polymerization and demethylation [4].
Several research efforts have been focused on the ability of
peroxidases to degrade pollutants such as PAH's, azo dyes
and organophosphorus pesticides [8-10].

Strong regulations have been established to push the
industrial sector to develop new programs destined to a
greater environmental care. Nowadays, industry is
strongly dependent on petroleum and its derivatives as a
source for raw materials and energy. There are still large
reserves of crude oil, which are heavy oils with a high con-
tent of sulphur and heavy metals. The use of these fuels
generate a great pollution, being one of their most impor-
tant environmental impacts the formation of the acid rain
which takes place by the sulphur oxide production during
combustion. Redox enzymes may encounter fields of
application not only in the bioremediation of polluted
environments, but also in the development of novel clean
technologies to avoid or diminish the environmental con-
tamination. Biocatalytic methods for sulphur removal
from straight-run diesel fuel have been developed [11].
The removal of heavy metals from the petrophorphyrin-
rich fraction of asphaltenes has also been reported
[12,13]. Thus, enzymes can play an important role in the
development of alternative or complementary biotechno-
logical processes with potential application in polluting
industries.

Despite their potential application in bioremediation and
clean processes, the activity of oxidative enzymes may be
limited, among other factors, by the low bioavailability of
the pollutants and by the relatively low operational stabil-
ity of the enzyme under the environmental conditions
required to carry out the bioremediation. Several strate-
gies to increase the catalytic activity of peroxidases have
been proposed, including chemical modification of the
enzyme [14,15] and genetic tools [16]. Recently, with the
cloning and expression in suitable hosts, larger amounts
of the desired enzymes may be produced, facilitating their
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characterization and their direct use in environmental
applications. Further, through the use of novel techniques
such as directed molecular evolution [17], proteins
designed specifically for bioremediation could be made
available in a not distant future. In the last few years there
has been an extensive research in the application of labo-
ratory evolution for tailoring redox enzymatic systems
(laccases, peroxidases, cytochrome P450 monooxygen-
ases) to improve their activities and stabilities against
temperature or organic solvents [18-20]. The application
of this powerful approach for bioremediation issues is
coming up, but first a big effort in the high-throughput
(HTP) screening methodology must be done. So far, little
has been reported on the optimisation of suitable HTP for
the detection of xenobiotics [21]. Therefore, the success in
the enzyme evolution for environmental issues will be
highly dependent on the automation of HTP.

Microbial genomics is a new emerging field that enables
us to look at parts of the environment that were, until
recently, masked to us. Present estimations suggest that
more than 99% of the microorganisms in most environ-
ments (also those subjected to chronic contamination)
are not amenable to grow in pure culture, and thus very
little is known about their enzymatic activities. We can
now access the genomes of non-culturable microorgan-
isms through creating the "so-called" metagenomic-librar-
ies and identify protein-coding genes and biochemical
pathways that will shed some light on their properties and
function [22]. New enzymatic systems found in contami-
nated areas can be used as parental types for some rounds
of directed evolution with the main aim of improving the
catalytic performance for their use towards solving a
broad range of environmental problems.

Conclusion

The even more strict regulations on hazard wastes has
forced to the development of new environmentally com-
patible strategies to substitute or complement the conven-
tional ones. Chemical technologies are expensive when
applied to large scale and in many cases are technically
not feasible. On the other side, by exploitation of the huge
diversity of natural activities and metabolic pathways pre-
sented by microorganisms, new strategies can be envis-
aged. The use of oxidative enzymes as biocatalysts for
environmental purposes presents a promising potential
due to their low specificity and low energetic require-
ments. However, further characterization of new biocata-
lysts is needed. The use of novel technologies such as
molecular directed evolution may have a large impact in
the tailoring and further application of enzymes not only
for bioremediation but also for the development of
friendly environmental technologies.
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