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Abstract

A growing number of insights on the biology of bacterial inclusion bodies (IBs) have revealed intriguing utilities of
these protein particles. Since they combine mechanical stability and protein functionality, IBs have been already
exploited in biocatalysis and explored for bottom-up topographical modification in tissue engineering. Being fully
biocompatible and with tuneable bio-physical properties, IBs are currently emerging as agents for protein delivery
into mammalian cells in protein-replacement cell therapies. So far, IBs formed by chaperones (heat shock protein
70, Hsp70), enzymes (catalase and dihydrofolate reductase), grow factors (leukemia inhibitory factor, LIF) and
structural proteins (the cytoskeleton keratin 14) have been shown to rescue exposed cells from a spectrum of
stresses and restore cell functions in absence of cytotoxicity. The natural penetrability of IBs into mammalian cells
(reaching both cytoplasm and nucleus) empowers them as an unexpected platform for the controlled delivery of
essentially any therapeutic polypeptide. Production of protein drugs by biopharma has been traditionally
challenged by IB formation. However, a time might have arrived in which recombinant bacteria are to be
engineered for the controlled packaging of therapeutic proteins as nanoparticulate materials (nanopills), for their
extra- or intra-cellular release in medicine and cosmetics.
Since the full acknowledgment of bacterial inclusion
bodies (IBs) as formed by functional polypeptides [1,2],
enzyme-based IBs have been exploited as naturally
immobilized catalysts with high operational stability
[3,4]. Pull-down peptides, incorporated to target proteins
as end-terminal fusions, favor the deposition of properly
folded polypeptides in Escherichia coli as functional IBs
[5-7]. This is especially relevant as these tags can drive
protein deposition even under production conditions
that favor protein folding (eg. suboptimal growth
temperature), then enriching IBs with biologically active
polypeptides [1,8-10].
Being mechanically stable, purified IBs have been re-

cently observed as promising nanoparticulate materials
[3,11-16], whose biological and nanoscale properties can
be modulated by the appropriate selection of the E. coli
host strain and of production/handing conditions [3]. In
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particular, IBs have been explored as agents for topo-
graphical modification in tissue engineering [11,17-19].
Being bio-adhesive, they favor mammalian cell attachment
to IB-decorated surfaces but also offer convenient mech-
anical effectors within the mammalian cell sensing range
that stimulate ERK-mediated cell proliferation [17]. No
signs of toxicity or cell apoptosis have been ever observed
in these studies. Previously reported toxicity on mamma-
lian cells upon exposure to high amounts of IBs [20] could
be linked to obsolete purification protocols leaving IBs
contaminated with living bacterial cells or toxic debris.
Interestingly, in bottom-up IB decoration, the mammalian
cell membrane is in intimate contact with IBs [11] and cell
sensing agents (filopodia/lamelipodia) are stimulated in
presence of substrate IBs [17].
Taken together, the relatively cost-efficient production/

downstream of IBs in E. coli, their biological activity [10],
the tunability of their biological and nano-mechanical
properties [3], their biocompatibility in cell interfaces
[18,19,21], the release of functional IB proteins in aqueous
conditions [8,22] and the apparent avidity of IBs for mam-
malian cell membranes [11,17] drives to the intriguing
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Figure 1 A. 40-Section confocal xyz stack of HeLa cells exposed to GFP IBs, showing IB cell penetrability. Cell membrane is labeled in red
and the nuclear material is seen in blue. IBs are observed under their natural green fluorescence as discrete particulate entities. B. GFP IBs
embedded or crossing the nuclear membrane are shown in two stack versions, in which the cell membrane is either shown (left) or hidden
(right) for clarity. Modified from reference [25] (Copyright Wiley-VCH Verlag GmbH & Co, KGaA. Reproduced with permission).
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question about if these protein particles could deliver em-
bedded therapeutic proteins into mammalian cells. If so,
these bacterially produced nanoparticles could act as
nanopills, that is, nanosized clusters of functional and bio-
available protein drugs. Recombinant E. coli cells would
then turn into convenient factories for the tailored pack-
aging of protein drugs as nanopills, since essentially any
protein (with or without therapeutic potential) can be pro-
duced as bacterial IBs [23]. The same limitations defining
the suitability of soluble proteins produced in E. coli as
biopharmaceuticals (eg. biological activity depending on
post-translational modifications, missing in bacteria, or
proteolytic instability) would be relevant to bacterial
nanopills.
The response to this exciting question was disclosed to

be positive in 2010 [24]. Upon plain addition to the cul-
ture media, Hsp70 IBs prevented cis-platinum-induced
apoptosis. In a recent follow-up of this pioneering report
[25], rescue of cell viability has been observed when ex-
posing serum-starving cells to leukemia inhibitory factor
(LIF) IBs in absence of any sign of toxicity. Also, dihydro-
folate reductase (DHFR) IBs were able to complement
DHFR cell deficiency, and catalase (CAT) IBs rescued
mammalian cells from oxidative stress [25]. To account
for the observed protein replacement effect, especially in
the case of the intracellular acting DHFR and Hsp70, IBs
have to cross the cell membrane. Indeed, and depending
on the IB-forming protein, between 35% and 70% of
exposed cells fully (and naturally) internalize bacterial
nanopills resuspended in the culture media 4 h after ex-
posure (Figure 1A). Even more, images of IBs reaching
the cell nucleus were common under confocal micros-
copy observations (Figure 1B), although the fraction of
IB protein accumulating in the nuclear compartment
remains to be quantitatively determined. In a more re-
cent study published in Microbial Cell Factories [26],
IBs formed by keratin 14 (K14) restore the formation of
cytoskeleton in K14-deficent cells and, expectedly, the
cell mechanical properties. In this case, electroporation
facilitated intracellular delivery of K14 IBs.
The precise mechanisms by which IBs get naturally em-

bedded and cross both cellular and nuclear membranes
should be investigated, but we might anticipate that hydro-
phobic, solvent-exposed protein patches in IBs might have
a role in there, as it occurs with cell penetrating peptides of
common use for intracellular drug delivery [27]. Also, how
functional proteins are released from IBs once in the cyto-
plasmic and nuclear compartments deserves additional
analysis, to set a basis for further improvement of IB prop-
erties through protein or process engineering. A recent
model proposing a cotton-like structure for bacterial IBs
[13] figures out IBs as mainly composed by releasable
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soluble protein, entrapped into the gaps of a more stable
scaffold.
In this regard, and being natural products, bacterial IBs

are not homogeneous in their compositional analysis. IBs
are in general almost exclusively formed by the target pro-
tein with little contamination of other proteins [12,28,29].
There are also strong indications that upon co-expression
of different aggregation-prone proteins these species do
not co-aggregate, but deposit into distinguishable IBs
[30,31]. However, truncated versions of the target protein
[32,33], other plasmid-encoded proteins [34,35], but also
defined host cell proteins [34,36] including folding assist-
ant proteins [36-39] may get entrapped within or asso-
ciated to bacterial IBs. Mostly, the majority of host cell
and plasmid derived contaminants (e.g. plasmid DNA,
lipids, membrane components) in IB preparations reflect
unspecific adsorption and co-precipitation of cell debris
during IB purification [33]. Most of these contaminants
can be removed by thorough purification procedures
[40-42], and new protocols for IB purification have been
recently communicated that permit to obtain these parti-
cles relatively free from contaminating cell debris, and
specially from living bacteria escaping from cell lysis
[41,42].
As amyloidal versions of hormones are natural reser-

voirs for slow release of proteins in mammalian tissues
and organs [43,44], respective hormones produced in form
of IBs using recombinant bacterial expression systems
IBs:
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Figure 2 Recombinant bacteria are conventionally exploited to
produce soluble proteins for both Biotechnological and
Pharmaceutical industries. Alternatively, recombinant bacteria can
be observed as protein production-packaging factories whose
products are nanostructured proteinaceous entities formed by
functional species (IBs). Despite their limitations, IBs show a
spectrum of properties that make them appealing as immobilized
catalysts and as biocompatible materials in tissue engineering. The
revealing of the therapeutic potential of bacterial IBs as nanopills for
protein replacement cell therapy expands the opportunities for the
development and tailoring of IBs as desired bioproducts with
commercial value.
may also represent a versatile form for sustained protein
delivery. However, the diversity of protein categories so far
successfully administered as bacterial nanopills (enzymes,
chaperones, structural proteins and grow factors) prompt
us to propose the Nanopill concept as a generic emerging
platform for drug delivery and protein-based cell therapy.
In this regard, recombinant bacteria would be used as fac-
tories not only for protein production but also for protein
packaging as nanostructured entities for further delivery
(Figure 2). Furthermore, as we have shown that high IBs
doses are well tolerated by mice models upon oral admin-
istration [25], further exploration of bacterial nanopills for
innovative therapies in vivo will benefit from a solid start-
ing point. How the potential uses of IBs in emerging med-
icines will be bounded by regulatory constrictions cannot
be currently anticipated (again, being these particles het-
erogeneous natural products). However, pharmaceutical
companies are facing critical challenges in reducing R&D
expenses and they pursue the incorporation of new and
innovative drugs, since their marketed products are reach-
ing patent life expiration. The Nanopill system would
open complete new research and market fields, comple-
mentary to the conventional multibillion dollar thera-
peutic protein-drug business currently in force.

Conclusions
Bacterial IBs show a great and unexpected potential as
cost-effective protein delivery agents. Available genetic
and process tools permit the tailoring of relevant IB
properties and prompt an immediate investigation of
the new opportunities offered by IBs as nanopills, for
advanced therapies in translational and innovative
medicines.
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