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Abstract

Background: The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol
extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via
pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of
substrates into the desired products. However, chemical production titer or yield remains difficult to predict based
on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S.
cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent
the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation
modes, nutrition and oxygen availability.

Results: Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering
methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical
models with numerical and categorical variables to predict production yield. Statistically, the models showed that:
1. Chemical production from central metabolic precursors decreased exponentially with increasing number of
enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of
gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable
amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4.
Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value <
0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various
chemicals using the linear model were in fairly good agreement with the experimental values. The model generally
underestimated the ethanol production as compared to other chemicals, which supported the notion that the
metabolism of Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation.

Conclusions: We generated simple mathematical models for first-order approximation of chemical production
yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and
cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic
engineers to synthesize desired products, but also be useful to compare the biosynthesis performance among
different research papers.

Background
Producing small-molecule chemicals from microbial bio-
catalysts offers several advantages. Unlike conventional
chemical synthesis which are heavily dependent on pet-
roleum-derived substrates, microbes are able to use
renewable materials to synthesize many commodity

chemicals and fuels [1] (Figure 1). Due to its scalability,
microorganisms are also suitable platforms to synthesize
pharmaceutical molecules that are conventionally pro-
duced from extracting large amounts of natural
resources. Among many industrial microorganisms, the
baker’s yeast, i.e., S. cerevisiae continues to emerge as a
preferred production platform [2]. S. cerevisiae is typi-
cally known for its robustness in fermenting sugars into
alcohol. In the recent past, it has also gained importance
as a heterologous platform to synthesize many precur-
sors of commodity chemicals and pharmaceuticals [1].
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In general, chemical production using whole-cell bioca-
talysts are achieved by genetic engineering to extend the
substrate range of an existing biosynthetic pathway or to
introduce new biosynthetic pathways (either derived
from other organisms, or completely novel). Rational
metabolic engineering approaches then analyze the cel-
lular metabolism and improve production titer by over-
expressing rate-limiting enzymes or deleting competing
pathways. In general, the actual yield of chemical pro-
duction is not easily predicted due to the complexity of
biological systems and dependency of cultivation

conditions. Biological complexities not only include
intrinsic properties (such as enzyme kinetics and sub-
strate specificity), but also include enzyme compartmen-
talization, intracellular signaling, and metabolite
transport between eukaryotic cell organelles. Therefore,
strain engineering requires multiple rounds of trial-and-
error experiments to perform the optimum combination
of genetic manipulations. In the present work, we
sought to develop mathematical models that could pro-
vide a priori estimation of chemical production yield
from engineered S. cerevisiae when given a set of
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Figure 1 Metabolic pathways for the biosynthesis of major products. The blue box represents central metabolism and the yellow box
represents secondary metabolism. Solid arrows signify single step reaction and dotted arrows (®) signify multiple steps. Abbreviations: ACoA -
Acetyl-CoA; DAP - Dihydroxyacetone-Phosphate; DAHP - 3-Deoxy-D-Arabino-Heptulosonate-7-Phosphate; DHA - Dihydroxyacetone; F6P -
Fructose-6-Phosphate; FBP - Fructose 1,6-bisphosphate; G6P - Glucose-6-Phosphate; GADP - Glyceraldehyde-3-Phosphate; Oxa - Oxaloacetate; Oxo
- 2-Oxoglutarate; PEP - Phosphoenolpyruvate; PHB - Poly[(R)-3-hydroxybutyrate]; pHCA - p-Hydroxycinnamic acid; R5P - Ribose-5-Phosphate; Ru5P
- Ribulose-5-Phosphate; Suc - Succinate; X5P - Xylulose-5-Phosphate.
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parameters, namely the number of steps in the biosyn-
thetic pathway of interest, genetic modifications, cultiva-
tion conditions, and nutrient and oxygen availability.
The coefficients of these parameters were obtained from
the regression of the yields and production conditions
reported by recent literatures. Such model predicted the
empirical yields that were lower than the theoretical
productivities under “ideal” conditions. The model
results could give metabolic engineers guidelines for
increasing desired products and for reducing futile
attempts.

Model development
The model defined several important parameters that
influenced the efficiency of chemical production from
microbial hosts. The first group of parameters accounted
for the number of enzymatic steps in the biosynthetic
pathway of interest since it had been shown that this
parameter was often inversely correlated with microbial
product yield [3]. To enumerate the number of enzymatic
steps, we introduced two numerical variables in our
model, i.e. PRI and SEC. The variable PRI specified the
number of enzymatic steps in primary metabolism
(Figure 1), e.g. glycolysis that is required to convert sugar
(glucose or galactose) to pyruvate. The variable SEC spe-
cified the number of enzymatic steps in the subsequent
pathway (typically belongs to secondary metabolism),
which catalyzed the conversion of central carbon inter-
mediate into the final product of interest. The next group
of variables was to capture the effects of genetic modifi-
cation. Various genetic strategies have been used to
implement metabolic engineering [4,5]. For example,
promoters with different strength influence production
level. However, for the sake of simplifying our model,
variations of genetic components used in metabolic engi-
neering strategies were lumped into two ordinal vari-
ables, i.e. OVE, and KNO. OVE signified the introduction
of multiple copies of genes of native or heterologous ori-
gin for the purpose of improving production level. KNO
signifies the alteration of branch pathways that might
compete with the pathway of interest [6,7]. We further
sub-categorized OVE based on the number of modified
genes into OVEC1 (without “pushing” pathway flux),
OVEC2 (enhancing 1~2 enzyme activities), and OVEC3
(improving a number of key enzyme functions). KNO
was also categorized by KNOC1 and KNOC2 (i.e., without
knockout or with knockout, respectively). Table 1
explained the specifications for each sub-category.
The yield of metabolite production is also a function

of cultivation conditions and nutrient availability. For
instance, production of metabolites from a bioreactor is
often higher than a shaking flask, due to the increased
efficiency of mass transfer of oxygen, substrates, and
nutrients. Moreover, culture acidification that often

generates cytotoxicity and maintenance burden to the
microbial hosts can be mitigated in a bioreactor by
automated pH control. Based on these basic properties,
we introduced the variable CUL to represent the general
property of a cultivation condition. We also introduced
the variable OXY and NUT to capture the effects of
oxygen availability and nutrient supplementation,
respectively [8-10]. Moreover, the variable INT captured
the effect of addition of a secondary carbon source
which served as a precursor or an intermediate metabo-
lite of the pathway of interest.
Several assumptions were made to simplify our model

development. A) Yield calculation was based on the
conversion of major carbon substrate to final product if
multiple nutrient sources were supplemented (e.g., yeast
extract was not treated as the carbon source). B) We
calculated the yields based on two factors: initially
added carbon substrate in the culture and final mea-
sured product. We neglected the unused carbon sub-
strate that remained in the end of the production. C)
To calculate enzymatic steps from the carbon source,
the model only considered the key route from the major
substrate (mostly glucose) to the final products (enzyme
steps for co-factors or ATPs synthesis were neglected).
D) For product synthesis promoted by the addition of
an intermediate, we had no means of differentiating the
carbons derived from added precursor or from the car-
bon substrate (i.e., glucose). To account for the contri-
bution from both carbon sources, the yield calculation
was assumed to be an arithmetic mean of the two yields
(One yield was based on substrate, e.g., glucose, and the
other yield was estimated from the intermediates).
Meanwhile, the number of primary steps or secondary
steps were also assumed as an arithmetic mean of two
data sets (one variable was counted from substrate; the
other variable was counted from the intermediate).
Biochemical systems theory [5] states that reaction

rates (vi) can be described by a general power law
expression of the type:

vi = αi

∏

j

X
gij
j (1)

Where Xj represents the system variables and the
parameters ai, gij are the constants. Equation (1) yields a
linear form in logarithmic coordinates. Based on similar
assumptions, our model for yield prediction used system
variables (i.e., numerical or categorical variables related
to yeast biosynthesis) to describe the relative carbon
flux to the final products.

log10Y = β0 + βPRIPRI + βSECSEC + βOVE,C2OVEC2 + βOVE,C3OVEC3 + βKNO,C2KNOC2+

βNUT,C2NUTC2 + βINT,C2INTC2 + βCUL,C2CULC2 + βOXY,C2OXYC2
(2)

In Equation 2, log10 Y was the dependent variable which
represented production yield (mol C in product/mol C in
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primary substrate), given each independent variables bi
[11]. We defined b0 as the intercept in Equation 2, which
represented the combined contribution of Category 1 of
all ordinal variables. b0 was defined as:

β0 = βOVE,C1 + βKNO,C1 + βNUT,C1 + βINT,C1 + βCUL,C1 + βOXY,C1 (3)

The ordinal variables (using a binary system) were
assigned a value of one if and only if the condition fitted
the category in Table 1. Otherwise, the ordinal variables
were assigned a value of 0 [12]. (2) To acquire the coef-
ficients in Equation 2 and 3, we compiled data from
~40 publications which described the production of che-
micals by S. cerevisiae under various experimental con-
ditions. Table 2 summarized the categories assigned to
these experimental conditions and the yield of product
from our best judgment. Using these data, we performed
regression analysis to fit the model via the software
package R [13] to find the regression coefficients and P-
values. For this study, a variable was statistically signifi-
cant (90%) if its P-value was below 0.1.

Result and Discussion
We constructed simple models which linked several
numerical and ordinal variables that affected the yield of
chemical production from S. cerevisiae. These ordinal
variables consisted of the number of modified genes or
pathways (OVE), the number of gene knockouts in
known competitive pathways (KNO), nutrient source
(NUT), intermediate (INT), cultivation mode (CUL),
and oxygen availability (OXY). We described the yield
of chemical production as the summation of these inde-
pendent variables in Equation 2. We fitted Equation 2
and determined the coefficients of the variables using

linear regression analysis of ~40 compounds. Although
multiple data of production yields were often reported
in each literature, the model only considered the best
yield under a denoted experimental condition. Then, all
experimental conditions were categorized by numerical
and ordinal variables. The linear regression coefficients
obtained for Equation 2 were given in Equation 4, such
that:

log Y = −1.53 − 0.01 PRI − 0.19 SEC + 0.007 OVEC2 + 0.52 OVEC3 + 0.31 KNOC2 + 0.73

NUTC2 + 0.77 INTC2 + 0.51 CULC2 + 0.27 OXYC2
(4)

The accuracy of obtained coefficients in Equation 4 was
evaluated based on R2 and the P-value. Here, we used a
P-value of 0.1 as the limit below which the result was
considered significant [14]. Out of the eight variables spe-
cified in our model, SEC, OVE, KNO, NUT, INT and
CUL had P-value of less than 0.1. The summary of the
P-value of each variable was listed in Table 3. Figure 2A
showed a plot of the production yields obtained experi-
mentally and those obtained from model prediction for
the corresponding conditions. The correlation of this
model to the dataset had an R2 value of 0.55, which
reflected the moderate discrepancy between reported
yields and the model-predicted yields. Figure 2B plotted
the residuals of model fitting. The residuals appeared to
scatter around zero randomly, so the linear model was
proper to describe the experimental data.
Interestingly, the number of enzymes in the primary

pathway (PRI) did not significantly affect production yield
(P-value = 0.76) (Table 3). This suggested that rate-limit-
ing steps to increase chemical production flux often lay in
the downstream pathway of central metabolism. The coef-
ficient of SEC was negative. This suggested that the length
of a pathway downstream of central metabolism negatively

Table 1 Ordinal variables used in the linear regression model

Ordinal variables Category 1
(subscript C1)

Category 2
(subscript C2)

Category 3
(subscript C3)

OVE: number of modified
genes or pathways

No modified genes or pathways were present. One or two modified genes or
pathways were present.

More than two modified
genes or pathways were
present.

KNO: number of gene
knockouts in known
competitive pathways

No gene knockouts were performed. Gene knockouts were performed.

NUT: nutrient source Fermentation occurred in defined medium
(only including trace amounts of amino acids
or vitamins)

Fermentation occured in a very rich
medium.

INT: Intermediate Intermediate was not added Intermediate was added

CUL: cultivation mode Fermentation occurred in a shaking flask. Fermentation occurred in a batch, fed-
batch, or continuous feed bioreactor.

OXY: oxygen conditions Fermentation occurred in aerobic conditions. Fermentation occurred under oxygen-
limited conditions (anaerobic or micro-
aerobic).

Note: the input of ordinal variables was specified using a binary system, 1 and 0. When a category (e.g., overexpression Category 2) was applied, the value 1 was
assigned to OVEc2. Otherwise, the value 0 was assigned.
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Table 2 Dataset used for the linear regression

Reference Product Yield Primary
Step

Second
Step

OVE_C2 OVE_C3 KNO_C2 NUT_C2 INT_C2 CUL_C2 OXY_C2

[41] (E, E, E)-Geranylgeraniol 0.00025 10 10 1 0 0 1 0 0 0

[41] (E, E, E)-Geranylgeraniol 0.014 10 10 0 1 0 1 0 0 0

[41] (E, E, E)-Geranylgeraniol 0.047 10 10 0 1 0 1 0 0 0

[41] (E, E, E)-Geranylgeraniol 0.018 10 10 0 1 0 1 0 0 0

[41] (E, E, E)-Geranylgeraniol 0.031 10 10 0 1 0 1 0 0 0

[41] (E, E, E)-Geranylgeraniol 0.058 10 10 0 1 0 1 0 0 0

[41] (E, E, E)-Geranylgeraniol 0.14 10 10 0 1 0 1 0 1 0

[42] 1,2-Propanediol 0.014 4 3 1 0 0 1 0 0 0

[43] 1,2-Propanediol 0.010 4 3 1 0 0 1 0 1 0

[43] 1,2-Propanediol 0.026 4 3 1 0 0 1 0 1 0

[44] 5-epi-aristolochene 0.010 10 9 1 0 1 1 0 0 0

[44] 5-epi-aristolochene 0.0090 10 9 1 0 1 1 0 0 0

[45] Acetate 0.13 9 2 0 0 1 0 0 1 0

[46] Acetate 0.015 9 2 0 0 1 0 0 1 0

[47] Acetate 0.26 9 2 0 1 0 0 0 0 1

[48] Amorphadiene 0.00049 12 9 1 0 0 0 0 0 0

[48] Amorphadiene 0.0020 12 9 1 0 0 0 0 0 0

[48] Amorphadiene 0.0040 12 9 1 0 1 0 0 0 0

[48] Amorphadiene 0.011 12 9 1 0 1 0 0 0 0

[48] Amorphadiene 0.016 12 9 0 1 1 0 0 0 0

[48] Amorphadiene 0.016 12 9 0 1 1 0 0 0 0

[49] Amorphadiene 0.0080 12 9 1 0 1 0 0 0 0

[49] Amorphadiene 0.0090 12 9 0 1 1 0 0 0 0

[49] Amorphadiene 0.011 12 9 0 1 1 0 0 0 0

[49] Amorphadiene 0.013 12 9 0 1 1 0 0 0 0

[48] Artemisinic acid 0.0030 12 10 0 1 1 0 0 0 0

[48] Artemisinic acid 0.011 12 10 0 1 1 0 0 1 0

[50] Cyanophycin 0.12 10(0) 2(1) 1 0 1 1 1 0 0

[50] Cyanophycin 0.10 10(0) 2(1) 1 0 1 1 1 0 0

[50] Cyanophycin 0.15 10(0) 2(1) 1 0 1 1 1 0 0

[51] Dihydroxyacetone 0.0040 4 3 1 0 0 0 0 0 0

[51] Dihydroxyacetone 0.034 4 3 1 0 1 0 0 0 0

[52] D-Lactic acid 0.61 9 1 1 0 1 1 0 0 1

[53] Dolichol 0.00010 10 11 0 0 0 1 0 0 0

[53] Dolichol 0.00018 10 11 1 0 0 0 0 0 0

[53] Ergosterol 0.00015 10 21 0 0 0 1 0 0 0

[53] Ergosterol 0.00020 10 21 1 0 0 0 0 0 0

[20] Ethanol 0.55 9 2 1 0 0 0 0 1 1

[20] Ethanol 0.47 8 2 0 1 0 0 0 1 1

[54] Ethanol 0.080 8 2 0 1 0 0 0 1 0

[54] Ethanol 0.12 8 2 0 1 0 0 0 1 1

[54] Ethanol 0.15 8 2 0 1 0 0 0 1 1

[55] Ethanol 0.53 9 2 1 0 0 1 0 0 0

[55] Ethanol 0.20 9 2 1 0 0 1 0 0 0

[55] Ethanol 0.47 9 2 1 0 0 1 0 0 0

[55] Ethanol 0.42 9 2 0 0 0 1 0 0 0

[55] Ethanol 0.36 9 2 0 0 0 1 0 0 0

[46] Ethanol 0.44 9 2 0 0 1 0 0 1 0

[46] Ethanol 0.32 8 2 0 0 1 0 0 1 1

[56] Ethanol 0.52 9 2 1 0 0 0 0 0 0

[47] Ethanol 0.55 9 2 0 1 0 0 0 0 1
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Table 2 Dataset used for the linear regression (Continued)

[47] Ethanol 0.39 9 2 0 1 0 0 0 0 1

[47] Ethanol 0.51 9 2 0 1 1 0 0 0 1

[57] Ethylene* 0.00069 13 10 1 0 0 0 0 1 0

[44] Farnesol 0.036 10 9 0 0 1 1 0 0 0

[58] Flavanones 0.030 10(0) 14(3) 0 1 0 0 1 0 0

[58] Flavanones 0.053 10(0) 14(3) 0 1 0 0 1 0 0

[59] Formate 0.00024 6 7 0 0 1 0 0 0 0

[59] Formate 0.00030 6 7 0 0 1 0 0 0 0

[60] Geraniol 0.00011 10 8 1 0 0 0 0 0 0

[60] Geraniol 0.00019 10 8 1 0 1 0 0 0 0

[60] Geraniol 0.00019 10 8 1 0 1 0 0 0 0

[61] Glycerol 0.12 4 2 1 0 0 0 0 1 0

[61] Glycerol 0.12 4 2 1 0 0 0 0 1 0

[45] Glycerol 0.41 4 2 1 0 1 0 0 1 0

[45] Glycerol 0.45 4 2 1 0 1 0 0 1 0

[45] Glycerol 0.45 4 2 1 0 1 0 0 0 0

[62] Glycerol 0.49 4 2 0 0 1 1 0 1 0

[62] Glycerol 0.41 4 2 0 0 1 1 0 1 0

[46] Glycerol 0.050 4 2 0 0 1 0 0 1 0

[46] Glycerol 0.037 2 4 0 0 1 0 0 1 1

[63] Glycerol 0.45 4 2 0 0 1 0 0 1 0

[63] Glycerol 0.54 4 2 1 0 1 0 0 1 0

[30] Glycerol 3-phosphate 0.0010 4 1 1 0 1 0 0 0 1

[64] Hydrocortisone 0.0020 10(0) 19(2) 1 0 0 1 1 0 0

[64] Hydrocortisone 0.0020 10(0) 19(2) 1 0 1 1 1 0 0

[64] Hydrocortisone 0.021 10(0) 19(2) 1 0 1 1 1 0 0

[64] Hydrocortisone 0.026 10(0) 19(2) 1 0 1 1 1 0 0

[65] Lactate 0.44 9 1 1 0 0 1 0 1 0

[66] Lactate 0.21 9 1 1 0 0 0 0 1 0

[67] L-Ascorbic acid 0.14 2(0) 8(2) 1 0 0 0 1 0 0

[67] L-Ascorbic acid 0.066 2(0) 8(2) 1 0 0 0 1 0 0

[60] Linalool 8.8 × 10-5 10 8 1 0 0 0 0 0 0

[60] Linalool 2.3 × 10-5 10 8 1 0 1 0 0 0 0

[68] L-Lactic Acid 0.65 9 1 1 0 1 1 0 0 0

[32] Malate 0.28 11 0 0 1 0 0 0 0 0

[49] Mevalonate 0.022 12 3 0 1 1 0 0 0 0

[49] Mevalonate 0.022 12 3 0 1 1 0 0 0 0

[69] Naringenin 0.0070 8(0) 15(3) 0 1 0 0 1 0 0

[69] Naringenin 0.0020 8(0) 15(5) 0 1 0 0 1 0 0

[15] Naringenin 0.00058 10 14 0 1 0 1 0 0 0

[70] n-Butanol 0.00020 12 6 0 1 0 0 0 0 1

[69] p-Coumaric Acid 0.033 8(0) 12(2) 0 1 0 0 1 0 0

[71] p-Hydroxycinnamic acid 0.00020 8 12 1 0 0 0 0 0 0

[71] p-Hydroxycinnamic acid 0.20 8(0) 12(2) 1 0 0 0 1 0 0

[15] Pinocembrin 6.6 × 10-5 10 14 0 1 0 1 0 0 0

[72] Poly[(R)-3-hydroxybutyrate] 0.00056 10 3 1 0 0 0 0 0 0

[72] Poly[(R)-3-hydroxybutyrate] 0.003 10 3 1 0 0 0 0 0 0

[72] Poly[(R)-3-hydroxybutyrate] 0.012 10 3 0 1 0 0 0 0 0

[72] Poly[(R)-3-hydroxybutyrate] 0.00047 10 3 1 0 0 0 0 1 0

[72] Poly[(R)-3-hydroxybutyrate] 0.0090 10 3 1 0 0 0 0 1 0

[72] Poly[(R)-3-hydroxybutyrate] 0.018 10 3 0 1 0 0 0 1 0

[72] Poly[(R)-3-hydroxybutyrate] 0.0010 10 3 0 1 0 0 0 1 1
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affected production yield. Specifically, addition of a new
enzymatic step in a secondary metabolic pathway reduced
product yield by 36% (for numerical variable SEC:

10βSEC = 10−0.19 = 64%). A good demonstration of the
effect of pathway length on product yield was found in the
case of naringenin production [15]. With the following
inputs of variables PRI = 10 (Galactose to PEP), SEC = 14
(i.e., 10 steps from PEP to phenylalanine; 4 steps from
phenylalanine to flavanone), KNO = INT = CUL = OXY =

category 1, NUT = Category 2; OVE = Category 3; the
model calculated:
Yield = 10-1.53- (0.01 × 10) + (-0.19 × 14) + 0.52+0.73 =

0.0009 (The reported experimental production yield was
0.00058). In most cases, our model-predicted yields
were within the range of one order of magnitude com-
pared to the experimental values.
Since the number of steps in central metabolism (PRI)

did not significantly affect production yield, we

Table 2 Dataset used for the linear regression (Continued)

[72] Poly[(R)-3-hydroxybutyrate] 0.017 10 3 0 1 0 1 0 0 0

[44] Premnaspirodiene 0.011 10 9 1 0 1 1 0 0 0

[44] Premnaspirodiene 0.0090 10 9 1 0 1 1 0 0 0

[73] Pyruvate 0.55 9 0 0 0 1 0 0 1 0

[46] Pyruvate 0.0050 9 0 0 0 1 0 0 1 0

[74] Reticuline 0.051 8(0) 16(3) 0 1 0 0 1 0 0

[75] Ribitol 0.0020 5 2 0 0 1 0 0 0 0

[75] Ribitol 0.027 5 2 1 0 1 0 0 0 0

[75] Ribitol 0.017 5 2 1 0 1 0 0 0 0

[75] Ribitol 0.021 5 2 1 0 1 0 0 0 0

[41] Squalene 0.042 10 9 1 0 0 1 0 0 0

[76] Taxadiene 7.7 × 10-5 12 8 0 1 0 1 0 0 0

[77] Vanillin 0.0030 3 6 0 1 1 1 0 0 0

[75] Xylitol 0.0070 5 2 1 0 1 0 0 0 0

[75] Xylitol 0.014 5 2 1 0 1 0 0 0 0

[75] Xylitol 0.014 5 2 1 0 1 0 0 0 0

[47] Xylitol 0.27 5 2 0 1 0 0 0 0 1

[47] Xylitol 0.29 5 2 0 1 1 0 0 0 1

[78] b-carotene 4.5 × 10-7 10 14 1 0 0 0 0 0 0

[78] b-carotene 2.9 × 10-6 10 14 0 1 0 0 0 0 0

[78] b-carotene 0.00011 10 14 0 1 0 0 0 0 0

[78] b-carotene 0.00036 10 14 0 1 0 0 0 0 0

[78] b-carotene 0.0010 10 14 0 1 0 0 0 0 0

Note: Some papers show that the biosynthesis can be enhanced by supplementing additional precursors. In the parenthesis, we had listed the number of
enzyme steps from the added intermediates to final products.

* Steps for ethylene was based on the arginine route.

Table 3 Regression coefficients and P-values for S. Cerevisiae Model

Model 1 Model 2 Model 3

With primary steps Without primary steps Ethanol as a primary metabolite

Variable Coefficient P-value Std. Error Coefficient P-value Std. Error Coefficient P-value Std. Error

Intercept -1.53 0 0.42 -1.60 0 0.34 -1.73 0 0.41

Primary step -0.01 0.76 0.04 - - - 0.003 0.93 0.03

Secondary step -0.19 0 0.02 -0.19 0 0.02 -0.19 0 0.02

OVE C2 0.007 0.98 0.26 0.0003 0.99 0.25 0.05 0.84 0.24

OVE C3 0.52 0.07 0.29 0.50 0.079 0.28 0.56 0.05 0.28

KNO C2 0.31 0.08 0.18 0.31 0.078 0.18 0.37 0.03 0.17

NUT C2 0.73 0 0.18 0.73 0 0.18 0.71 0 0.17

INT C2 0.77 0.02 0.31 0.82 0.001 0.25 0.86 0.004 0.29

CUL C2 0.51 0.02 0.22 0.51 0.02 0.21 0.51 0.02 0.21

OXY C2 0.27 0.32 0.27 0.28 0.31 0.27 0.12 0.65 0.27

Multiple R2 0.55 0.55 0.58
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computed another set of regression coefficients for
Equation 2 without the variable PRI, to yield a simplified
form Equation 5.

log Y = - 1.60 − 0.19 SEC + 0.0003 OVEC2 + 0.50 OVEC3 + 0.31 KNOC2 + 0.73 NUTC2+

0.82 INTC2 + 0.51 CULC2 + 0.28 OXYC2
(5)

As shown in Table 3, regression using Equation 2 with
the exclusion of the variable PRI did not change the R2

value. This result indicated that the number of enzy-
matic steps in primary metabolism did not significantly
affect product yield. Presumably, fluxes in central meta-
bolic pathways were typically high and robust [16],
when compared to those downstream secondary path-
ways. It has been demonstrated recently that production
of chemicals was significantly improved, only when the
capacity of a downstream pathway was increased [17].
Metabolic engineering typically involves pathway mod-

ification [16-22] to shift metabolic fluxes into a desired
product or to permit the use of an alternative carbon
source. We defined the variable OVE, and KNO in
Equation 2 to capture the effect of pathway overexpres-
sion, and deletion, respectively. The regression of
experimental data using Equation 2 showed that the
coefficients of OVEC2 and OVEC3 had positive values
(Table 3). The model successfully captured the contribu-
tion of both pathway overexpression and gene deletions
to increase product yield in S. cerevisiae. The high P-
value of OVEC2 (0.98) indicated that statistically, the
overexpression of a small number of genes (1-2) was
uncertain to improve production yield. However, the
coefficient of OVEC3 (= 0.52; P-value = 0.07) indicated
the effectiveness of multiple gene modification to resolve
the bottleneck steps. This observation is consistent to
the fact that metabolic fluxes generally do not sensitively
respond to changes of single enzyme activity, but are
controlled by all key enzymes along the biosynthesis

pathway. On the other hand, the regression coefficients
of KNOC2 had positive value (= 0.31, P-value = 0.08),
and thus the removal of competitive pathways could be
effective to increase production yield.
It is a general knowledge that bioprocess conditions

affect cellular viability and product yield. Our model
suggested fermentation using a well-controlled bioreac-
tor improved production yield by 3.2 times

(CULC2 : 10βCUL,C2 = 100.51) . The model further sug-
gested that fermentation under anaerobic or microaero-
bic condition could enhance yield compared to aerobic
fermentation. However, such enhancement was not sta-
tistically significant (P-value = 0.32). This observation
could be explained by the fact that S. cerevisiae pro-
duced fermentative products (ethanol and glycerol)
(Crabtree effect) [18,19] under aerobic and glucose-suffi-
cient medium. Therefore, aerobic metabolism in S. cere-
visiae could operate similarly to metabolism under
oxygen-limited condition. The coefficient for the vari-
able INT was 0.77, which represented that the supple-
mentation of a precursor metabolite translated to an
approximately six fold increase of the product yield (P-
value = 0.02). Similarly, the addition of nutrients (such
as yeast extract) also significantly increased production
yield (the coefficient of NUTC2 was 0.73). The contribu-
tions of INT and NUT to product formation indicated
that intermediates/nutrients provided building blocks or
energy sources that reduced the rate-limiting steps in
biosynthetic pathways.
We used Equation 2 to compute the production yield

of chemicals according to the specifications listed in
Table 2. We observed that, for ethanol production, the
experimental values were generally higher than the
empirical model predictions. In reality, the reported
maximum ethanol yield could reach 0.5 mol C-ethanol/
mol C-glucose [20], which could be several folds higher
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Figure 2 Model results. A) Plot of the actual logarithmic yields against the logarithmic yields generated by the regression model. The line
drawn as diagonal to the plot is one-to-one and passes through the origin. The data points have an R2 value of 0.55. B) Plot of residuals against
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than model predictions. To mitigate this discrepancy, we
re-categorized the ethanol synthesis pathway as the pri-
mary pathway to generate Equation 6.

log Y = - 1.73 + 0.003 PRI − 0.19 SEC + 0.05 OVEC2 + 0.56 OVEC3 + 0.37 KNOC2 + 0.71

NUTC2 + 0.86 INTC2 + 0.51 CULC2 + 0.12 OXYC2
(6)

Regression of the data using Equation 6 improved the
R2 value from 0.55 to 0.58, demonstrating that ethanol
could be better assumed as a central metabolite for S.
cerevisiae. Using Equation 6, we predicted ethanol pro-
duction based on a recent reference [21] by specifying
PRI = 11, SEC = 1 (cellulose degradation step), OVE =
C3, KNO = C1; NUT = C2, INT = C1, CUL = C1, and
OXY = C2. The ethanol production yield calculated by
Equation 6 was 0.31. This value was in good agreement
with the reported values of ~0.4 [21].

Model Applications and Limitations
The main application of the model is to predict the bio-
synthesis yield from S. cerevisiae. The model were vali-
dated by “unseen data” (Figure 2C) from some randomly
selected new publications (2010~2011). The model pre-
dicted the yields based on the reported experimental
conditions described by these papers [22-26]. Most yield
data were close to model predictions. The predictive
power of the model was consistent with the model qual-
ity described in Table 3.
Furthermore, the model can reveal the metabolic fea-

tures of S. cerevisiae. For example, the modified model
Equation 6 showed that it was better to treat ethanol
pathway as the primary routes in cell metabolism,
because of the strong ability for ethanol fermentation by
yeast, possibly due to long-term process for selecting
yeast as alcohol producer through human history. The
model can also be useful for comparing the productivity
among other yeast species (Figure 3). For example, ribo-
flavin producer, Candida famata, exhibits a high ribofla-
vin productivity (2~3 order of magnitude higher than
model prediction) [27]. Pichia pastoris, a common spe-
cies for protein expression, shows high S-adenosyl-L-
methionine productivity if a large amount of the inter-
mediate methionine was repeatedly added in the med-
ium [28]. Besides, Pichia stipitis also has high yields of
L-lactic acid and ethanol from glucose and xylose [29].
Figure 3 demonstrated that some yeast species were able
to explore their native pathways for biosynthesis of cer-
tain products with extraordinary efficiency (better than
S. cerevisiae), therefore, these yeast species may be alter-
native hosts for certain biotechnology applications.
The accuracy of the model predictions for some pro-

ducts could be poor due to several limitations during
model development. First, the category was a rough esti-
mation of experimental conditions especially for vari-
ables related to gene modifications (OVE and KNO),

and the yields could be very different even in the same
category. Second, some products, despite large synthesis
rates, were either not very stable or difficult to accumu-
late in a large quantity due to consumptions by down-
stream pathways or product degradations (e.g., Glycerol
3-phosphate [30]). Their yields could be significantly
lower than model predictions even though the actual
flux to the product was high. Third, the coefficient bSEC
from model regression could not account for the big
variances of biosynthesis efficiency or potentially feed-
back inhibitions in secondary pathways. For example,
butanol synthesis is significantly improved via non-fer-
mentative amino acid pathways compared to traditional
acetyl-CoA routes [31], because amino acid synthesis
pathways in microorganisms are more effective than
other heterogeneous pathways. Fourth, because of lim-
ited information from the references, the yield calcula-
tion could not precisely include the CO2 fixation (e.g.,
overexpression of the native carboxylase pathway: pyru-
vate + CO2 ® oxaloacetate) [32] or the nutrients utiliza-
tion in the rich medium. Fifth, the model neglected
enzyme steps related to energy metabolism (such as
ATP and NADPH synthesis), while cofactor imbalance
can also affect the product yields.

Comparison to the previously published E. coli model [33]
Recently, we have constructed the E. coli model using
same modeling approach. Compared to the E. coli
model, S. cerevisiae shows several differences: 1. Oxygen
conditions made a more significant impact on biosynth-
esis yield in E. coli than that in S. cerevisiae; 2. The
genetic modification in E. coli had higher uncertainty
for metabolic outcomes; 3. For metabolic pathways from
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Figure 3 S. cerevisiae model prediction of biosynthesis yields
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precursors to final products, loss of yield per biosynth-
esis step (~30%) in S. cerevisiae is higher than that in E.
coli (10~20%). Interestingly, E. coli model states that pri-
mary metabolism influences product yield (a relatively
small P-value of 0.06) which indicates the balance of
precursor production from central metabolism is also an
important consideration for metabolic engineering of E.
coli. For example, it has been demonstrated that lyco-
pene production with E. coli was enhanced by redirect-
ing the carbon flux from pyruvate to G3P [34], but
feeding other central metabolite precursors (such as pyr-
uvate) could not improve lycopene production. On the
other hand, the S. cerevisiae model indicates that it is
less likely that the number of steps in central metabo-
lism play a bottleneck role in the production of metabo-
lites derived from it, while the bottlenecks are more
likely in the secondary pathways (from central precur-
sors to the final product). Therefore, the metabolic stra-
tegies should focus on the secondary pathways to have a
better chance for increasing final yield. Although modifi-
cation of central metabolism may affect microbial phy-
siologies, a few studies indicate the robustness of the
central metabolism in S. cerevisiae because of its impor-
tance to cell vitality. For example, S. cerevisiae may
maintain central metabolic fluxes via gene duplication
and alternative pathways under different environmental
and physiological conditions [16,35]. Therefore, the
inflexibility of central pathways in S. cerevisiae is likely
to render metabolic engineering strategies ineffective
when targeting enzymes in central metabolism. In gen-
eral, the unique metabolic features of yeast and bacteria
can be of important consideration when choosing a pro-
duction host.

Conclusions
Although S. cerevisiae has been widely used as a robust
industrial organism for metabolic engineering applications,
many metabolic features of this organism for biosynthesis
under various conditions remain unknown. In this study,
the statistic model for yeast biosynthesis permits a priori
calculation of the final product yield achievable by current
biotechnology. Unlike other in silico models based on
mass balance or thermodynamics (such as FBA model)
[36,37], our model is based on a statistical analysis of pub-
lished data using numerical and ordinal variables (categor-
ized experimental conditions). The model has three
applications. 1. The yield prediction takes into account the
genetic design of the microbial host system and the “sub-
optimal” conditions under which the fermentation process
occurs. 2. The model may identify effective metabolic stra-
tegies and at the same time, quantitatively provide the
degree of uncertainty (i.e., possibility for failure). For
example, statistical analysis shows that, for S. cerevisiae,
metabolic bottlenecks may be more likely to be in the

secondary metabolic pathways rather than primary path-
ways, and thus it can narrow down the genetic targets and
avoid futile work. 3. This model may be used to qualita-
tively benchmark yields of different engineered production
platforms.
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